Lista egzaminacyjna zadan z matematycznych podstaw
informatyki, czes¢ 1.

Niektore zadania sg raczej zagadnieniami, na ktore nalezy zwrdci¢é uwage.
Funkcje pierwotnie rekurencyjne.

* Zapoznaj sie z teorig funkeji pierwotnie rekurencyjnych. Wazne sg definicje klasy
funkcji pierwotnie rekurencyjnych, algorytmy, za pomoca ktérych mozna obliczaé
wartosci takich funkcji, operacje (sposoby definiowania) nie wyprowadzajace poza
klase funkcji pierwotnie rekurencyjnych, zbiory (relacje) pierwotnie rekurencyj-
ne, twierdzenia o zamknietosci klasy tych relacji, lemat o podstawianiu, funkcja
£ Godla i kodowanie ciggdw, zbiory rekurencyjnie przeliczalne, twierdzenia o za-
mknietosci klasy zbiorow rekurencyjnie przeliczalnych.

Zad. 1. Wykaz, ze rozne znane funkcje naturalne s rekurencyjne, a najczesciej
takze sa pierwotnie rekurencyjnie. Mowa tu o funkcjach takich jak iloraz, reszta (z
réznie sprecyzowanymi definicjami), silnia, potega, cze$¢ catkowita logarytmu itd.

Zad. 2. Udowodnij, ze nastepujace funkcje sa pierwotnie rekurencyjne:

1) max(my,...,m,) = najwiekszej liczbie sposrdéd my, ..., my,,

(ntmntm+1)

2) zwykla funkcja pary f(n,m) = 5 ;

3) (x1,...,xn) = py (ﬁ(y,O) =nA N Bly,i+1) = xi>, gdzie (8 oznacza zwy-
<n

kta funkcje Godla, przyporzadkowujaca liczbom x4, . . ., z,, kod ciagu (x1, ..., z,).

Zad. 3. Udowodnij, ze jezeli f jest funkcja pierwotnie rekurencyjng, to nastepujace
funkcje sa pierwotnie rekurencyjne:

1) maxs(n,Z) = max{f(0,7), f(1,Z),..., f(n — 1,2)},

2) c(a,b) = px (ﬁ(x,()) =lh(a)+1A A (@)= (a) AN (@)in@) = b),

i<lh(a)

3) <f>(nvf> = (f(O,f),f(l,f),...,f(n— laf»

Zad. 4. Udowodnij, ze funkcje takie, jak n-ta liczba pierwsza lub najmniejsza liczba
pierwsza przynajmniej rowna n sa pierwotnie rekurencyjnie. Wskazowka: gdyby
Euklides (autor klasycznego twierdzenia o liczbach pierwszych) znal rozwigzanie
poprzednich, to umialby rozwigzac¢ takze to zadanie.

Zad. 5. Udowodnij, ze jezeli f i g sa funkcjami pierwotnie rekurencyjnymi, to pier-
wotnie rekurencyjna jest tez catkowita funkcja h taka, ze

W) = py (f(z,y) = 0) < g(x)

dla wszystkich z. (Funkcja definiowana za pomoca petli, o ktorej z gory wiadomo,
ile razy jest wykonywana, jest pierwotnie rekurencyjna.)

Zad. 6. (trudne) Udowodnij, ze funkcje
f(n) = czesé catkowita e”
oraz
g(0) =2 oraz g(n) = n-ta cyfra rozwiniecia dziesietnego liczby e

(dla n > 0) sa pierwotnie rekurencyjne. Przynajmniej pokaz ich rekurencyjnosé.



Zad. 7. Pokaz, ze jezeli funkcje gg, g1 oraz h sa pierwotnie rekurencyjne, to takze
funkcja f zdefiniowana rownosciami

f(f’ O) = gO(f)> f(fv 1) = gl(f)v f(f,n + 2) = h(f(fv n)> f(f>n + 1)?”?"?)

jest pierwotnie rekurencyjna. W szczegdlnosci, pierwotnie rekurencyjna jest funkcja
przyporzadkowujaca liczbie n wyraz F,, ciggu Fibonacciego.

