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Lista egzaminacyjna zadań z matematycznych podstaw
informatyki, część 1.

Niektóre zadania są raczej zagadnieniami, na które należy zwrócić uwagę.

Funkcje pierwotnie rekurencyjne.

* Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy
funkcji pierwotnie rekurencyjnych, algorytmy, za pomocą których można obliczać
wartości takich funkcji, operacje (sposoby definiowania) nie wyprowadzające poza
klasę funkcji pierwotnie rekurencyjnych, zbiory (relacje) pierwotnie rekurencyj-
ne, twierdzenia o zamkniętości klasy tych relacji, lemat o podstawianiu, funkcja
β Gödla i kodowanie ciągów, zbiory rekurencyjnie przeliczalne, twierdzenia o za-
mkniętości klasy zbiorów rekurencyjnie przeliczalnych.

Zad. 1. Wykaż, że różne znane funkcje naturalne są rekurencyjne, a najczęściej
także są pierwotnie rekurencyjnie. Mowa tu o funkcjach takich jak iloraz, reszta (z
różnie sprecyzowanymi definicjami), silnia, potęga, część całkowita logarytmu itd.

Zad. 2. Udowodnij, że następujące funkcje są pierwotnie rekurencyjne:

1) max(m1, . . . ,mn) = największej liczbie spośród m1, . . . ,mn,

2) zwykła funkcja pary f(n,m) =
(n+m)(n+m+ 1)

2
+ n,

3) 〈x1, . . . , xn〉 = µy

(
β(y, 0) = n ∧

∧
i<n

β(y, i+ 1) = xi

)
, gdzie β oznacza zwy-

kła funkcję Gödla, przyporządkowująca liczbom x1, . . . , xn kod ciągu (x1, . . . , xn).

Zad. 3. Udowodnij, że jeżeli f jest funkcją pierwotnie rekurencyjną, to następujące
funkcje są pierwotnie rekurencyjne:

1) maxf (n, ~x) = max{f(0, ~x), f(1, ~x), . . . , f(n− 1, ~x)},

2) c(a, b) = µx

β(x, 0) = lh(a) + 1 ∧
∧
i<lh(a)

(x)i = (a)i ∧ (x)lh(a) = b

,

3) 〈f〉(n, ~x) = 〈f(0, ~x), f(1, ~x), . . . , f(n− 1, ~x)〉

Zad. 4. Udowodnij, że funkcje takie, jak n-ta liczba pierwsza lub najmniejsza liczba
pierwsza przynajmniej równa n są pierwotnie rekurencyjnie. Wskazówka: gdyby
Euklides (autor klasycznego twierdzenia o liczbach pierwszych) znał rozwiązanie
poprzednich, to umiałby rozwiązać także to zadanie.

Zad. 5. Udowodnij, że jeżeli f i g są funkcjami pierwotnie rekurencyjnymi, to pier-
wotnie rekurencyjna jest też całkowita funkcja h taka, że

h(x) = µy (f(x, y) = 0) ¬ g(x)

dla wszystkich x. (Funkcja definiowana za pomocą pętli, o której z góry wiadomo,
ile razy jest wykonywana, jest pierwotnie rekurencyjna.)

Zad. 6. (trudne) Udowodnij, że funkcje

f(n) = część całkowita en

oraz

g(0) = 2 oraz g(n) = n-ta cyfra rozwinięcia dziesiętnego liczby e

(dla n > 0) są pierwotnie rekurencyjne. Przynajmniej pokaż ich rekurencyjność.
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Zad. 7. Pokaż, że jeżeli funkcje g0, g1 oraz h są pierwotnie rekurencyjne, to także
funkcja f zdefiniowana równościami

f(~x, 0) = g0(~x), f(~x, 1) = g1(~x), f(~x, n+ 2) = h(f(~x, n), f(~x, n+ 1), n, ~x)

jest pierwotnie rekurencyjna. W szczególności, pierwotnie rekurencyjna jest funkcja
przyporządkowująca liczbie n wyraz Fn ciągu Fibonacciego.

