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Lista egzaminacyjna zadań z matematycznych podstaw
informatyki, wersja 3.

Funkcje pierwotnie rekurencyjne.

Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są defi-
nicje klasy funkcji pierwotnie rekurencyjnych, algorytmy, za pomocą których moż-
na obliczać wartości takich funkcji, operacje (sposoby definiowania) nie wyprowa-
dzające poza klasę funkcji pierwotnie rekurencyjnych, zbiory (relacje) pierwotnie
rekurencyjne, twierdzenia o zamkniętości klasy tych relacji, lemat o podstawianiu,
funkcja β Gödla i kodowanie ciągów, zbiory rekurencyjnie przeliczalne, twierdzenia
o zamkniętości klasy zbiorów rekurencyjnie przeliczalnych.

Zad. 1. Wykaż, że różne znane funkcje naturalne są rekurencyjne, a najczęściej
także są pierwotnie rekurencyjnie. Mowa tu o funkcjach takich jak iloraz, reszta (z
różnie sprecyzowanymi definicjami), silnia, potęga, część całkowita logarytmu itd.

Zad. 2. Udowodnij, że następujące funkcje są pierwotnie rekurencyjne:

1) max(m1, . . . ,mn) = największej liczbie spośród m1, . . . ,mn,

2) zwykła funkcja pary f(n,m) =
(n+m)(n+m+ 1)

2
+ n,

3) 〈x1, . . . , xn〉 = µy

(
β(y, 0) = n ∧

∧
i<n

β(y, i+ 1) = xi

)
, gdzie β oznacza zwy-

kła funkcję Gödla, przyporządkowująca liczbom x1, . . . , xn kod ciągu (x1, . . . , xn).

Zad. 3. Udowodnij, że funkcje takie, jak n-ta liczba pierwsza lub najmniejsza liczba
pierwsza przynajmniej równa n są pierwotnie rekurencyjnie. Wskazówka: gdyby
Euklides (autor klasycznego twierdzenia o liczbach pierwszych) znał rozwiązanie
poprzednich, to umiałby rozwiązać także to zadanie.

Zad. 4. Udowodnij, że jeżeli f i g są funkcjami pierwotnie rekurencyjnymi, to pier-
wotnie rekurencyjna jest też całkowita funkcja h taka, że

h(x) = µy (f(x, y) = 0) oraz h(x) ¬ g(x)

dla wszystkich x. (Funkcja definiowana za pomocą pętli, o której z góry wiadomo,
ile razy jest wykonywana, jest pierwotnie rekurencyjna.)

Zad. 5. (trudne) Udowodnij, że funkcje

f(n) = część całkowita en

oraz

g(0) = 2 oraz g(n) = n-ta cyfra rozwinięcia dziesiętnego liczby e

(dla n > 0) są pierwotnie rekurencyjne. Przynajmniej pokaż ich rekurencyjność.

Zad. 6. Pokaż, że jeżeli funkcje g0, g1 oraz h są pierwotnie rekurencyjne, to także
funkcja f zdefiniowana równościami

f(~x, 0) = g0(~x), f(~x, 1) = g1(~x), f(~x, n+ 2) = h(f(~x, n), f(~x, n+ 1), n, ~x)

jest pierwotnie rekurencyjna. W szczególności, pierwotnie rekurencyjna jest funkcja
przyporządkowująca liczbie n wyraz Fn ciągu Fibonacciego.
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Zad. 7. Pokaż, że jeżeli funkcje g1, g2, h1 oraz h2 są pierwotnie rekurencyjne, to
także funkcje f1 i f2 zdefiniowana równościami

f1(~x, 0) = g1(~x), f1(~x, n+ 1) = h1(f1(~x, n), f2(~x, n), n, ~x)

f2(~x, 0) = g2(~x), f2(~x, n+ 1) = h2(f1(~x, n), f2(~x, n), n, ~x)

są pierwotnie rekurencyjne. Wywnioskuj stąd, że funkcje div i mod są pierwotnie
rekurencyjne.

Zad. 8. Udowodnij, że funkcje

f(n) = część całkowita
√
n

oraz
g(n) = część całkowita log2(n+ 1)

są pierwotnie rekurencyjne.

