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1 Wstep

1.1 Klopoty z analizg matematyczng

Analiza matematyczna jest jednym z podstawowych dzialéw matematyki. Jest
tez dziatem, w ktorym postugujemy sie zdaniami bardzo skomplikownymi pod
wzgledem budowy logicznej. W definicjach podstawowych poje¢ z tej dziedziny
czesto wystepuja trzy zmiany kwantyfikatorow. Tak ztozone zdania sg juz trudne
do wypowiedzenia w jezyku naturalnym i powoduja komplikacje natury logiczne;j.

Zwykle wyktady z analizy matematycznej zaczynaja si¢ od proby zdefiniowa-
nia liczb rzeczywistych. Najczesciej jednak nie zawierajg ani definicji, ani cho¢by
omoOwienia wlasnosci waznych poje¢ takich, jak funkcje i nieskonczone ciagi. W
XIX wieku pojawity sie watpliwosci, czy dowody twierdzen oparte o intuicyjne
wlasnosci ciggdéw nieskonczonych sa dostatecznie precyzyjne. Watpliwosci budzita
w szczegblnosci zasada wybordéw zaleznych, przypominajaca definiowanie przez in-
dukcje, pozwalajaca okreslac ciag nieskonczony przez okreslenie jego n-tego wyrazu
jako jednej z wielu liczb speliajacych warunek zalezny od wyrazéow o indeksach
mniejszych od n.

Watpliwosci te byty uzasadnione. Zasada wyboréw zaleznych jest konsekwencja
budzacego kontrowersje aksjomatu wyboru, ale nie wynika z pozostalych aksjo-
matéw teorii mnogosci. Jest potrzebna w dowodzie, ze funkcje ciagte w pewnym
punkcie wedtug Heinego sg tez ciggte w tym punkcje w sensie Cauchy’ego. Po
odrzuceniu zasady wyboréw zaleznych mozna konstruowaé¢ funkcje swiadczace o
falszywosci przytoczonego twierdzenia.

Porzadkowanie analizy matematycznej przyczynito si¢ do rozwoju logiki mate-
matycznej i powstania teorii mnogosci.



1.2 Poczatki teorii mnogosci

Teoria mnogosci stworzyt George Cantor w ostatniej ¢wierci XIX wieku. Teoria ta
pozwala sformalizowa¢ niemal cata matematyke, w tym oczywiscie pojecia funkcji i
ciagu nieskonczonego. Umozliwia przedstawienie analizy matematycznej w sposob
nie budzacy formalnych watpliwosci.

Teori¢ mnogosci Cantor uzupehnit o teori¢ mocy. Uzywajac tej ostatniej w 1874
roku dowiodt, ze jest przeliczalnie wiele liczb algebraicznych i nieprzeliczalnie wiele
przestepnych. Tak w nowy sposéb rozwigzal problem istnienia liczb przestepnych
i wlaczyt si¢ istotnie w badania prowadzone w drugiej potowie XIX wieku. Dzigki
temu zwrocit uwage wspotezesnych na teorie¢ mnogosci.

Teoria mnogosci Cantora szybko okazata sie sprzeczna (patrz przyktad ze stro-
ny 11). Znaleziono w niej antynomie, czyli rozumowania dowodzace sprzecznosci.
Jedng z najprostszych zostata znaleziona przez Russela i wykorzystuje rozumowa-
nie przekatniowe zastosowane po raz pierwszy w dowodzie twierdzenia Cantora o
zbiorze potegowym i mnogosciowym dowodzie istnienia liczb przestepnych.

1.3 Metoda przekatniowa i zbiér potegowy

Starozytni Grecy zauwazyli, ze o niektérych zdaniach nie da sie rozstrzygnaé, czy
sg prawdziwe, czy tez falszywe. Tak jest na przyktad z paradoksem ktamcy: nie
wiadomo, czy ktokolwiek stwierdzajac Sktamalem w tym momencie sktamat, czy
tez powiedzial prawde. Jezeli sktamal, to stwierdzenie Sktamatem jest fatszywe, a
wiec jednak powiedzial prawde. Jezeli powiedzial prawde, to stwierdzenie Sktama-
tem jest prawdziwe, a wiec jednak sktamat. Podobnym przyktadem jest komen-
towana w Biblii opinia Kretenczyka Epimenidesa, ktory stwierdzit, ze Wszyscy
Kreteniczycy sa ktamcami. Fakt, ze ta krytyczna opinia byta pamietana kilkaset
lat po $mierci jej autora swiadczy, ze budzita zainteresowanie i dyskusje. Cecha
charakterystyczng tych zdan jest to, ze méwiag cos o osobie, ktora je wypowiada.
Dobrym przyktadem takich klopotéw sg tez takie dwa zdania:

1) Nastepne zdanie jest prawdziwe.
2) Poprzednie zdanie jest falszywe.

Kazde z nich posrednio méwi cos o sobie i zatozenie o ktorymkolwiek, ze jest
prawdziwe badz fatszywe, prowadzi do przeciwnego wniosku. Jezeli o tych zdaniach
mozna co$ ustali¢, to tylko to, ze jednoczesnie powinny by¢ prawdziwe i fatszywe.

Cantor zaczal rozumie¢ paradoks ktamcy i zauwazyl, ze stworzenie w matema-
tyce sytuacji, gdy co$ méwi cos o sobie, bedzie prowadzi¢ do sprzecznosci. Wyko-
rzystat to w dowodzie twierdzenia o zbiorze potegowym.

Wyobrazmy sobie kwadratowsa tablice wypelniong zerami i jedynkami, na przy-
ktad taka oto:

a b ¢ d e
01 001
11010
1 0110
1 1 001
00 0 01

Przyjmijmy, ze kolejne kolumny tej tablicy odpowiadaja kolejnym elementom ze
zbioru U = {a,b,c,d,e}. Elementy wiersza tej tablicy mozemy interpretowaé ja-
ko informacje o nalezeniu kolejnych elementéw zbioru U do pewnego zbioru A.



Pierwszy wiersz podanej tablicy opisuje wiec zbiér A = {b, e}. Przekatna tablicy
(wyrézniona pogrubionymi cyframi) zawiera ciag 0,1, 1,0, 1. W metodzie przekat-
niowej cyfry w tym ciggu zamienia sie na przeciwne i tworzy sie cigg 1,0,0,1,0
opisujacy zbiér X = {a,d}.

Zbiér X ma szczegblna whasnosé: ,méwi” cos (zawiera informacje) o kazdym
zbiorze opisanym w wierszu danej tablicy. Poniewaz pierwszy element U, czyli a,
nalezy do X, wiec a nie jest elementem zbioru A z pierwszego wiersza. Podobnie,
do zbioru z drugiego wiersza nalezy b (drugi element U), gdyz element ten nie
nalezy do X. Co wiecej, zbiér X ,moéwi” o zbiorze z tablicy co$ przeciwnego do
swoich wtasnosci.