Zad. 8. Pokaż, że jeżeli funkcje g1, g2, h1 oraz h2 są pierwotnie rekurencyjne, to
także funkcje f1 i f2 zdefiniowana równościami

f1(~x, 0) = g1(~x), f1(~x, n+ 1) = h1(f1(~x, n), f2(~x, n), n, ~x)

f2(~x, 0) = g2(~x), f2(~x, n+ 1) = h2(f1(~x, n), f2(~x, n), n, ~x)

są pierwotnie rekurencyjne. Wywnioskuj stąd, że funkcje div i mod są pierwotnie
rekurencyjne.

Definiowalność relacji.

* Ważne są pojęcie definiowalności, formuły i relacje klasy Σ0 (dawniej ∆0, uwaga
na zmianę oznaczeń), także Σ1 i Π1, twierdzenie o postaci normalnej, interpretacja
informatyczna tego twierdzenia, fragmenty rozumowania pozwalającego dowieść
to twierdzenie, np. o możliwości zastąpienia w definicji dwóch kwantyfikatorów
egzystencjalnych jednym, odpowiedniość między własnościami informatycznymi i
sposobem definiowania, zależność między postacią definicji, a rekurencyjnością.

Zad. 9. Pokaż, że relacje definiowane formułami klasy Σ0 są pierwotnie rekuren-
cyjne.

Dowody i twierdzenia. Formalizacja logiki, przejście od języka natural-
nego do sformalizowanego.

* Z logiki proszę dobrze zapoznać się z podstawowymi pojęciami logicznymi, jak
term, formuła atomowa, formuła, podstawianie, term podstawialny, zdanie, dowód,
twierdzenie, teoria, teoria niesprzeczna, teoria zupełna, i z systemem logicznym
Shoenfielda (lub jakimś innym). Aby przećwiczyć te pojęcia, dobrze jest dowieść
na przykład twierdzenie o dedukcji.

Zad. 10. Podaj formalne dowody w wybranym systemie logicznym formuł nastę-
pujących postaci:

1) ((p∧q)⇒ r)⇔ (p⇒ (q ⇒ r)) (p, q, r to dowolne formuły, zmienne zdaniowe
lub zeroargumentowe symbole relacyjne),

2) p⇔ ¬¬p,

3) (p⇒ q)⇔ (¬q ⇒ ¬p),

4) ¬(p ∨ q)⇔ (¬p ∧ ¬q),

5) p ∨ ¬p,

6) (p⇒ r)⇒ ((q ⇒ r)⇒ (p ∨ q ⇒ r)),

7) ∀x(ϕ⇒ ψ)⇒ (∀xϕ⇒ ∀xψ),

8) ∀x(ϕ⇒ ψ)⇒ (∃xϕ⇒ ∃xψ),

9) ∀x(ϕ⇒ ψ)⇔ (∃xϕ⇒ ψ) pod warunkiem, że x nie jest wolna w ψ,

10) ∃x∀yϕ⇒ ∀y∃xϕ.
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Zad. 11. Sprawdź, że każdy term, w którym występuje najwyżej zmienna x jest
podstawialny w dowolnej formule za zmienną x.

Zad. 12. Podaj przykłady rozumowań świadczące o tym, że nieprzestrzeganie ogra-
niczeń stosowania reguł dowodzenia prowadzi do błędów.

Zad. 13. Udowodnij, że w teorii T można dowieść formułę ϕ wtedy i tylko wtedy,
gdy w teorii T można dowieść formułę ∀xϕ. Udowodnij, że formuły ∀xϕ ⇒ ϕ są
twierdzeniami (że ` ∀xϕ⇒ ϕ). Udowodnij, że niektóre z formuł postaci ϕ⇒ ∀xϕ
nie dają się dowieść.

Zad. 14. Udowodnij twierdzenie o dedukcji dla rachunku zdań: Formuła ϕ daje
się wyprowadzić z aksjomatu ψ wtedy i tylko wtedy, gdy implikacja ψ ⇒ ϕ jest
prawem rachunku zdań.