Zad. 9. Niech f będzie rosnącą funkcją pierwotnie rekurencyjną taką, że f(0) = 0.
Pokaż, że funkcja

g(n) = max{k : f(k) ¬ n}

jest pierwotnie rekurencyjna.

Zad. 10. Udowodnij, że następujące funkcje są pierwotnie rekurencyjne: 〈f〉(n, ~x) =
〈f(0, ~x), f(1, ~x), . . . , f(n − 1, ~x)〉 przy założeniu, że f jest funkcją pierwotnie re-
kurencyjną (definicja 〈f〉 nie wygląda na poprawną, ale mam nadzieję, że jest
zrozumiała).

Zad. 11. Pokaż, że jeżeli funkcje g, oraz h są pierwotnie rekurencyjne, to także
funkcja f zdefiniowana równościami

f(~x, 0) = g(~x) oraz f(~x, n) = h(f(~x, (n)0), f(~x, (n)1), n, ~x) dla n > 0

jest pierwotnie rekurencyjna.

Zad. 12. Udowodnij, że istnieje pierwotnie rekurencyjna funkcja f : N2 → N
taka, że dla dowolnych liczb m,n ∈ N dowolny ciąg długości n złożony z liczb nie
przekraczających m jest kodowany przez pewną liczbę nie przekraczającą f(m,n).
Wskazówka: raczej nie należy konstruować takiej funkcji, wystarczy wywnioskować
ten fakt z dowodzionego wcześniej twierdzenia.

Zad. 13. Pokaż, że relacja Term ⊆ N taka, że

Term(a) ⇔ ∃t t jest termem ∧ a = dte

jest rekurencyjna, a nawet pierwotnie rekurencyjna. Termy w tym zadaniu mogą
być rozumiane jako termy zwykłego języka arytmetyki.

Definiowalność relacji.

Problemy: Ważne są pojęcie definiowalności, formuły i relacje klasy Σ0 (dawniej
∆0, uwaga na zmianę oznaczeń), także Σ1 i Π1, twierdzenie o postaci normalnej,
interpretacja informatyczna tego twierdzenia, fragmenty rozumowania pozwalają-
cego dowieść to twierdzenie, np. o możliwości zastąpienia w definicji dwóch kwan-
tyfikatorów egzystencjalnych jednym, odpowiedniość między własnościami infor-
matycznymi i sposobem definiowania, zależność między postacią definicji, a reku-
rencyjnością.

Zad. 14. Pokaż, że relacje definiowane formułami klasy Σ0 są pierwotnie rekuren-
cyjne.
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Zad. 15. Wiadomo, że każda funkcja rekurencyjna f : N → N (także częściowa)
spełnia równoważność postaci

f(x) = y ⇔ ∃z R(x, y, z)

dla pewnej relacji R klasy Σ0. Funkcję f możemy obliczać korzystając albo z
wzorów

g(x) = µv (∃y < v ∃z < v R(x, y, z)), f(x) = µuu<g(x) (∃z < g(x)R(x, u, z))

bez kodowania, albo z następujących z kodowaniem:

h(x) = µv R(x, (v)0, (v)1), f(x) = (h(x))0.

Pokaż, że wzory te są prawdziwe. Oba wzory definiują algorytmy obliczania funkcji
f . Oceń te algorytmy z informatycznego punktu widzenia.

Dowody i twierdzenia. Formalizacja logiki, przejście od języka natural-
nego do sformalizowanego.

Problemy: Z logiki proszę dobrze zapoznać się z podstawowymi pojęciami logicz-
nymi, jak term, formuła atomowa, formuła, podstawianie, term podstawialny, zda-
nie, dowód, twierdzenie, teoria, teoria niesprzeczna, teoria zupełna, i z systemem
logicznym Shoenfielda (lub jakimś innym). Aby przećwiczyć te pojęcia, dobrze jest
dowieść na przykład twierdzenie o dedukcji.