Stad oczywiscie wynika, ze X jest nowym zbiorem, zaden wiersz naszej tablicy
nie zawiera o nim informacji. Zbiér X bowiem i zbior z n-tego wiersza réznig n-
tym elementem. Taki wniosek zwykle wystarcza do przeprowadzenia rozumowania
z uzyciem metody przekatniowe;j.

Mozna jednak pomysle¢ inaczej. Jezeli zatozymy, ze zbidor U ma najwyzej ty-
le podzbioréw, co elementow, to informacje o wszystkich podzbiorach U mozna
umiesci¢ w takiej tablicy. W ten sposéb powstanie taka sytuacja, jak w paradok-
sie ktamcy: zbior X dla takiej tablicy bedzie ,mowi¢” cos o sobie i to w tak, ze
nie da sie ustali¢ prawdziwosci tej informacji. Zalozenie o jej prawdziwosci bedzie
implikowa¢ jej falszywosé i odwrotnie.

Wynikajacy stad wniosek, ze piecioelementowy zbiér U ma wiecej niz 5 pod-
zbiorow, nie jest specjalnie ciekawy. Jezeli jednak wyobrazimy sobie tablice, ktorej
wiersze 1 kolumny sa indeksowane liczbami naturalnymi i przeprowadzimy ana-
logiczne rozumowanie, to przekonamy sie, ze zbioréw liczb naturalnych nie da
sie¢ ponumerowac liczbami naturalnymi. Ten rezultat jest znacznie ciekawszy od
poprzedniego, a spostrzezenie, ze mozna porownywac ,wielkosci” zbioréw nieskon-
czonych byto pod koniec XIX wieku odkryciem naukowym.

Latwo mozna wyobrazi¢ sobie tablice indeksowana liczbami naturalnymi. Ko-
lejne kolumny i wiersze odpowiadajg kolejnym liczbom naturalnym. Trudniej, gdy
chcemy kolumny i wiersze tablicy indeksowa¢ dowolnym zbiorem U. Taka tablice
trudniej przedstawic¢ na rysunku. Mozna ja utozsamia¢ z dwuargumentows funkcja
t:U x U — {0,1}. Taka zmiana sposobu myslenia pozwala dowie$¢ twierdzenie
Cantora o zbiorze potegowym w pelnej ogélnosci, dla dowolnego zbioru U.

Mozna zrobié¢ jeszcze jeden krok i zamiast tablicy indeksowanej elementami
pewnego zbioru U mozna rozwazac tablice indeksowane wszystkimi mozliwymi ele-
mentami - zbiorami. Jedna z takich tablic na przecieciu kolumny odpowiadajacej
elementowi x i wiersza wyznaczonego przez y moze mie¢ informacje o prawdziwosci
stwierdzenia x € y. Przekatna tej tablicy zawiera indeksowany wszystkimi mozli-
wymi elementami x ,cigg” informacji, czy x € z, metoda przekatniowa definiuje
wclag” informacji przeciwnych x ¢ x, opisujacy zbiér X = {z : x & x}. Zbiér X o
kazdym zbiorze - elemencie x mowi, czy = € x. Zawiera tez taks informacje o so-
bie. Podobnie, jak w paradoksie ktamcy, nie mozna wiec rozstrzygnaé, czy X € X.
Obie mozliwe hipotezy prowadza do przeciwnego wniosku, a wiec pozwalaja do-
wies¢ sprzecznos$¢é. Rozumowanie to zauwazone przez Bertranda Russela i — jak
sie wydawato — mozliwe do przeprowadzenia w teorii mnogosci Cantora jest znane
pod nazwa antynomii badz paradoksu Russela.

1.4 Teoria mnogosci w XX wieku

W 1904 roku Ernst Zermelo poprawit teorie mnogosci Cantora i zaproponowat jej
aksjomatyzacje znang pod nazwa teorii Zermelo. Teoria ta dzisiaj stanowi pod-



stawe elementarnych wyktadow, ktorych celem jest nauka jezyka mnogosciowego
(mimo to studenci czesto nie poznaja jej akjomatow). Teoria ta zostala uznana
za zbyt staba. Kilka os6b, w tym Abraham Fraenkel (studiowal na poczatku XX
wieku we Wroctawiu) zaproponowalo uzupehienie jej o schemat zastepowania. W
ten sposob powstala najczesciej stosowana teoria mnogosci Zermelo - Fraenkla z
aksjomatem wyboru.

W teorii Zermelo - Fraenkla nie mozna powtoérzy¢ dowodow znanych antynomii
i nikomu nie udato sie wymysli¢ nowych.

1.5 Logika

Logika interesowano sie' od starozytnosci, czesto tez taczono ja z retoryka. Mate-
matycy w powazniejszym stopniu zajeli sie logika pod koniec XIX wieku. Pierw-
sze prace dotyczace kwantyfikatoréw zostaly napisane w Niemczech przez Gottlo-
ba Fregego (1879) i w Stanach Zjednoczonych przez Charlesa Sandersa Peirce’a
(1885), by¢ moze niezaleznie od siebie. Byly zwiazane (zwlaszcza prace Fregego) z
logicyzmem, filozoficzng koncepcja, zgodnie z ktéra cata matematyka daje sie spro-
wadzi¢ do logiki, jest czescig logiki i nie wymaga zadnych specjalnych aksjomatow
poza logicznymi. (zbiory to przeciez whasnosci, o wlasnosciach jako$ méwimy i to
powinno wystarczy¢). Ta koncepcja data niewiele ciekawych rezultatéw, owocowata
jednak w wiele prob stworzenia podstaw matematyki, czesto sprzecznych. Para-
doksalnie, prowadzita do rozwoju teorii mnogosci. Waznym dzietem z tego nurtu
sa Principia Mathematica, napisane przez Bertranda Russella i Alfreda White-
heada, kontynuatoréw prac Fregego. Kurt Godel odwotywal sie do tego dzieta w
swoich pracach. Zostato w nim wprowadzone pojecie typu, ktére bywa uwazane za
pierwowzor informatycznego pojecia typu.

Logika byta potrzebna réwniez formalistom do ratowania teorii mnogosci. Pro-
ces ksztattowania wspotczesnych systemow logicznych trwal okoto 50 lat. Czasami
przyjmuje sie, ze zakonczyt w 1928 roku sie wraz z ukazaniem sie ksiazki Grundziige
der theoretischen Logik Davida Hilberta i Wilhelma Ackermanna.

1.6 Program Hilberta

Klopoty z teorig mnogosci doprowadzilty do powstania opinii?, ze matematyke

nalezy do ograniczy¢ do zagadnien nie budzacych watpliwosci, w ktorych pojecie
nieskonczonosci nie wystepuje, badz odgrywa mniej istotng role. Teorie mnogosci
wzigl w obrone Dawid Hilbert (gléwna praca pochodzi z 1926 roku) przy okazji
przedstawiajac swoje poglady i wytyczajac program badan. Stanowisko Hilberta
i jego kontynuatoré6w (m. in. John von Neumann, Abraham Robinson i Haskell
Curry) jest okreslane jako formalizm.