Zad. 15. Przypuśćmy, że stała c nie występuje w formule ϕ, ani w aksjomatach
teorii T . Jeżeli formuła ϕ[x ← c] jest twierdzeniem teorii T , to w teorii T można
dowieść także formuły ∀xϕ oraz ϕ. Co więcej, można to zrobić nie używając w
tych dowodach stałej c (formuły te można dowieść w języku bez stałej c).

Zad. 16. Jeszcze raz twierdzenie o dedukcji: formuła ϕ jest twierdzeniem teorii T
uzupełnionej o aksjomat ψ będący zdaniem wtedy i tylko wtedy, gdy ψ ⇒ ϕ jest
twierdzeniem teorii T . Podaj kontrprzykład świadczący o istotności założenia, że
ψ jest zdaniem. Wskazówka do dowodu w trudniejszą stronę: jeżeli każdą formułę
w dowodzie ϕ zastąpimy mechanicznie przez implikację ψ ⇒ . . . o poprzedniku ψ,
to otrzymamy schemat dowodu implikacji ψ ⇒ ϕ.

Zad. 17. Udowodnij, że jeżeli ϕ jest zdaniem, które nie ma dowodu w teorii T , to
teoria T ∪ {¬ϕ} jest niesprzeczna.

Gödlizacja logiki, czyli „implementacja” pojęć logicznych za pomocą
liczb naturalnych.

* Definicje, pierwotna rekurencyjność większości pojęć logicznych po gödlizacji, teo-
rie aksjomatyzowalne, rekurencyjna przeliczalność pojęcia twierdzenia.

Arytmetyki i reprezentowalność

* Arytmetyki Q i Peano, reprezentowalność funkcji pierwotnie rekurencyjnych w
teorii Q (i bogatszych), mocna reprezentowalność relacji pierwotnie rekurencyjnych
w Q, reprezentowalność relacji mocno reprezentowalnych, teorie ω-niesprzeczne, re-
prezentowalność relacji rekurencyjnie przeliczalnych w teoriach ω-niesprzecznych.

Twierdzenie Gödla, oryginalne

*

Funkcje rekurencyjne.

* Zapoznaj się z teorią funkcji rekurencyjnych. Ważne są definicje klasy całkowitych
funkcji rekurencyjnych i częściowych funkcji rekurencyjnych, intuicje związane z
obliczalnością, operacje nie wyprowadzające poza klasę funkcji rekurencyjnych cał-
kowitych i lub częściowych, zbiory (relacje) rekurencyjne, twierdzenia o zamknię-
tości klas tych relacji. Zależności między pojęciami z teorii funkcji rekurencyjnych,
na przykład funkcja jest rekurencyjna wtedy i tylko wtedy, gdy jej wykres jest
rekurencyjnie przeliczalny.

Zad. 18. Pokaż, że dla dowolnej funkcji rekurencyjnej f istnieje funkcja pierwotnie
rekurencyjna g taka, że

f(~x) = (µy (g(~x, y) = 0))0
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dla wszystkich ~x. Wskazówka: dowodziłbym to korzystając z twierdzenia o defi-
niowalności. Jest to wersja twierdzenia o postaci normalnej. Można to zadanie zin-
terpretować w następujący sposób: każdy program wykonuje określone obliczenia
na wyniku znalezionym w pętli while, jedynej w programie. Pozostałe obliczenia
polegają na wykonywaniu pętli for, a więc pętli, o której z góry wiadomo, ile razy
będzie wykonywana.

Zad. 19. Jakie funkcje są definiowane wzorami

f(x) = µy (y2 ­ x), g(x) = µy (y2 = x), h(x) = µy (y2 ¬ x)?

Opisz je. Czy są to funkcje pierwotnie rekurencyjne?

Zad. 20. Niech f : N → N będzie różnowartościową funkcją rekurencyjną. Udo-
wodnij, że funkcja odwrotna f−1 też jest rekurencyjna.