Zad. 16. Podaj formalne dowody w wybranym systemie logicznym formuł nastę-
pujących postaci:

1) ((p∧q)⇒ r)⇔ (p⇒ (q ⇒ r)) (p, q, r to dowolne formuły, zmienne zdaniowe
lub zeroargumentowe symbole relacyjne),

2) p⇔ ¬¬p,

3) (p⇒ q)⇔ (¬q ⇒ ¬p),

4) ¬(p ∨ q)⇔ (¬p ∧ ¬q),

5) (p⇒ r)⇒ ((q ⇒ r)⇒ (p ∨ q ⇒ r)),

6) ∀x(ϕ⇒ ψ)⇒ (∀xϕ⇒ ∀xψ),

7) ∀x(ϕ⇒ ψ)⇒ (∃xϕ⇒ ∃xψ),

8) ∀x(ϕ⇒ ψ)⇔ (∃xϕ⇒ ψ) pod warunkiem, że x nie jest wolna w ψ,

9) ∃x∀yϕ⇒ ∀y∃xϕ.

Zad. 17. Sprawdź, że każdy term, w którym występuje najwyżej zmienna x jest
podstawialny w dowolnej formule za zmienną x.

Zad. 18. Podaj przykłady rozumowań świadczące o tym, że nieprzestrzeganie ogra-
niczeń stosowania aksjomatów logicznych i reguł dowodzenia prowadzi do błędów.
Ograniczenia dotyczą kwantyfikatorów, a to zadania jest trochę łatwiejsze dla reguł
z systemu dedukcji naturalnej (patrz notatki).

Zad. 19. Udowodnij, że w teorii T można dowieść formułę ϕ wtedy i tylko wtedy,
gdy w teorii T można dowieść formułę ∀xϕ. Udowodnij, że formuły ∀xϕ ⇒ ϕ są
twierdzeniami (że ` ∀xϕ⇒ ϕ). Udowodnij, że niektóre z formuł postaci ϕ⇒ ∀xϕ
nie dają się dowieść.
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Zad. 20. Udowodnij twierdzenie o dedukcji dla rachunku zdań: Formuła ϕ daje
się wyprowadzić z aksjomatu ψ wtedy i tylko wtedy, gdy implikacja ψ ⇒ ϕ jest
prawem rachunku zdań.

Zad. 21. Przypuśćmy, że stała c nie występuje w formule ϕ, ani w aksjomatach
teorii T . Jeżeli formuła ϕ[x ← c] jest twierdzeniem teorii T , to w teorii T można
dowieść także formuły ∀xϕ oraz ϕ. Co więcej, można to zrobić nie używając w
tych dowodach stałej c (formuły te można dowieść w języku bez stałej c).

Zad. 22. Jeszcze raz twierdzenie o dedukcji: formuła ϕ jest twierdzeniem teorii T
uzupełnionej o aksjomat ψ będący zdaniem wtedy i tylko wtedy, gdy ψ ⇒ ϕ jest
twierdzeniem teorii T . Podaj kontrprzykład świadczący o istotności założenia, że
ψ jest zdaniem. Wskazówka do dowodu w trudniejszą stronę: jeżeli każdą formułę
w dowodzie ϕ zastąpimy mechanicznie przez implikację ψ ⇒ . . . o poprzedniku ψ,
to otrzymamy schemat dowodu implikacji ψ ⇒ ϕ.

Zad. 23. Udowodnij, że jeżeli ϕ jest zdaniem, które nie ma dowodu w teorii T , to
teoria T ∪ {¬ϕ} jest niesprzeczna.

Zad. 24. Zbiór zdań spełnionych w dowolnej strukturze jest teorią niesprzeczną i
zupełną.

Gödlizacja logiki, czyli „implementacja” pojęć logicznych za pomocą
liczb naturalnych.

Problemy: Definicje, pierwotna rekurencyjność większości pojęć logicznych po gödlizacji,
teorie aksjomatyzowalne, rekurencyjna przeliczalność pojęcia twierdzenia.

Zad. 25. Pokaż, że relacja Term ⊆ N taka, że

Term(a) ⇔ ∃t t jest termem ∧ a = dte

jest rekurencyjna, a nawet pierwotnie rekurencyjna. Termy w tym zadaniu mogą
być rozumiane jako termy zwykłego języka arytmetyki.