Zad. 8. Pokaz, ze jezeli funkcje ¢y, g2, hy oraz hy sa pierwotnie rekurencyjne, to
takze funkcje f1 i fo zdefiniowana rownosciami

f1(Z,0) = gu(@), [1i(Zn+1) = h(fi(Zn), f2(Z,n),n,T)
f(7,0) = g2(2), fo(Zn+1) = ho(f1(Z, n), fo(T,n),n, T)

sa pierwotnie rekurencyjne. Wywnioskuj stad, ze funkcje div i mod sa pierwotnie
rekurencyjne.

Definiowalnos¢ relacji.

* Wazne sa pojecie definiowalnosci, formuty i relacje klasy 3y (dawniej Ay, uwaga
na zmiane oznaczen), takze 3 i I1;, twierdzenie o postaci normalnej, interpretacja
informatyczna tego twierdzenia, fragmenty rozumowania pozwalajacego dowiesé
to twierdzenie, np. o mozliwosci zastapienia w definicji dwoch kwantyfikatorow
egzystencjalnych jednym, odpowiednio$¢ miedzy wtasnosciami informatycznymi i
sposobem definiowania, zalezno$¢ miedzy postacia definicji, a rekurencyjnoscia.

Zad. 9. Pokaz, ze relacje definiowane formutami klasy ¥, sg pierwotnie rekuren-
cyjne.

Dowody i twierdzenia. Formalizacja logiki, przejscie od jezyka natural-
nego do sformalizowanego.

* 7 logiki prosze dobrze zapoznaé sie z podstawowymi pojeciami logicznymi, jak
term, formuta atomowa, formuta, podstawianie, term podstawialny, zdanie, dowdd,
twierdzenie, teoria, teoria niesprzeczna, teoria zupetna, i z systemem logicznym
Shoenfielda (lub jakim$ innym). Aby przeéwiczy¢ te pojecia, dobrze jest dowiesé
na przyktad twierdzenie o dedukcji.

Zad. 10. Podaj formalne dowody w wybranym systemie logicznym formul naste-
pujacych postaci:

1) ((pAg) = 1)< (p= (¢=71)) (p,q,r to dowolne formuly, zmienne zdaniowe
lub zeroargumentowe symbole relacyjne),

2) ps -,

3) (p=q) & (~¢= —p),

4) ~(pVaq) < (-pA—q),
5) pV
7) VYa(p = ¢) = (Vop = Vo),
8) Va(p = ¥) = (Fzp = Javp),
YV
=

9 (p = 1Y) < (Jrp = 1) pod warunkiem, ze x nie jest wolna w ),

)
)
)
) P
6) p=r)={¢g=r)=(@Vae=r)),
)
)
)
)

10) dzVyp = Vydze.



Zad. 11. Sprawdz, ze kazdy term, w ktérym wystepuje najwyzej zmienna x jest
podstawialny w dowolnej formule za zmienna x.

Zad. 12. Podaj przyktady rozumowan swiadczace o tym, ze nieprzestrzeganie ogra-
niczen stosowania regut dowodzenia prowadzi do btedow.

Zad. 13. Udowodnij, ze w teorii T" mozna dowies¢ formute ¢ wtedy i tylko wtedy,
gdy w teorii T' mozna dowies¢ formute Vry. Udowodnij, ze formuty Ve = ¢ sa
twierdzeniami (ze - Vzp = ¢). Udowodnij, ze niektére z formul postaci ¢ = Ve
nie dajg sie dowiesc.

Zad. 14. Udowodnij twierdzenie o dedukcji dla rachunku zdan: Formuta ¢ daje
sie wyprowadzi¢ z aksjomatu ¢ wtedy i tylko wtedy, gdy implikacja ¥ = ¢ jest
prawem rachunku zdan.