Zad. 21. Pokaż, że

1) zbiór wartości funkcji rekurencyjnej jest rekurencyjnie przeliczalny,

2) niepusty zbiór rekurencyjnie przeliczalny A ⊆ N jest zbiorem wartości cał-
kowitej funkcji rekurencyjnej,

3) niepusty, rekurencyjnie przeliczalny zbiór A ⊆ N2 jest postaci

{〈f(n), g(n)〉 ∈ N2 : n ∈ N},

gdzie f i g są całkowitymi funkcjami rekurencyjnymi określonymi na zbiorze
liczb naturalnych N .

Zad. 22. Udowodnij, że funkcja f jest rekurencyjna wtedy i tylko wtedy, gdy jej
wykres

Wf = {(~x, y) : f(~x) jest określona oraz f(~x) = y}

jest rekurencyjnie przeliczalny. Wskazówka: można skorzystać z twierdzeń o defi-
niowalności.

Zad. 23. Klasa funkcji rekurencyjnych całkowitych zamknięta ze względu na defi-
niowanie warunkowe.

Zad. 24. Załóżmy, że rekurencyjna funkcja f : N → N jest różnowartościowa. Czy
funkcja f−1 jest rekurencyjna? Czy założenie całkowitości f coś zmienia?

Twierdzenie Gödla według Churcha

*

Rozstrzygalność i obliczalność, teza Churcha

* Zagadnienia: Teza Churcha i odpowiedniość między pojęciami z teorii funkcji re-
kurencyjnych i obliczalnością: funkcje obliczalne to częściowe funkcje rekurencyjne,
zbiory rozstrzygalne to zbiory rekurencyjne, zbiory semirozstrzygalne (rozpozna-
walne) to zbiory rekurencyjnie przeliczalne. Kodowanie pojęć logicznych za pomocą
liczb naturalnych, własności kodowania, szkic dowodu twierdzenia Churcha o nie-
rozstrzygalności arytmetyki i konsekwencje informatyczne tego twierdzenia. Trzy
charakteryzacje obliczalności: rekurencyjność, definiowalność i reprezentowalność,
zależności między tymi charakteryzacjami.

Zad. 25. Rozstrzygalność zbioru twierdzeń teorii w pewnym stopniu jest równo-
ważna zupełności teorii. Rozważmy następujący algorytm: dane jest zdanie ϕ,
pytamy się, czy ϕ jest twierdzeniem (pewnej ustalonej) teorii T?

1) var d : string; d := ε;
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2) while true do begin

(a) d := następny po d,

(b) if d jest dowodem ϕ w T , then return ’ϕ jest twierdzeniem T ’,

(c) if d jest dowodem ∼ ϕ w T , then return ’ϕ nie jest twierdzeniem T ’.

3) end

W tym algorytmie ∼ ϕ oznacza ¬ϕ, jeżeli ϕ nie jest negacją, oraz ψ, jeżeli ϕ = ¬ψ
(∼ ϕ to negacja ϕ, ale gdyby miała zaczynać się podwójną negacją, to bez tych
dwóch negacji), a procedura badająca dowody nie może o żadnym napisie twierdzić,
że jest jednocześnie dowodem zdania i jego negacji (np. zakłada, że udowodniona
może zostać tylko ostatnia formuła dowodu)

Pokaż, że

1) Podany algorytm jest poprawny wtedy i tylko wtedy, gdy teoria T jest nie-
sprzeczna.

2) Podany algorytm zatrzymuje się po uruchomieniu z dowolnym zdaniem wte-
dy i tylko wtedy, gdy teoria T jest zupełna.

Tak więc najprostszy algorytm szukania dowodu rozstrzyga zbiór twierdzeń T
wtedy i tylko wtedy, gdy teoria T jest niesprzeczna i zupełna.

Pojęcie spełniania, twierdzenie o pełności.