Zdaniem Hilberta matematyka zajmuje sie konkretnymi symbolami, na przy-
ktad liczebnikami, ktore moga by¢ rozumiane jako ciagi znakow 1, 11, 111, ... Tak
rozumiane liczby naturalne stanowig punkt wyjscia catej matematyki, moga by¢
badane bezposrednio, a nasza wiedza o nich powinna by¢ niesprzeczna. Pojecie nie-
skonczonosci nie moze by¢ badane bezposrednio, nie wystepuje w rzeczywistosci.
Aby méc badaé nieskonczono$é, nalezy dotyczaca jej czes¢ matematyki sformali-
zowacl, oprzeé¢ na takiej matematyce, ktora jest pewna. Nastepnie nalezy te czes¢

!Troche informacji historycznych o logice mozna znalezé na przyktad w Zarysie logiki mate-
matycznej Andrzeja Grzegorczyka.

2Wiecej informacji o pogladach matematykéw na przetomie XIX i XX wieku znajduje sie w
ksigzeczce Romana Murawskiego pod tytutem Filozofia matematyki. Zarys dziejow.



zbada¢ pewnymi Ssrodkami, zwtaszcza wykazac jej niesprzeczno$¢. Hilbert sadzit
tez, ze da sie wykazac jej zupelnos¢ i okaze sie ona zachowawcza, czyli da sie
sprowadzi¢ do matematyki pewnej, i nie bedzie istotnie poza nig wykraczac.

2 Formuly i podstawianie

Formuty sa formutami pewnego jezyka. Jezyk moze by¢ rozumiany jako zbiér sym-
boli, ktérych mozemy uzywaé. Wéréd tych symboli znajduja kwantyfikatory (V
oraz 3, oba lub jeden z nich), spdjniki logiczne (=, V, A, = i &<, wszystkie lub
niektoére z nich), symbole relacyjne i funkeyjne o okreslonej arnosci, a takze stale,
ktore moga by¢ rozumiane jako symbole funkcyjne o arnosci 0. Szczegbélnym dwu-
argumentowym symbolem relacyjnym jest =, ktéry bywa uwazany symbol logiczny
(wtedy méwimy o logice z réwnoscia). Wéréd symboli sa tez zmienne, okreslane
jako zmienne indywiduowe (dla odréznienia np. od zmiennych zdaniowych). Ozna-
czajg one elementy, o ktérych mowia formuty. Poza wymienionymi, w formutach
wystepuja jeszcze symbole pomocniczne, na przyktad nawiasy doprecyzowujace
budowe formuty.

W faktycznie wykorzystywanych jezykach nie pojawiaja sie symboli relacyj-
nych o arnosci 0. Takie symbole mozna uwazac¢ za zmienne zdaniowe z rachunku
zdan i mozna je rozwazal¢ w teoretycznych systemach logicznych obejmujacych
jednoczescie rachunek zdan i kwantyfikatoréw.

Przyktadem moze by¢ jezyk arytmetyki. Wystepuja w nim oprocz symboli lo-
gicznych i pomocniczych state 0 i 1, dwuargumentowe symbole funkcyjne + i - i
dwuargumentowe symbole relacyjne = oraz <. Bywa w nim réwniez umieszczany
jednoargumentowy symbol funkcyjny S interpretowany jako operacja nastepnika.

W klasycznej logice z symboli jezyka tworzymy napisy, ktére moga by¢ in-
terpretowane jako ciggi symboli (znakéw) i uzywamy nawiaséw by jednoznacznie
opisa¢ budowe napisu. W logice zinformatyzowanej zamiast napiséw rozwaza sie
drzewa etykietowane symbolami jezyka.

2.1 Termy
Termy to elementy zbioru terméw. Zbiér terméw jest najmniejszym zbiorem na-
pisow,

1) do ktérego naleza zmienne i state (napisy jednoelementowe ztozone ze zmien-
nej lub statej),

2) ktory spelnia warunek: jezeli ¢y, ..., t, sa termami, a f jest n-arnym symbo-
lem funkcyjnym, to f(t1,...,t,) tez jest termem (nalezy do zbioru terméw).

W zbiorze terméw okreslamy operacje podstawiania. Symbolem ¢[x < s] ozna-
czamy wynik podstawiania w termie ¢ za zmienng x termu s. Przyjmujemy, ze
podstawianie ma nastepujace wlasnosci:

clx—s| = s dla stalej ¢

zlr «—s] =

ylr — s] = dla zmiennej y # x
]

Y
= f(tfz —s],... tylx — s]).



2.2 Formuly

Formuty to elementy zbioru formut. Zbiér formut jest najmniejszym zbiorem na-
pisow,

1) do ktérego nalezg formuty atomowe, a wiec napisy r(ty,...,t,), gdzie r jest
n-arnym symbolem relacyjnym, a ¢, ..., %, sa termami,

2) iktéry spetnia warunki: jezeli ¢ i 9 sa formutami, to —p, eV, o A, ¢ = 9
oraz ¢ < 1 tez sg formutami (nalezg do zbioru formut),

3) jezeli o jest formula, a x — zmienna, to Vz ¢ oraz Iz ¢ tez sa formutami.

Termy z symbolami takimi, jak 4+ oraz formuly atomowe z symbolami takimi,
jak < lub =, bedziemy zapisywa¢ w tradycyjny sposob.

Takze w zbiorze formut okreslamy operacje podstawiania. Symbolem @[z « s]
oznaczamy wynik podstawiania w formule ¢ za zmienna = termu s. Przyjmujemy,
ze podstawianie spelnia nastepujace rownosci:

r(t, ... th)[x —s] = r(tifz «s],..., [z < s]) dla symbolu relacyjnego r,
@)z =] = (el — s])
(eV)|z —s] = plx—s]Vix—s] i podobnie dla innych spoéjnikéow,
Grp)r—s = Jrgp
Fy )z —s] = 3y plr ] gdy y # @

i podobnie dla kwantyfikatora V.

2.3 Reguly wnioskowania (dowodzenia)

Wigkszo$¢ systemow logicznych postuguje sie pewnym zbiorem regutl dowodzenia.

Reguly te oddajg najbardziej elementarne i uznawane za oczywiste sposoby wnio-

skowania. W pewnym sensie definiujg spojniki logiczne oraz kwantyfikatory.
Przyktadem reguly dowodzenia jest reguta odrywania (RO):

=1,
—

Reguly dowodzenia zapisujemy uzywajac poziomej kreski. Nad kreska piszemy
kilka formut zwanych przestankami. Pod kreska znajduje sie jedna formuta zwana
wnioskiem uzyskanym za pomoca tej reguly ze znajdujacych si¢ w niej przestanek.
Reguly dowodzenia rozumiemy jako schematy wnioskowan. W przypadku reguty
odrywania oznacza to, ze z dwoch formut: z implikacji i jej poprzednika zawsze
mozemy wywnioskowaé nastepnik implikacji (a wiec za ¢ i 1) mozemy podsta-
wi¢ w regule odrywania jakiekolwiek formuty). W niektérych sytuacjach reguty
dowodzenia sa stosowane z pewnymi ograniczeniami.