Zad. 15. Przypusémy, ze stata ¢ nie wystepuje w formule ¢, ani w aksjomatach
teorii 7. Jezeli formuta [z « ¢| jest twierdzeniem teorii 7', to w teorii 7" mozna
dowiesé¢ takze formuly Vxy oraz . Co wiecej, mozna to zrobi¢ nie uzywajac w
tych dowodach stalej ¢ (formuly te mozna dowiesé¢ w jezyku bez stalej c).

Zad. 16. Jeszcze raz twierdzenie o dedukcji: formuta ¢ jest twierdzeniem teorii T'
uzupetnionej o aksjomat ¢ bedacy zdaniem wtedy i tylko wtedy, gdy ¥ = ¢ jest
twierdzeniem teorii 1. Podaj kontrprzyktad swiadczacy o istotnosci zatozenia, ze
1 jest zdaniem. Wskazéwka do dowodu w trudniejszg strone: jezeli kazda formute
w dowodzie ¢ zastapimy mechanicznie przez implikacje 1) = ... o poprzedniku 1),
to otrzymamy schemat dowodu implikacji ¢ = ¢.

Zad. 17. Udowodnij, ze jezeli ¢ jest zdaniem, ktore nie ma dowodu w teorii T, to
teoria T'U {—¢p} jest niesprzeczna.

Godlizacja logiki, czyli ,,implementacja” pojeé¢ logicznych za pomoca
liczb naturalnych.

* Definicje, pierwotna rekurencyjno$¢ wiekszosci pojeé logicznych po godlizacji, teo-
rie aksjomatyzowalne, rekurencyjna przeliczalnos¢ pojecia twierdzenia.

Arytmetyki i reprezentowalnos¢

* Arytmetyki ) i Peano, reprezentowalno$é¢ funkeji pierwotnie rekurencyjnych w
teorii @ (i bogatszych), mocna reprezentowalnos¢ relacji pierwotnie rekurencyjnych
w @), reprezentowalnos¢ relacji mocno reprezentowalnych, teorie w-niesprzeczne, re-
prezentowalnos¢ relacji rekurencyjnie przeliczalnych w teoriach w-niesprzecznych.

Twierdzenie Godla, oryginalne
*

Funkcje rekurencyjne.

* Zapoznaj sie z teorig funkcji rekurencyjnych. Wazne sg definicje klasy catkowitych
funkcji rekurencyjnych i czesciowych funkcji rekurencyjnych, intuicje zwigzane z
obliczalnoscia, operacje nie wyprowadzajace poza klase funkcji rekurencyjnych cat-
kowitych i lub cze$ciowych, zbiory (relacje) rekurencyjne, twierdzenia o zamknie-
tosci klas tych relacji. Zaleznosci miedzy pojeciami z teorii funkcji rekurencyjnych,
na przyktad funkcja jest rekurencyjna wtedy i tylko wtedy, gdy jej wykres jest
rekurencyjnie przeliczalny.

Zad. 18. Pokaz, ze dla dowolnej funkcji rekurencyjnej f istnieje funkcja pierwotnie
rekurencyjna g taka, ze

f(@) = (ny (9(7,y) = 0))o



dla wszystkich Z. Wskazéwka: dowodzitbym to korzystajac z twierdzenia o defi-
niowalnosci. Jest to wersja twierdzenia o postaci normalnej. Mozna to zadanie zin-
terpretowaé¢ w nastepujacy sposob: kazdy program wykonuje okreslone obliczenia
na wyniku znalezionym w petli while, jedynej w programie. Pozostate obliczenia
polegaja na wykonywaniu petli for, a wiec petli, o ktérej z géry wiadomo, ile razy
bedzie wykonywana.

Zad. 19. Jakie funkcje sa definiowane wzorami

f@)=py (> > ), g(x) = py (v* =), hz) = py (y* < 2)?

Opisz je. Czy sa to funkcje pierwotnie rekurencyjne?