Arytmetyki i reprezentowalność

Problemy: Arytmetyki Q i Peano, reprezentowalność funkcji pierwotnie rekuren-
cyjnych w teorii Q (i bogatszych), mocna reprezentowalność relacji pierwotnie
rekurencyjnych w Q, reprezentowalność relacji mocno reprezentowalnych, teorie
ω-niesprzeczne, reprezentowalność relacji rekurencyjnie przeliczalnych w teoriach
ω-niesprzecznych.

Twierdzenie Gödla, oryginalne

Problemy: Sformułowanie twierdzenia Gödla o niezupełności, wnioski z dowodu
twierdzenia, ogólne rozumienie problematyki. Niemożność uzupełnienia arytmetyki
Peano.

Zad. 26. Udowodnij, że zbiór zdań prawdziwych w standardowym modelu aryt-
metyki liczb naturalnych nie jest przeliczalnie rekurencyjny.

Funkcje rekurencyjne.

Problemy: Zapoznaj się z teorią funkcji rekurencyjnych. Ważne są definicje klasy
całkowitych funkcji rekurencyjnych i częściowych funkcji rekurencyjnych, Możli-
wość zdefiniowania klas funkcji rekurencyjnych na dwa sposoby (µ-rekurencyjność,
patrz rozdzia 2.2 w części 1 notatek z wykładu), intuicje związane z obliczalnością,
operacje nie wyprowadzające poza klasę funkcji rekurencyjnych całkowitych i lub
częściowych, zbiory (relacje) rekurencyjne, twierdzenia o zamkniętości klas tych
relacji. Zależności między pojęciami z teorii funkcji rekurencyjnych, na przykład
funkcja jest rekurencyjna wtedy i tylko wtedy, gdy jej wykres jest rekurencyjnie
przeliczalny.
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Wiadomo, że funkcje pierwotnie rekurencyjne są rekurencyjne. Zauważ, że więk-
szość rozumowań dotyczących funkcji pierwotnie rekurencyjnych pozostaje praw-
dziwa w przypadku funkcji rekurencyjnych, w tym lemat o podstawianiu i lemat
Gödla (o funkcji β). W szczególności zadania dotyczące funkcji pierwotnie reku-
rencyjnych pozostają prawdziwe w przypadku funkcji rekurencyjnych.

Zad. 27. Sformułuj i dowiedź odpowiednik lematu o podstawianiu w przypadku
relacji i funkcji rekurencyjnych. Dowód powinien być bardzo szczegółowy, łatwo w
nim zrobić błąd.

Zad. 28. Zakładając, że lemat Gödla zachodzi dla funkcji µ-rekurencyjnych, pokaż,
że funkcja wykładnicza o własnościach

m0 = 1 oraz mn+1 = mn ·m

jest µ-rekurencyjna (albo pokaż jej rekurencyjność bez korzystania z rekursji pro-
stej).

Zad. 29. Podaj przykład całkowitej funkcji rekurencyjnej, która nie jest pierwotnie
rekurencyjna. Naszkicuj dowód rekurencyjności tej funkcji.

Zad. 30. Pokaż, że dla dowolnej funkcji rekurencyjnej f istnieje funkcja pierwotnie
rekurencyjna g taka, że

f(~x) = (µy (g(~x, y) = 0))0

dla wszystkich ~x. Wskazówka: dowodziłbym to korzystając z twierdzenia o defi-
niowalności. Jest to wersja twierdzenia o postaci normalnej. Można to zadanie zin-
terpretować w następujący sposób: każdy program wykonuje określone obliczenia
na wyniku znalezionym w pętli while, jedynej w programie. Pozostałe obliczenia
polegają na wykonywaniu pętli for, a więc pętli, o której z góry wiadomo, ile razy
będzie wykonywana.

Zad. 31. Jakie funkcje są definiowane wzorami

f(x) = µy (y2 ­ x), g(x) = µy (y2 = x), h(x) = µy (y2 ¬ x)?

Opisz je. Czy są to funkcje pierwotnie rekurencyjne?

Zad. 32. Niech f : N → N będzie różnowartościową funkcją rekurencyjną. Udo-
wodnij, że funkcja odwrotna f−1 też jest rekurencyjna.