* Proszę zapoznać się z pojęciem struktury, wartościowania, wartości termu, speł-
niania przy danym wartościowaniu, spełnianiu modelu, a także z twierdzeniem o
pełności i może ze szkicem jego dowodu. Jakie jest znaczenie tego twierdzenia?
Następne zadanie jest ćwiczeniem z definicji spełniania.

Pierwsza część zadania wyjaśnia sens operacji podstawiania.

Zad. 26. Niech x będzie ustaloną zmienną, a t – dowolnym termem. Dla danego
wartościowania zmiennych h definiujemy wartościowanie ht przyjmując, że ht(y) =
h(y) dla wszystkich zmiennych y 6= x oraz ht(x) = t[h]. Udowodnij, że

1) s[x← t][h] = s[ht] dla dowolnego termu s,

2) A |= ϕ[x← t][h] wtedy i tylko wtedy, gdy A |= ϕ[ht] dla dowolnej struktury
A, dowolnej formuły ϕ i dowolnego wartościowania zmiennych h.

Zad. 27. Udowodnij twierdzenie o poprawności: jeżeli ϕ jest twierdzeniem teorii T ,
to jest spełnione w każdym modelu teorii T . Pełny dowód może okazać się żmudny,
ale można znaleźć plan dowodu i przeprowadzić niektóre rachunki.

Twierdzenie Herbranda

* Zapoznaj się ze sformułowaniem i szkicem dowodu twierdzenia Herbranda (także
z algorytmem Herbranda).

Zad. 28. Przypomnij sobie pojęcie postaci normalnej formuły rachunku zdań, zwłasz-
cza postaci koniunkcyjnej. Scharakteryzuj formuły w koniunkcyjnej postaci nor-
malnej będące tautologiami.

Zad. 29. Udowodnij twierdzenie o pełności dla rachunku zdań: dowolna formuła
(rachunku zdań) jest tautologią wtedy i tylko wtedy, gdy jest prawem rachunku
zdań.

Zad. 30. Zbadaj metodą Davisa - Putnama, czy koniunkcja następujących alter-
natyw jest sprzeczna.
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1) P ∨Q ∨R

2) P ∨ ¬Q ∨ ¬R

3) P ∨ ¬W

4) ¬Q ∨ ¬R ∨ ¬W

5) ¬P ∨ ¬Q ∨R

6) U ∨X

7) U ∨ ¬X

8) Q ∨ ¬U

9) ¬R ∨ ¬U

Zad. 31. Przypuśćmy, że formuła ϕ nie zawiera kwantyfikatorów i zdanie ∃x∀yϕ
jest tautologią. Podaj dowód tego zdania. Wskazówka. Trudno napisać dowód, ale
można korzystając z twierdzenia Herbranda opisać metodę konstruowania dowo-
du. Taka metoda powinna składać się z dwóch części: z metody konstruowania
dowodu tautologii rachunku zdań (na poziomie rachunku zdań) i rozumowania
dotyczącego kwantyfikatorów. Pierwsza część powinna być znana z logiki, można
też posłużyć się koniunkcyjną postacią, druga część nie jest trudna, zawiera dość
oczywiste rozumowanie. Reszta rozumowania to pewien trick. Twierdzenie Her-
branda w tym przypadku mówi, że pewna alternatywa postaci

∨
ϕ(t, f(t)) (f to

symbol skolemowski) jest tautologią w sensie rachunku zdań. W tej tautologii, dla
poszczególnych t wszystkie wystąpienia termu f(t) zastępujemy zmiennymi wy-
znaczonymi przez t, biorąc dla różnych t różne zmienne. Ta alternatywa po tej
zamianie nadal będzie tautologią. Po zamianie dowodzimy tautologię, a następnie
wyprowadzamy z niej wyjściową formułę. W ten sposób z twierdzenia Herbran-
da wyprowadzamy twierdzenie o pełności, a także otrzymujemy ogólną metodę
konstruowania dowodów w rachunku kwantyfikatorów.