Zad. 20. Niech f : N — N bedzie roznowarto$ciows funkcja rekurencyjna. Udo-
wodnij, ze funkcja odwrotna f~! tez jest rekurencyjna.

Zad. 21. Pokaz, ze
1) zbiér wartosci funkcji rekurencyjnej jest rekurencyjnie przeliczalny,

2) niepusty zbior rekurencyjnie przeliczalny A C N jest zbiorem wartosci cal-
kowitej funkcji rekurencyjnej,

3) niepusty, rekurencyjnie przeliczalny zbiér A C N? jest postaci

{{f(n),g(n)) € N* :n € N},

gdzie f i g sa catkowitymi funkcjami rekurencyjnymi okreslonymi na zbiorze
liczb naturalnych N.

Zad. 22. Udowodnij, ze funkcja f jest rekurencyjna wtedy i tylko wtedy, gdy jej
wykres
Wi ={(Z,y) : f(Z) jest okreslona oraz f(7) =y}

jest rekurencyjnie przeliczalny. Wskazowka: mozna skorzysta¢ z twierdzen o defi-
niowalnosci.

Zad. 23. Klasa funkcji rekurencyjnych catkowitych zamknieta ze wzgledu na defi-
niowanie warunkowe.

Zad. 24. Zalézmy, ze rekurencyjna funkcja f : N — N jest roznowartosciowa. Czy
funkcja f~! jest rekurencyjna? Czy zalozenie catkowitoéci f co$ zmienia?

Twierdzenie Godla wedtug Churcha
*

Rozstrzygalnos¢ i obliczalnos$é, teza Churcha

* Zagadnienia: Teza Churcha i odpowiednio$é¢ miedzy pojeciami z teorii funkeji re-
kurencyjnych i obliczalnoscig: funkcje obliczalne to czesciowe funkcje rekurencyjne,
zbiory rozstrzygalne to zbiory rekurencyjne, zbiory semirozstrzygalne (rozpozna-
walne) to zbiory rekurencyjnie przeliczalne. Kodowanie pojec¢ logicznych za pomoca
liczb naturalnych, wtasnoséci kodowania, szkic dowodu twierdzenia Churcha o nie-
rozstrzygalnosci arytmetyki i konsekwencje informatyczne tego twierdzenia. Trzy
charakteryzacje obliczalnosci: rekurencyjnos¢, definiowalnosé i reprezentowalnosc,
zaleznosci miedzy tymi charakteryzacjami.

Zad. 25. Rozstrzygalnos¢ zbioru twierdzen teorii w pewnym stopniu jest réwno-
wazna zupetosci teorii. Rozwazmy nastepujacy algorytm: dane jest zdanie o,
pytamy sie, czy ¢ jest twierdzeniem (pewnej ustalonej) teorii 77

1) var d : string; d := ¢;



2) while true do begin

(a) d:= nastepny po d,
(b) if d jest dowodem ¢ w T', then return ’¢ jest twierdzeniem 77,

(c) if d jest dowodem ~ ¢ w T', then return ' nie jest twierdzeniem 77.

3) end

W tym algorytmie ~ ¢ oznacza -, jezeli ( nie jest negacja, oraz 1, jezeli p = —
(~ ¢ to negacja ¢, ale gdyby miala zaczynaé sie podwojna negacja, to bez tych
dwoch negacji), a procedura badajaca dowody nie moze o zadnym napisie twierdzic,
ze jest jednoczesnie dowodem zdania i jego negacji (np. zaktada, ze udowodniona
moze zostaé tylko ostatnia formuta dowodu)

Pokaz, ze

1) Podany algorytm jest poprawny wtedy i tylko wtedy, gdy teoria T jest nie-
sprzeczna.

2) Podany algorytm zatrzymuje si¢ po uruchomieniu z dowolnym zdaniem wte-
dy i tylko wtedy, gdy teoria T jest zupeha.

Tak wiec najprostszy algorytm szukania dowodu rozstrzyga zbior twierdzen T
wtedy i tylko wtedy, gdy teoria T' jest niesprzeczna i zupeina.