Zad. 33. Pokaż, że

1) zbiór wartości funkcji rekurencyjnej jest rekurencyjnie przeliczalny,

2) niepusty zbiór rekurencyjnie przeliczalny A ⊆ N jest zbiorem wartości cał-
kowitej funkcji rekurencyjnej,

3) niepusty, rekurencyjnie przeliczalny zbiór A ⊆ N2 jest postaci

{〈f(n), g(n)〉 ∈ N2 : n ∈ N},

gdzie f i g są całkowitymi funkcjami rekurencyjnymi określonymi na zbiorze
liczb naturalnych N .

Zad. 34. Udowodnij, że funkcja f jest rekurencyjna wtedy i tylko wtedy, gdy jej
wykres

Wf = {(~x, y) : f(~x) jest określona oraz f(~x) = y}

jest rekurencyjnie przeliczalny. Wskazówka: można skorzystać z twierdzeń o defi-
niowalności.
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Zad. 35. Klasa funkcji rekurencyjnych całkowitych zamknięta ze względu na defi-
niowanie warunkowe.

Zad. 36. Załóżmy, że rekurencyjna funkcja f : N → N jest różnowartościowa. Czy
funkcja f−1 jest rekurencyjna? Czy założenie całkowitości f coś zmienia?

Twierdzenie Gödla według Churcha

Problemy: Twierdzenia o nierozstrzygalności arytmetyki i rachunku kwantyfika-
tatorów, rozumowanie przekątniowe, szkice dowodów. Twierdzenie o niezupełności
arytmetyki jako wniosek z twierdzenia o nierozstrzygalności.

Zad. 37. Udowodnij, że rozłączne zbiory rekurencyjnie przeliczalne w sumie dające
zbiór liczb naturalnych są rekurencyjne.

Rozstrzygalność i obliczalność, teza Churcha

Problemy: Zagadnienia: Teza Churcha i odpowiedniość między pojęciami z teo-
rii funkcji rekurencyjnych i obliczalnością: funkcje obliczalne to częściowe funkcje
rekurencyjne, zbiory rozstrzygalne to zbiory rekurencyjne, zbiory semirozstrzygal-
ne (rozpoznawalne) to zbiory rekurencyjnie przeliczalne. Kodowanie pojęć logicz-
nych za pomocą liczb naturalnych, własności kodowania, szkic dowodu twierdze-
nia Churcha o nierozstrzygalności arytmetyki i konsekwencje informatyczne tego
twierdzenia. Trzy charakteryzacje obliczalności: rekurencyjność, definiowalność i
reprezentowalność, zależności między tymi charakteryzacjami.

Zad. 38. Rozstrzygalność zbioru twierdzeń teorii w pewnym stopniu jest równo-
ważna zupełności teorii. Rozważmy następujący algorytm: dane jest zdanie ϕ,
pytamy się, czy ϕ jest twierdzeniem (pewnej ustalonej) teorii T?

1) var d : string; d := ε;

2) while true do begin

(a) d := następny po d,

(b) if d jest dowodem ϕ w T , then return ’ϕ jest twierdzeniem T ’,

(c) if d jest dowodem ∼ ϕ w T , then return ’ϕ nie jest twierdzeniem T ’.

3) end

W tym algorytmie ∼ ϕ oznacza ¬ϕ, jeżeli ϕ nie jest negacją, oraz ψ, jeżeli ϕ = ¬ψ
(∼ ϕ to negacja ϕ, ale gdyby miała zaczynać się podwójną negacją, to bez tych
dwóch negacji), a procedura badająca dowody nie może o żadnym napisie twierdzić,
że jest jednocześnie dowodem zdania i jego negacji (np. zakłada, że udowodniona
może zostać tylko ostatnia formuła dowodu)

Pokaż, że

1) Podany algorytm jest poprawny wtedy i tylko wtedy, gdy teoria T jest nie-
sprzeczna.

2) Podany algorytm zatrzymuje się po uruchomieniu z dowolnym zdaniem wte-
dy i tylko wtedy, gdy teoria T jest zupełna.