Zad. 32. Zmodyfikuj równoważność z poprzedniego zadania tak, aby była praw-
dziwa dla formuł ϕ, w których mogą dodatkowo występować stałe.

Zad. 33. Korzystając z algorytmu Herbranda pokaż, że formuła

∃x ∀y R(x, y)→ ∀y ∃x R(x, y)

jest tautologią, natomiast formuła

∀x ∃y R(x, y)→ ∃y ∀x R(x, y)

nie jest. Druga część zadania dzięki twierdzeniu Herbranda sprowadza się do pro-
blemu unifikacji.

Zad. 34. Niech Φ oznacza formułę

∃x∃y∀z((A(x, y)⇒ A(y, z) ∧ A(z, z)) ∧ (A(x, y) ∧B(x, y)⇒ B(x, z) ∧B(z, z)))

(jest to formuła wykorzystywana do testowania programu Gilmora). Udowodnij,
że Φ jest tautologią (prawem logiki). Zrób to wprost oraz korzystając z algorytmu
Herbranda.
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Zad. 35. Rozważamy formuły bez stałych i symboli funkcyjnych, formuła ϕ nie
zawiera ponadto kwantyfikatorów. Udowodnij, że zdanie ∃x1 . . . ∃xn ϕ jest tau-
tologią wtedy i tylko wtedy, gdy formuła ϕ jest spełniona przy każdym (jedynym
możliwym) wartościowaniu w każdej strukturze o jednoelementowym uniwersum.
Jak sprawdzić warunek z prawej strony tej równoważności posługując się metodą
zerojedynkową? Zbadaj, czy formuła

∃x ∃y ∃z ((F (x, y)⇒ F (y, z) ∧ F (z, z)) ∧ (F (x, y) ∧G(x, y)⇒ G(x, z) ∧G(z, z)))

jest tautologią.

Zad. 36. Zmodyfikuj równoważność z poprzedniego zadania tak, aby była praw-
dziwa dla formuł ϕ, w których mogą dodatkowo występować stałe.

Zad. 37. Czy istnieje algorytm, który odpowiada na pytanie, czy zdanie

∀x1 . . . ∀xn ∃y1 . . . ∃ym ϕ

jest tautologią? Także w tym zadaniu ϕ nie zawiera kwantyfikatorów.

Zad. 38. Przypuśćmy, że ϕ i ψ są zdaniami w preneksowej postaci normalnej, a ψ1

oznacza formułę otrzymaną z ψ po wykonaniu jednego kroku skolemizacji (po usu-
nięciu jednego kwantyfikatora egzystencjalnego). Zdania ϕ1, . . . , ϕk są sprzeczne,
wtedy i tylko wtedy, gdy nie ma modelu, w którym są spełnione.

Algorytm Herbranda jest oparty o lemat, który stwierdza, że zdanie ψ jest
sprzeczne wtedy i tylko wtedy, gdy zdanie ψ1 jest sprzeczne. Uogólnij ten lemat
i pokaż, że zdania ϕ i ψ są sprzeczne wtedy i tylko wtedy, gdy zdania ϕ i ψ1 są
sprzeczne.

Zad. 39. Wywnioskuj z poprzedniego zadania i twierdzenia o pełności, że nastę-
pujące warunki są równoważne:

1) zdania ϕ i ψ są sprzeczne,

2) zdania ϕ i ψ∗ są sprzeczne,

3) zdania ϕ∗ i ψ∗ są sprzeczne,

4) ` ϕ⇒ ¬ψ.

Zad. 40. Przypuśćmy, że w teorii T dowiedliśmy formułę ∃y ϕ, skorzystaliśmy z
reguły opuszczania kwantyfikatora egzystencjalnego otrzymując formułę ϕ[y ←
f(~x)], a następnie w teorii T uzupełnionej o aksjomat ϕ[y ← f(~x)] dowiedliśmy
zdanie Ψ. Pokaż, że zdanie Ψ daje się dowieść w teorii T (i to bez korzystania z
dodatkowych symboli).