Dalej przedstawimy trzy systemy logiczne: system dowodow zatozeniowych oraz
systemy z ksiazki Schoefielda i pracy Godla. System dowoddéw zatozeniowych jest
najbardziej naturalng formalizacjg rachunku logicznego, odpowiada powszechnie
stosowanym zasadom przedstawiania dowodow.

2.4 Reguly wnioskowania z pewnego systemu

Szczegoblnie prosty system logiczny jest wykorzystywany w monografii Mathema-
tical Logic napisanej przez Josepha Schoenfielda. W tym systemie postugujemy
sie dwoma sp6jnikami V oraz — i kwantyfikatorem 3. Formule zapisang z uzyciem



innych sp6jnikéw uwazamy za skrét i najpierw przeksztatcamy po to, by wyelimi-
nowac z niej niewladciwe znaki. System Schoenfielda zawiera nastepujace reguty
dowodzenia:

0 pVe eV (WVE  eViY, mpVvE =1
eV e 1 (pVY)VE vve T (Fap) =
z tym, ze ostatnig stosujemy tylko wtedy, gdy zmienna x nie wystepuje jako wolna
w 1 (patrz rozdzial 3.5.1).

3 Pojecie dowodu i twierdzenia

3.1 Podstawowa idea

Dowodem najczesciej nazywamy cigg formut o1, ..., ¢, taki, ze kazda z formul jest
albo aksjomatem, albo wnioskiem otrzymanym z formut wezesniejszych za pomoca
jednej z regut dowodzenia.

Twierdzeniami nazywamy formuty wystepujace w dowodach. Dowdd jest do-
wodem formutly ¢, jezeli ¢ jest jedng z formut w nim wystepujacych. Pojecia te
zalezg jeszcze od przyjmowanych aksjomatow.

Napis F ¢ bedzie oznaczaé, ze formula ¢ jest twierdzeniem (rozwazanego) sys-
temu logicznego, dowiedzionym bez korzystania z aksjomatéw pozalogicznych. Tak
rozumiane twierdzenia nazywa si¢ takze prawami logicznymi, prawami rachunku
kwantyfikatorow, badz tezami tego rachunku. Dla omawianych tutaj systeméw
dowodzi si¢, ze pojecie prawa logicznego nie zalezy od systemu. Z tego powodu
symbol F mozna uznaé za dostatecznie precyzyjny.

Zbioér twierdzen mozna tez zdefiniowaé jako najmniejszy zbior formut zawiera-
jacy aksjomaty i zamkniety ze wzgledu na reguly wnioskowania (czyli speliajacy
nastepujacy warunek: jezeli przestanki naleza do zbioru twierdzen, to takze wnioski
otrzymane za pomoca regul wnioskowania naleza do zbioru twierdzen).

3.2 Aksjomaty logiczne

Rozrézniamy trzy rodzaje aksjomatéw: logiczne, réwnosci i pozalogiczne. Aksjo-
maty logiczne sg czescia definicji systemu logicznego. Mozna je uwazac za specjalne
reguty dowodzenia, nie wymagajace przestanek.

W systemie Schoenfielda przyjmuje sie, ze aksjomatami sa niemal wszystkie
(patrz rozdz. 3.5.2) formuly nastepujacych postaci:

-V, plr—t]= Jzp.

3.3 Aksjomaty réwnosci

W wigkszosci teorii postugujemy sie pojeciem réwnosci, ktore jest oznaczane zna-
nym symbolem = i czesto jest uwazane za jedno z poje¢ logicznych. Wtedy do
przyjmowanych aksjomatow dotaczamy aksjomaty rownoscig. Aksjomaty te wyra-
zaja wlasnosci relacji réwnosci. Sa nimi nastepujace formuty

T =z,

rn=yp=((..= @=y= (f(x1, ., 20) = fY1,--,Yn))) - - .),

rr=y1=(..= @n=y= p@1,...,20) = WY1, -, Yn))) - --)-
utworzone dla dowolnego n-arnego symbolu funkcyjnego f i dowolnego n-arnego
symbolu relacyjnego p, w tym dla symbolu =.



3.4 Teorie i aksjomaty pozalogiczne

Teorig nazywamy dowolny zbiér formut, zapisany w ustalonym jezyku, przy uzyciu
symboli funkcyjnych i relacyjnych oraz statych tego jezyka. Formuty z tego zbioru
nazywamy aksjomatami (rozwazanej teorii). Te aksjomaty sa okreslane jako poza-
logiczne, w odréznieniu od aksjomatéw logicznych i rownosci. Tworzac dowodd w
pewnej teorii w mozemy nim umieszczaé wszelkie jej aksjomaty, logiczne i pozalo-
giczne, a dla teorii z réwnoscig — takze aksjomaty rownosci. Formuty, ktore maja
dowdd wykorzystujacy aksjomaty teorii T nazywamy twierdzeniami tej teorii. Aby
wyrazi¢ fakt, ze ¢ jest twierdzeniem teorii T', bedziemy pisa¢ T F ¢.

3.5 Szczegdbdly zwigzane z pojeciem systemu logicznego

Przedstawione definicje zawieraja luki, ktérych wypelnienie wymaga wprowadze-
nia kilku drobnych poje¢.

3.5.1 Zasieg kwantyfikatora, zmienne wolne i zwigzane

Nietrudno zauwazy¢, ze w kazdej formule po kazdym kwantyfikatorze (znaku V lub
3) znajduje sie zmienna. Jezeli po pewnym kwatyfikatorze znajduje sie zmienna z,
to o tym kwantyfikatorze mowimy, ze wigze zmienna x.

Zasiegiem kwantyfikatora (czyli znaku V lub 3 znajdujacego sie¢ w okreslonym
miejscu) w formule ¢ nazywamy pewien fragment (podstowo) formuly 1, zdefinio-
wany zgodnie z nastepujacymi regutami:

1) jezeli formuta v ma jedna z postaci: ~p1, @1V 2, Y1 APa, P1 = Y2, Y1 S P2,
oraz kwantyfikator ten wystepuje w formule ¢; (odpowiednio: w ), to jego
zasiegiem w 1) jest jego zasieg w 1 (lub odpowiednio w ¢3),

2) jezeli formula v jest postaci Jxp lub Vxp i interesujacy nas kwantyfikator
wystepuje w ¢, to jego zasiegiem w 1 jest jego zasieg w o,

3) jezeli formuta 1 jest postaci Jzp lub Vzp i interesujacy nas kwantyfikator
jest pierwszym znakiem ), to jego zasiegiem w ) jest formuta .

Wystapienie zmiennej x w formule v jest zwiazane, jezeli znajduje sie w zasiegu
pewnego kwantyfikatora wigzacego zmienng x. Pozostate wystgpienia zmiennej x
w formule ¥ nazywamy wolnymi.

Formutle nazywamy zdaniem, jezeli zadna zmienna nie wystepuje w niej jako
wolna.

3.5.2 Dokonczenie definicji systeméw logicznych

Moéwimy, ze term t jest podstawialny w formule ¢ za zmienna x, jezeli zadne wolne
w © wystapienie zmiennej x nie znajduje sie w zasiegu kwantyfikatora wiazacego
jakakolwiek zmienng wystepujaca w termie t.