Tak więc najprostszy algorytm szukania dowodu rozstrzyga zbiór twierdzeń T
wtedy i tylko wtedy, gdy teoria T jest niesprzeczna i zupełna.

Pojęcie spełniania, twierdzenie o pełności.
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Problemy: Proszę zapoznać się z pojęciem struktury, wartościowania, wartości
termu, spełniania przy danym wartościowaniu, spełnianiu modelu, a także z twier-
dzeniem o pełności i może ze szkicem jego dowodu. Jakie jest znaczenie tego twier-
dzenia? Następne zadanie jest ćwiczeniem z definicji spełniania.

Pierwsza część zadania wyjaśnia sens operacji podstawiania.

Zad. 39. Niech x będzie ustaloną zmienną, a t – dowolnym termem. Dla danego
wartościowania zmiennych h definiujemy wartościowanie ht przyjmując, że ht(y) =
h(y) dla wszystkich zmiennych y 6= x oraz ht(x) = t[h]. Udowodnij, że

1) s[x← t][h] = s[ht] dla dowolnego termu s,

2) A |= ϕ[x← t][h] wtedy i tylko wtedy, gdy A |= ϕ[ht] dla dowolnej struktury
A, dowolnej formuły ϕ i dowolnego wartościowania zmiennych h.

Zad. 40. Udowodnij twierdzenie o poprawności: jeżeli ϕ jest twierdzeniem teorii T ,
to jest spełnione w każdym modelu teorii T . Pełny dowód może okazać się żmudny,
ale można znaleźć plan dowodu i przeprowadzić niektóre rachunki.

Twierdzenie Herbranda

Problemy: Zapoznaj się ze sformułowaniem i szkicem dowodu twierdzenia Her-
branda (także z algorytmem Herbranda).

Zad. 41. Przypomnij sobie pojęcie postaci normalnej formuły rachunku zdań, zwłasz-
cza postaci koniunkcyjnej. Scharakteryzuj formuły w koniunkcyjnej postaci nor-
malnej będące tautologiami.

Zad. 42. Udowodnij twierdzenie o pełności dla rachunku zdań: dowolna formuła
(rachunku zdań) jest tautologią wtedy i tylko wtedy, gdy jest prawem rachunku
zdań.

Zad. 43. Zbadaj metodą Davisa - Putnama, czy koniunkcja następujących alter-
natyw jest sprzeczna.

1) P ∨Q ∨R

2) P ∨ ¬Q ∨ ¬R

3) P ∨ ¬W

4) ¬Q ∨ ¬R ∨ ¬W

5) ¬P ∨ ¬Q ∨R

6) U ∨X

7) U ∨ ¬X

8) Q ∨ ¬U

9) ¬R ∨ ¬U

Zad. 44. Przypuśćmy, że formuła ϕ nie zawiera kwantyfikatorów i zdanie ∃x∀yϕ
jest tautologią. Podaj dowód tego zdania. Wskazówka. Trudno napisać dowód, ale
można korzystając z twierdzenia Herbranda opisać metodę konstruowania dowo-
du. Taka metoda powinna składać się z dwóch części: z metody konstruowania
dowodu tautologii rachunku zdań (na poziomie rachunku zdań) i rozumowania
dotyczącego kwantyfikatorów. Pierwsza część powinna być znana z logiki, można
też posłużyć się koniunkcyjną postacią, druga część nie jest trudna, zawiera dość
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oczywiste rozumowanie. Reszta rozumowania to pewien trick. Twierdzenie Her-
branda w tym przypadku mówi, że pewna alternatywa postaci

∨
ϕ(t, f(t)) (f to

symbol skolemowski) jest tautologią w sensie rachunku zdań. W tej tautologii, dla
poszczególnych t wszystkie wystąpienia termu f(t) zastępujemy zmiennymi wy-
znaczonymi przez t, biorąc dla różnych t różne zmienne. Ta alternatywa po tej
zamianie nadal będzie tautologią. Po zamianie dowodzimy tautologię, a następnie
wyprowadzamy z niej wyjściową formułę. W ten sposób z twierdzenia Herbran-
da wyprowadzamy twierdzenie o pełności, a także otrzymujemy ogólną metodę
konstruowania dowodów w rachunku kwantyfikatorów.