Pojecie spelniania, twierdzenie o pelnosci.

* Prosze zapoznaé sie z pojeciem struktury, warto$ciowania, wartosci termu, spel-
niania przy danym warto$ciowaniu, spelnianiu modelu, a takze z twierdzeniem o
petnosci i moze ze szkicem jego dowodu. Jakie jest znaczenie tego twierdzenia?
Nastepne zadanie jest ¢wiczeniem z definicji spelniania.

Pierwsza czes¢ zadania wyjasnia sens operacji podstawiania.

Zad. 26. Niech z bedzie ustalong zmienna, a ¢t — dowolnym termem. Dla danego
wartosciowania zmiennych h definiujemy wartosciowanie h; przyjmujac, ze hy(y) =
h(y) dla wszystkich zmiennych y # = oraz hy(x) = t[h]. Udowodnij, ze

1) s[z « t][h] = s[h] dla dowolnego termu s,

2) A plx — t][h] wtedy i tylko wtedy, gdy A | ¢[h] dla dowolnej struktury
A, dowolnej formuty ¢ i dowolnego wartosciowania zmiennych h.

Zad. 27. Udowodnij twierdzenie o poprawnodci: jezeli ¢ jest twierdzeniem teorii 7',
to jest spetnione w kazdym modelu teorii T'. Pelny dow6d moze okazac si¢ zmudny;,
ale mozna znalez¢ plan dowodu i przeprowadzi¢ niektore rachunki.

Twierdzenie Herbranda

* Zapoznaj sie ze sformutowaniem i szkicem dowodu twierdzenia Herbranda (takze
z algorytmem Herbranda).

Zad. 28. Przypomnij sobie pojecie postaci normalnej formuty rachunku zdan, zwtasz-
cza postaci koniunkcyjnej. Scharakteryzuj formuty w koniunkcyjnej postaci nor-
malnej bedace tautologiami.

Zad. 29. Udowodnij twierdzenie o pelosci dla rachunku zdan: dowolna formuta
(rachunku zdan) jest tautologia wtedy i tylko wtedy, gdy jest prawem rachunku
zdan.

Zad. 30. Zbadaj metoda Davisa - Putnama, czy koniunkcja nastepujacych alter-
natyw jest sprzeczna.



1) PYQVR

9) PV —=QV-R

3) Pv-W

4) =QV -~RV -W

6) UVX
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Zad. 31. Przypusémy, ze formuta ¢ nie zawiera kwantyfikatoréw i zdanie JxVyyp
jest tautologia. Podaj dowod tego zdania. Wskazowka. Trudno napisa¢ dowod, ale
mozna korzystajac z twierdzenia Herbranda opisa¢ metode konstruowania dowo-
du. Taka metoda powinna sktadac¢ sie z dwoch czedci: z metody konstruowania
dowodu tautologii rachunku zdan (na poziomie rachunku zdan) i rozumowania
dotyczacego kwantyfikatoréw. Pierwsza czes¢ powinna by¢ znana z logiki, mozna
tez postuzy¢ sie koniunkcyjnag postacia, druga czesé nie jest trudna, zawiera dos¢
oczywiste rozumowanie. Reszta rozumowania to pewien trick. Twierdzenie Her-
branda w tym przypadku méwi, ze pewna alternatywa postaci \V (¢, f(t)) (f to
symbol skolemowski) jest tautologia w sensie rachunku zdan. W tej tautologii, dla
poszczegdlnych ¢ wszystkie wystapienia termu f(¢) zastepujemy zmiennymi wy-
znaczonymi przez t, biorgc dla réznych ¢ rézne zmienne. Ta alternatywa po tej
zamianie nadal bedzie tautologia. Po zamianie dowodzimy tautologie, a nastepnie
wyprowadzamy z niej wyjsciowa formute. W ten sposéb z twierdzenia Herbran-
da wyprowadzamy twierdzenie o petnosci, a takze otrzymujemy ogdlng metode
konstruowania dowodéw w rachunku kwantyfikatoréw.