We wszystkich systemach logicznych, aksjomaty i reguty dowodzenia zawiera-
jacych wyrazenie postaci p[z < t] moga by¢ stosowane w systemie pod warunkiem,
ze term t jest podstawialny w formule ¢ za zmienng x.
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3.6 Przyklady teorii
3.6.1 Teoria grup

Dobrym przyktadem pozwalajacym tatwo znajdowaé rozne przyktady jest teoria
grup, czyli teoria zapisana za pomocg symboli -, ~! oraz 1, ztozona z nastepujacych
aksjomatow:

1) Vavyvz ((z-y) -2 =z (y-2)),
Q) Ve (z-1=a ANl -z=ux),

) Ve (x-at=1A2"t - 2=1).

3.6.2 Arytmetyka @)

Waznymi przyktadami beda arytmetyki, na przyktad tzw. arytmetyka @), odkryta
przez Raphaela Mitchela Robinsona 3, zlozona z nastepujacych aksjomatéow:

1) Vo (x +1#0),
) VaVy (z+1=y+1=>z=y),
3) Vz (z+ 0 = x),

4 VaVy (z+ (y+1) = (z+y)+ 1),

6) VaVy (z- (y+1) =2 -y + x),
7) Vx (-x < 0),
8) VaVy (x <y+ 1o x<yVre=y),

)
)
)
)
5) Va (z-0=0),
)
) ¥
)
)

9) VaVy (x <yVaez=yVy<uz).
3.6.3 Arytmetyka Peano
Po dopisaniu do teorii () wszystkich aksjomatow indukcji
(plz — 0] AVZ (p = ¢lr — x+1])) = Vz ¢,

czyli po dodaniu schematu indukcji, otrzymujemy arytmetyke Peano. Jest to pod-
stawowy zbior aksjomatow arytmetycznych.

3Przedstawiona lista aksjomatéw pochodzi z ksigzki Mathematical Logic Shoenfielda. Orygi-
nalna arytmetyka @ jest sformutowana w jezyku bez symbolu <, w zwigzku z tym nie ma trzech
ostatnich aksjomatéw i nic nie méwi o uporzadkowaniu liczb naturalnych. Za to ma dodatkowy
aksjomat  # 0 = Jy (z = y + 1). Mozna w niej wprowadzi¢ porzadek przyjmujac definicje
r<y<eIz(r+(z2+1) =y). W takiej teorii trudno dowie$¢ sp6jnosé relacji <.
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3.6.4 Teoria mnogosci

Wazna jest tez teoria mnogosci Zermelo-Fraenkla (ZF), ktéra pozwala sformali-
zowa¢ niemal wszystkie rozumowania matematyczne. Do jej wyrazenia wystarczy
jezyk z rownoscig i dwuargumentowym symbolem € oznaczajacym relacje naleze-
nia. Nie ma powodu, aby tutaj przytacza¢ wszystkie aksjomaty tej teorii. Wérod
nich sg aksjomat ekstensjonalnosci

VXVY (Vz(zeX&z2zeY))=X=Y)
oraz schemat wyrdzniania ztozony z wszystkich formut postaci

VX JYVz (z€Y & ze X Ny).

3.6.5 Rachunek kwantyfikatoréw

Rachunkiem kwantyfikatorow nazywamy teorie zapisywang w jezyku zawierajacym
przeliczalne zbiory symboli funkeyjnych (takze stalych) i relacyjnych wszystkich
mozliwych arnosci. Taki jezyk umozliwia zapisywanie wszelkich dajacych sie wy-
mysli¢ formut.

Bywaja rozwazane dwa rachunki kwantyfikatorow: z rownoscia i bez réwnosci.

Rachunek kwantyfikatoréw bez réwnosci nie ma zadnych pozalogicznych aksjo-
matow. Jego aksjomatami sa wytacznie aksjomaty logiczne wymienione w definicji
systemu logicznego.

Rachunkiem kwantyfikatoréow z réwnoscia nazywamy teorie, ktorej aksjomata-
mi oprocz aksjomatéw logicznych sa takze aksjomaty réwnosci.

3.7 Rodzaje teorii

Pojecie teorii zostalo wprowadzone w rozdziate 3.4. Teraz zdefiniujemy kilka pojeé
opisujacych rézne rodzaje teorii.

Teoria T jest sprzeczna wtedy i tylko wtedy, gdy istnieje formuta ¢ taka, ze
TF poraz T'F —p.

Teoria 7' jest niesprzeczna, jezeli nie jest sprzeczna.

Teoria T jest zupelna, jezeli dla kazdego zdania ¢ albo T'F ¢, albo T'F —¢.

Teoria T jest aksjomatyzowalna, jezeli zbior jej aksjomatéw (czyli zbior T') jest
rekurencyjny. Doktadniej, rekurencyjnym powinien by¢ zbiér numerow godlowskich
aksjomatow T'. Jest to definicja podstawowa. W razie potrzeby bedziemy rozwazaé
troche stabsze lub troche mocniejsze pojecie aksjomatyzowalnosci. Wtedy bedzie-
my przyjmowac, ze zbior aksjomatéw teorii aksjomatyzowalnej jest rekurencyjnie
przeliczalny, lub tez ze jest pierwotnie rekurencyjny.

Lemat 3.1 Nastepujgce warunki sqg réwnowazne:

1) teoria T jest sprzeczna,

2) istnieje zdanie ¢ takie, ze T F @ N\ -y,

3) kazda formula jest twierdzeniem teorii T'. O

Przyktadem teorii sprzecznej moze by¢ teoria mnogosci ze schematem
JAVz (r € A @)

zamiast schematu wyrdzniania przyjmowanego w teorii Zermelo - Fraenkla. Taki
schemat wyrdzniania sugerowal Cantor w swojej teorii mnogosci.
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4 Wlasnosci systemu logicznego Schoenfielda

4.1 Definicja systemu raz jeszcze

W tym systemie formuly zapisujemy przy uzyciu jedynie dwoch spdjnikéow — i V
oraz kwantyfikatora szczegdétowego 3. Formuly z innymi spéjnikami uwazamy za
skroty odpowiednich formut zapisanych wytacznie za pomoca —, V oraz 3 zgodnie
z nastepujacymi wzorami

p=1v = -9V,

ANy = (mp V),

peY = (p=29)A W =),
Ve = -—dz .

Aksjomatami logicznymi systemu sg w zasadzie wszelkie formuty nastepujacych
postaci:
- V@ oraz plr « t] = Jzp,
spelniajgce warunek podstawialnosci podany w rozdziale 3.5.2.
W systemie postugujemy sie nastepujacymi regutami dowodzenia:

0 eV eV@VE  eVY, npVE © =1
eV’ o 7 (eVY)VvE YvvE T (Frp) =Y

z tym, ze ostatnig stosujemy tylko wtedy, gdy zmienna x nie wystepuje jako wolna
w ¢ (patrz rozdzial 3.5.1).

4.2 Kilka wlasnosci systemu

Lemat 4.1 Jezeli w dowodzie wystgpita formuta o V i, to ten dowod mozemy
wydtuzyc tak, aby znalazta sie w nim takze formuta ¥ V .