Zad. 45. Zmodyfikuj równoważność z poprzedniego zadania tak, aby była praw-
dziwa dla formuł ϕ, w których mogą dodatkowo występować stałe.

Zad. 46. Korzystając z algorytmu Herbranda pokaż, że formuła

∃x ∀y R(x, y)→ ∀y ∃x R(x, y)

jest tautologią, natomiast formuła

∀x ∃y R(x, y)→ ∃y ∀x R(x, y)

nie jest. Druga część zadania dzięki twierdzeniu Herbranda sprowadza się do pro-
blemu unifikacji.

Zad. 47. Niech Φ oznacza formułę

∃x∃y∀z((A(x, y)⇒ A(y, z) ∧ A(z, z)) ∧ (A(x, y) ∧B(x, y)⇒ B(x, z) ∧B(z, z)))

(jest to formuła wykorzystywana do testowania programu Gilmora). Udowodnij,
że Φ jest tautologią (prawem logiki). Zrób to wprost oraz korzystając z algorytmu
Herbranda.

Zad. 48. Rozważamy formuły bez stałych i symboli funkcyjnych, formuła ϕ nie
zawiera ponadto kwantyfikatorów. Udowodnij, że zdanie ∃x1 . . . ∃xn ϕ jest tau-
tologią wtedy i tylko wtedy, gdy formuła ϕ jest spełniona przy każdym (jedynym
możliwym) wartościowaniu w każdej strukturze o jednoelementowym uniwersum.
Jak sprawdzić warunek z prawej strony tej równoważności posługując się metodą
zerojedynkową? Zbadaj, czy formuła

∃x ∃y ∃z ((F (x, y)⇒ F (y, z) ∧ F (z, z)) ∧ (F (x, y) ∧G(x, y)⇒ G(x, z) ∧G(z, z)))

jest tautologią.

Zad. 49. Zmodyfikuj równoważność z poprzedniego zadania tak, aby była praw-
dziwa dla formuł ϕ, w których mogą dodatkowo występować stałe.

Zad. 50. Czy istnieje algorytm, który odpowiada na pytanie, czy zdanie

∀x1 . . . ∀xn ∃y1 . . . ∃ym ϕ

jest tautologią? Także w tym zadaniu ϕ nie zawiera kwantyfikatorów.

Zad. 51. Przypuśćmy, że ϕ i ψ są zdaniami w preneksowej postaci normalnej, a ψ1

oznacza formułę otrzymaną z ψ po wykonaniu jednego kroku skolemizacji (po usu-
nięciu jednego kwantyfikatora egzystencjalnego). Zdania ϕ1, . . . , ϕk są sprzeczne,
wtedy i tylko wtedy, gdy nie ma modelu, w którym są spełnione.

Algorytm Herbranda jest oparty o lemat, który stwierdza, że zdanie ψ jest
sprzeczne wtedy i tylko wtedy, gdy zdanie ψ1 jest sprzeczne. Uogólnij ten lemat
i pokaż, że zdania ϕ i ψ są sprzeczne wtedy i tylko wtedy, gdy zdania ϕ i ψ1 są
sprzeczne.
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Zad. 52. Wywnioskuj z poprzedniego zadania i twierdzenia o pełności, że nastę-
pujące warunki są równoważne:

1) zdania ϕ i ψ są sprzeczne,

2) zdania ϕ i ψ∗ są sprzeczne,

3) zdania ϕ∗ i ψ∗ są sprzeczne,

4) ` ϕ⇒ ¬ψ.

Zad. 53. Przypuśćmy, że w teorii T dowiedliśmy formułę ∃y ϕ, skorzystaliśmy z
reguły opuszczania kwantyfikatora egzystencjalnego otrzymując formułę ϕ[y ←
f(~x)], a następnie w teorii T uzupełnionej o aksjomat ϕ[y ← f(~x)] dowiedliśmy
zdanie Ψ. Pokaż, że zdanie Ψ daje się dowieść w teorii T (i to bez korzystania z
dodatkowych symboli).