Zad. 32. Zmodyfikuj réwnowaznos¢ z poprzedniego zadania tak, aby byta praw-
dziwa dla formut ¢, w ktérych moga dodatkowo wystepowac state.

Zad. 33. Korzystajac z algorytmu Herbranda pokaz, ze formuta
Jz Vy R(z,y) — Yy 3z R(x,y)

jest tautologig, natomiast formuta
Vo Jy R(x,y) — Jy Vo R(z,y)

nie jest. Druga cze$¢ zadania dzieki twierdzeniu Herbranda sprowadza sie do pro-
blemu unifikacji.

Zad. 34. Niech ® oznacza formute
FrIYVa((A(z,y) = Ay, 2) N A(z,2)) A (Az, y) A B(z,y) = B(z, 2) A B(z, 2)))

(jest to formuta wykorzystywana do testowania programu Gilmora). Udowodnij,
ze ® jest tautologia (prawem logiki). Zrob to wprost oraz korzystajac z algorytmu
Herbranda.



Zad. 35. Rozwazamy formuty bez statych i symboli funkcyjnych, formuta ¢ nie
zawiera ponadto kwantyfikatoréw. Udowodnij, ze zdanie dx; ... dz, ¢ jest tau-
tologia wtedy i tylko wtedy, gdy formuta ¢ jest spetniona przy kazdym (jedynym
mozliwym) wartosciowaniu w kazdej strukturze o jednoelementowym uniwersum.
Jak sprawdzi¢ warunek z prawej strony tej réwnowaznosci postugujac sie metoda
zerojedynkowa? Zbadaj, czy formuta

dzx Jy Iz (F(z,y) = F(y,2) NF(2,2)) A(F(z,y) NG(z,y) = G(z,2) ANG(z,2)))

jest tautologia.

Zad. 36. Zmodyfikuj rownowaznos$¢ z poprzedniego zadania tak, aby byta praw-
dziwa dla formut ¢, w ktérych moga dodatkowo wystepowac state.

Zad. 37. Cgzy istnieje algorytm, ktory odpowiada na pytanie, czy zdanie
Ve, .. Vo, Jyr oo Jym @

jest tautologia? Takze w tym zadaniu ¢ nie zawiera kwantyfikatorow.

Zad. 38. Przypusémy, ze ¢ i 1 sg zdaniami w preneksowej postaci normalnej, a 1!
oznacza formule otrzymana z 1) po wykonaniu jednego kroku skolemizacji (po usu-
nieciu jednego kwantyfikatora egzystencjalnego). Zdania @1, ...,y sa sprzeczne,
wtedy i tylko wtedy, gdy nie ma modelu, w ktérym sg spetnione.

Algorytm Herbranda jest oparty o lemat, ktéry stwierdza, ze zdanie 1 jest
sprzeczne wtedy i tylko wtedy, gdy zdanie ¢! jest sprzeczne. Uogélnij ten lemat
i pokaz, ze zdania ¢ i 1) sg sprzeczne wtedy i tylko wtedy, gdy zdania ¢ i ! sg
sprzeczne.

Zad. 39. Wywnioskuj z poprzedniego zadania i twierdzenia o pelnosci, ze naste-
pujace warunki sg réwnowazne:

1) zdania ¢ i 1) sa sprzeczne,

2) zdania o i ¢* sa sprzeczne,

)
3) zdania ¢* i ©* sa sprzeczne,
)

Zad. 40. Przypusémy, ze w teorii T" dowiedliSmy formute Jy ¢, skorzystalismy z
reguly opuszczania kwantyfikatora egzystencjalnego otrzymujac formute ply «—
f(Z)], a nastepnie w teorii 7" uzupetnionej o aksjomat ply «— f(&)] dowiedlidmy
zdanie V. Pokaz, ze zdanie U daje sie dowie$¢ w teorii T' (i to bez korzystania z
dodatkowych symboli).