Dowéd. Do dowodu

NGV R
dopisujemy aksjomat —¢ V ¢ oraz formute ¢ V ¢. Otrzymany ciag
s VY, L eV, YV

tez jest dowodem. Ostatnia formuta wynika na podstawie reguty rezolucji z dwéch
uwidocznionych w dowodzie. O

Lemat 4.2 (regula odrywania) Jezeli formula ¢ = ¢ ma dowdd, to kazdy do-
wad zawierajgcy formule ¢ mozna tak wydtuzyé, aby zawieral formule 1.

Dowéd. Do dowodu

N,
dopisujemy w pierwszym rzedzie dowdd formulty ¢ = ¢ czyli formuty —p V ¢
otrzymujac

a nastepnie tworzymy ciag

e P TNV Y, @V PV, .

Ten cigg jest dowodem. Koncowe formuly otrzymujemy stosujac kolejno reguty
dotgczania, rezolucji i kontrakcji. O

Alternatywa z cztonami @1, s, ..., ¢, bedziemy nazywaé¢ formute p; V @9 V
...V ¢, z dowolnym rozmieszczeniem nawiasow.
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Lemat 4.3 Jezeli ¢ jest czlonem alternatywy ®, to kazdy dowdd zawierajgcy ¢
mozna wydtuzyé do dowodu zawierajgcego P.

Dowdd. Lemat dowodzimy przez indukcje ze wzgledu na liczbe cztonow alterna-
tywy ®@. Dla alternatyw jednocztonowych lemat jest oczywisty.

Przyjmijmy, ze & = ®; V ®,. Formuta ¢ jest albo cztonem ®,, albo ;. W
pierwszym przypadku, dowod zawierajacy ¢ na mocy zatozenia indukcyjnego mo-
zemy wydtuzy¢ do dowodu @, do ktoérego na mocy reguty dotaczania mozemy
dopisa¢ @, V @y, czyli P.

W drugi przypadku, jezeli ¢ jest cztonem ®,, to postepujac analogicznie dowod
zawierajacy ¢ wydtuzamy do dowodu zawierajacego ®; V &5, a nastepnie, korzy-
stajac z lematu 4.1, przestawiamy cztony alternatywy otrzymujac &, V ®,, czyli
¢. O

Mozna dowies¢ tez silniejszy
Lemat 4.4 Jezeli p jest czionem alternatywy ®, to formuta p = @ jest prawem

logicznym.

Dowdd. Z tego lematu mozna wyprowadzi¢ poprzedni lemat postugujac sie reguta
odrywania. Dowodzimy go réwniez przez indukcje ze wzgledu na liczbe cztonéw
formuty .

Jezeli alternatywa ® ma jeden czton, to jest réowna ¢ i formuta ¢ = & =
= ¢ = ¢ = 7 V @ jest aksjomatem logiki, a wiec tym bardziej jest prawem
logicznym.

Przypusémy, ze & = ¢; V &,. Formuta ¢ jest albo cztonem ®,, albo &5, W
pierwszym przypadku, z zalozenia indukcyjnego mamy, ze ¢ = ®; jest prawem
logicznym. Aby dowie$é¢ lemat, wystarczy zauwazy¢, ze cigg

_|(,0\/(I)1, (_|g0\/¢)1)\/q)2, (I)Q\/(_'(,O\/(I)l), (CI)Q\/_'QD)\/QH, (1)1\/((132\/_'(,0),

(CI)l V (I)g) V Y, 7Y V (CI)I V (I)Q)

mozna uzupelié¢ do petnego dowodu implikacji ¢ = ®; V O,.
W drugim przypadku postepujemy podobnie i do dowodu uzupetiamy ciag

eV Dy, DoV, (PoVop)V Dy, &1V (PV—gp), (P1VEP2) Vo, mpV(P1V D). O

Twierdzenie 4.5 Jezeli wszystkie cztony alternatywy V sq takze czltonami alter-
natywy ®, to formuta U = ® jest prawem logicznym, a wiec =¥ = &. Co wiecey,
kazdy dowod zawierajgcy W mozna wydtuzyé do dowodu zawierajgcego P.

Dowdd. Twierdzenie dowodzimy przez indukcje ze wzgledu na liczbe cztonéw al-
ternatywy W. Dla alternatyw jednocztonowych twierdzenie wynika z poprzedniego
lematu.

Przypusémy, ze ¥ = U V Uy, Z zalozenia indukcyjnego mamy, ze

FWU, =& oraz F ¥y = P.
Piszac dowdd formuty ¥ = ® odpowiednio uzupeliamy nastepujacy ciag formut:
UV (U V), (20 V)V, Uy V(=W V), 2U VO, (20 VT VO,

OV (-UV), (PVU)VT, (OVU) V)V, 20V ((QV D) V),
(P V(OV-U) VT, UV (=T V (VD)) a0 Ve (P V(DY D)) VO,
OV (-UV(PVVY)), (PVU)V(OVT), (OVY), UV O O
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4.3 Twierdzenie o dedukcji

Twierdzenie 4.6 (o dedukcji, Jacques Herbrand) Niech ¢ bedzie zdaniem.
Formuta v jest twierdzeniem teorii T z dodatkowym aksjomatem o (teorii TU{p})
wtedy 1 tylko wtedy, gdy implikacja ¢ = 1 jest twierdzeniem teorii T

Dowéd. Wystarczy dowie$¢ implikacje ,,0d lewej do prawej”. Implikacje przeciwna
tatwo wywnioskowaé¢ postugujac sie reguta odrywania, patrz lemat 4.2.

Zatozmy wiec, ze w teorii 1" z dodatkowym aksjomatem ¢ mozna dowies¢ v i
ciag

P1, P2, «--5 Pn
jest dowodem, ktory o tym $wiadczy. Wtedy miedzy innymi ¢, = 1. Utwérzmy
teraz ciag
—p Ve, eV, ..., 7@V Py

Pokazemy, ze ten ciag mozna uzupeli¢ do dowodu w teorii 7. Oczywiscie, w ten
spos6b dowiedziemy w teorii T' formute —¢ V ¢, czyli ¢ = .

Zrobimy to przez indukcje: Pokazemy, ze dowdd zawierajacy wszystkie formuty
—pV p; dla 1 < k mozna wydtuzyé¢ do dowodu zawierajacego —¢ V ¢r. W tym celu
zastanowimy sig, z jakiego powodu w dowodzie formuty ¢ znalazta si¢ formuta .

Formuta ¢, mogta byé¢ aksjomatem (logicznym, réwnosci lub pozalogicznym z
teorii 7). Wtedy do tworzonego dowodu dotaczamy ciag

Formuta ¢, mogta by¢ dodatkowym aksjomatem ¢. Wtedy do tworzonego do-
wodu dotaczamy aksjomat —¢ V ¢ identyczny z —¢ V @y.

By¢ moze formuta ¢, wynikata z formuty ¢; i jednej z trzech pierwszych regut
dowodzenia rozwazanego systemu. W tych trzech przypadkach mozliwo$¢ wydtuze-
nia dowodu zawierajacego -V ¢; do dowodu zawierajacego takze -V ) wynika
z twierdzenia 4.5.

Jezeli formuta ¢, = [V 6 wynika z formul postaci o V 3 oraz —a V § za
pomocy reguty rezolucji, to formute ¢ = ¢ dotaczamy do tworzonego dowodu w
nastepujacy sposéb: najpierw z umieszczonych juz w dowodzie formut =V (aV )
oraz - V (ma V 0) wyprowadzamy formuty a V (—¢ V 3) oraz —a V (—¢ V 0)
korzystajac z twierdzenia 4.5, nastepnie stosujemy regute rezolucji i dotaczamy do
dowodu (—¢ V 3) V (= V §) i w koficu po raz kolejny stosujemy twierdzenie 4.5
by uzyskaé formute = V (8 V §) réwna ¢ = ¢i.

Analogicznie postepujemy w ostatnim przypadku, gdy formute ¢, = Jza =
otrzymalismy stosujac regute dotaczania kwantyfikatora ogolnego do formuty ¢;
postaci @ = (. Wtedy najpierw z formuly —¢ V ¢; = —¢ V (-a V () stosujac
twierdzenie 4.5 wprowadzamy —a V (—¢ V [3), nastepnie dopisujemy kwantyfikator
uzyskujac ~JxaV (—¢V ) (jest to mozliwe dzieki zatozeniu, ze ¢ jest zdaniem). W
koncu przestawiamy czlony formuty tak, by otrzymaé¢ -V (=JzaV 3) = =p V @i.

W ten sposob rozwazyliémy wszystkie mozliwe przypadki i udowodnilismy
twierdzenie o dedukcji. O

4.4 Domkniecie formuty

Domknigciem formuty ¢ nazywamy formute V x ... ¢ powstajaca przez dopisanie
do ¢ kwantyfikatoréw ogoélnych po wszystkich zmiennych z, . . ., ktére maja wolne
wystapienia w (.
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Twierdzenie 4.7 Niech T' bedzie dowolng teorig. Formula ¢ jest twierdzeniem
teorit T wtedy i tylko wtedy, gdy twierdzeniem T jest domkniecie . Inaczej, troche
prosciej, ale 1 dostatecznie duzo: warunek T = ¢ zachodzi wtedy @ tylko wtedy, gdy
TFVx p.

Dowéd. Aby w teorii T' dowiesé¢ Va ¢, majac w teorii T dowdd formuty ¢ wydtu-
zamy go w nastepujacy sposéb (z drobnymi lukami i kilkoma powtérzeniami):

oy 9, eV T, Voo, e Voo, g,

——p VYT @, np = Vo p, 3 @ = Vr @, -~ VVz ¢, Vo o VVr @, VT ¢.

Aby dowiesé¢ implikacje odwrotna, najpierw pokazemy, ze formuty (Vz ¢) =
¢ sa prawami rachunku kwantyfikatorow. Stad, postugujac sie reguta odrywania
tatwo dowies¢ interesujaca nas implikacje.

Nietrudno zauwazy¢, ze dowodem (Vz @) = ¢ jest nastepujacy ciag

[z — x] = Tz ~p, ~p = Tz e, T VAT S, Dp Vo,

@V 3z ~p, ~dx —p V ade np, -3 e Vo,
—dr ~p = p, Vr ¢ = . O

5 Spelnianie (prawdziwo$é¢) formut

5.1 Struktury

Struktura nazywamy zbiér A (zwany uniwersum) z wyréznionymi elementami,
funkcjami wieloargumentowymi przeksztatcajacymi A w A i relacjami w zbiorze
A, tez wieloargumentowymi. Struktura jest nastepujacy uktad

A=(A,Co,Cy,...,Fo, Fr,...,Ro, Ry, ...,

gdzie A jest uniwersum struktury A, C; € A sa wyrdznionymi elementami A, F; :
A" — A sg wieloargumentowymi funkcjami przeksztatcajacymi Aw A, a R; C A™
sa wieloargumentowymi relacjami w zbiorze A. Czesto strukture o uniwersum A
takze oznacza sie symbolem A. Oczywiscie mozemy tak postapic, jezeli potrafimy
sie domysle¢, jakie wyrdzniliSmy elementy i jakie w tej strukturze sa funkcje i
relacje, lub tez, gdy takie szczegdty sa nieistotne.

5.2 Struktury dla danego jezyka

Jezeli mamy dany jezyk L, a wiec pewien zbiér symboli ztozony ze statych c, ...,
symboli funkcyjnych f,... oraz symboli relacyjnych r, ..., to zwykle rozwazamy
struktury dla jezyka L. Sa to struktury, w ktorych jest okreslone znaczenie wszyst-
kich statych oraz symboli funkcyjnych i relacyjnych jezyka L. Znaczeniem statej ¢
jest element C' uniwersum struktury, znaczeniem symbolu funkcyjnego f — funkcja
F o liczbie argumentow réwnej arnosci symbolu f, a znaczeniem symbolu relacyj-
nego r — relacja R o liczbie argumentéw rownej arnosci symbolu 7.

Waznym przyktadem jest jezyk arytmetyki ztozony z nastepujacych symboli:
0, 1, 4+, -, = oraz <. Wazna struktura dla tego jezyka ma uniwersum N C R
ztozone z tych liczb rzeczywistych, ktore sa naturalne, liczb rzeczywistych 0 i 1,
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dodawania +, mnozenia - i porzadku <, odziedziczonych ze zbioru liczb rzeczy-
wistych R oraz relacji identycznosci {(z,x) : x € N}, ktora jest standardowym
znaczeniem relacji réwnosci. Strukture

N:N:<N70717+7'7:7<>

nazywamy standardowym modelem liczb naturalnych. Znaki 0, 1, 4+ itp. maja
wiec dwa znaczenia: albo oznaczajaja symbole jezyka, albo liczby rzeczywiste lub
konkretne funkcje badz relacje. Na podstawie kontekstu zwykle bez trudu ustalamy
wtasciwe rozumienie tych znakow.

5.3 Wartosciowania

Zmienne nie majg ustalonego znaczenia. Zwykle jednak nadajemy im znaczenie
zalezne od potrzeb. Robimy to podajac tzw. wartosciowanie. Wartosciowaniem
zmiennych w strukturze o uniwersum A nazywamy dowolng funkcje przyporzadko-
wujaca zmiennym elementy zbioru A. Wartosciowanie moze (powinno) by¢ okreslo-
ne dla wszystkich zmiennych, ale zwykle wystarcza, aby byto okreslone dla zmien-
nych wolnych rozwazanej formuty, badZ zmiennych wystepujacych w interesujacym
nas termie.

5.4 Wartosci termow

Symbolem t[h]| oznaczamy warto$¢ termu ¢ przy wartosciowaniu h. Pojecie to de-
finiujemy wzorami

C jezeli t = ¢,
tlh] = ¢ h(x) jezeli t jest zmienng x,
Flth], - talh]) Jeieli £ = f(tr,.. 1),

gdzie c jest stala, a C' jest znaczeniem tej stalej w rozwazanej strukturze oraz f
jest n-argumentowym symbolem funkcyjnym, a F' — znaczeniem tego symbolu w
tej strukturze.

Zamiast t[h] piszemy takze t[ay, as,...,a,]. Piszac tak zakladamy, Ze zmienne
wystepujace w t sg w jakis konkretny sposéb uporzadkowane i rozwazamy warto-
Sciowanie, ktore kolejnym zmiennym przypisuje kolejne elementy uniwersum wy-
mienione w nawiasach kwadratowych.

5.5 Spelnianie w strukturze przy danym wartosciowaniu

Napis A | ¢[h| bedzie oznaczaé, ze formuta ¢ jest spetniona w strukturze A przy
wartosciowaniu h.
Moéwimy, ze formuta ¢ jest spelniona w strukturze A przy warto$ciowaniu h,
jezeli
1) (t1]h] ..., t,]h]) € R, gdzie p = r(ty,...,t,) oraz R jest relacja w strukturze
A odpowiadajaca symbolowi relacyjnemu r,

2) jedna z formul v lub s jest spelniona w strukturze A przy wartosciowaniu

h (A = 41 [h] Tub A = ds[h]), gdy formuta ¢ = 16, V oy,

3) formutla 1 nie jest spelniona w strukturze A przy warto$ciowaniu h (A =
[h]), w przypadku, gdy ¢ = =,
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4) w stukturze A jest spelniona formula ¢ przy pewnym wartosciowaniu A’/
takim, ze h'(y) = h(y) dla wszystkich zmiennych y # x (A = ¢[h']), gdy
@ = Jx.

5.6 Spelnianie formuty w strukturze

Formuta ¢ jest spetniona w strukturze A, jezeli jest spelniona w tej strukturze
przy kazdym wartosciowaniu.

Napis A = ¢ oznacza, ze formula ¢ jest spelniona w strukturze A.

Pokazuje sie, ze zdanie spetnione w strukturze przy pewnym warto$ciowaniu
jest w tej strukturze spetnione. Prawdziwy jest tez ogdlniejszy fakt, ze spetnia-
nie formuly przy wartosciowaniu h zalezy tylko interpretacji (znaczenia) symbo-
li wystepujacych w formule oraz od wartosci, ktére warto$ciowanie h przypisuje
zmiennym wystepujacym w formule jako wolne.

5.7 Modele teorii

Struktura A jest modelem teorii 7' (A = T'), jezeli kazdy aksjomat teorii T" jest
spelniony w strukturze A.
Struktura N jest zaréwno modelem teorii () Robinsona, jak i arytmetyki Peano.
Teorig struktury nazywamy zbiér wszystkich zdan spelionych w tej strukturze.

Lemat 5.1 Jezeli A jest strukturg, to teoria struktury A, czyli

{¢: ¢ jest zdaniem oraz A |= o}

jest niesprzeczna i zupeina. O

Whiosek 5.2 Teoria struktury N nie jest aksjomatyzowalna. Co wigcej, zbidr nu-
meréw zdan spetnionych w strukturze N nie jest rekurencyjnie przeliczalny.

Dowdéd. Wynika to z twierdzenia Godla, ktére dalej zostanie udowodnione. O

O teorii struktury N wiadomo nawet, ze nie jest definiowalna w strukturze N
jakakolwiek formulg. Zbiory rekurencyjnie przeliczalne sg definiowalne formutami
klasy >, (formutami z kwantyfikatorami ograniczonymi poprzedzonymi wytacznie
nieograniczonymi kwantyfikatorami egzystencjalnymi).

5.8 Podstawowe wtlasnosci spetniania

Lemat 5.3 Przypusémy, Ze A jest strukturg, x — zmienng, s — termem w jezyku
tej struktury, a h — warto$ciowaniem zmiennych w tej strukturze. Niech h' bedzie
warto$ciowaniem zmiennych takim, ze h'(x) = s[h] oraz h'(y) = h(y) dla wszyst-
kich zmiennych y # x. Wtedy mamy

tle — s][h] = t[I]
dla wszystkich termow t oraz
Ak ¢lr — s][h] & A= ¢[h]

dla wszystkich formut o, w ktorych s jest podstawialny za x. O
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Lemat 5.4 Przypu$émy, zZe formuta ¢ jest spetniona w strukturze A przy warto-
sciowaniu h. Wtedy

1) ¢ jest spetniona w A przy kazdym wartoSciowaniu h' takim, ze h(x) = h'(z)
dla wszystkich x bedgcych w ¢ zmiennymi wolnymi (czyli zmiana wartoscio-
wania dla zmiennych nie bedgcych wolnymi nie ma wplywu na spetnianie),

2) ¢ jest spetniona przy warto$ciowaniu h w kazdej strukturze A’ o tym samym
uniwersum i takich samych, jak w strukturze A, interpretacjach wystepujq-
cych w ¢ symboli funkcyjnych oraz relacyjnych (czyli bez wplywu na spetnia-
nie mozemy zmieniac, a takze dodawac i usuwac, interpretacje symboli nie
wystepujgcych w ¢ ). O

Lemat 5.5 Formula jest spetniona w danej strukturze A wtedy i tylko wtedy, gdy
w A jest spetnione domkniecie tej formuty. O

5.9 Twierdzenie o poprawnosci

Mamy wiec dwa sposoby badania ,rzeczywisto$ci”. Mozemy wyprowadza¢ wnioski
z ustalonych aksjomatéw lub badaé spelnianie (prawdziwosé) zdan w odpowied-
nich modelach. Mozemy na przyktad wyprowadza¢ wnioski o liczbach natural-
nych z aksjomatéw Peano lub bada¢ spelnialnos¢ wlasnosci liczb naturalnych w
standardowym modelu. Istotne jest wigc pytanie zaleznosci miedzy tymi dwoma
metodami.

Jedna z zaleznosci jest tatwa do udowodnienia. Mamy

Twierdzenie 5.6 (o poprawnosci) Twierdzenia teorii T sq prawdziwe w kaz-
dym modelu teorii T

Dowodzimy wiec tylko zdania, ktore sg prawdziwe i to bez wzgledu na to, jak
prawdziwos¢ jest rozumiana.

5.10 Twierdzenie o pelnosci

Z wniosku 5.2 i twierdzenia o poprawnosci wynika, ze nie wszystkie zdania prawdzi-
we w standardowym modelu liczb naturalnych maja dow6éd w arytmetyce Peano.
Ta sytuacja mogtaby by¢ spowodowana tym, ze stosujemy zbyt proste metody
dowodzenia, niewystarczajace do wykazania wszystkich zdan prawdziwych.

Tak nie jest, mamy bowiem

Twierdzenie 5.7 (o pelnosci, Gédel, Herbrand) Kazde zdanie spelnione we
wszystkich modelach teorit T ma dowod w teorii T.

Whiosek 5.8 Istnieje model arytmetyki Peano istotnie rozny od modelu standar-
dowego, ktorego teoria rézini sie od teorii modelu standardowego. O

W rzeczywistosci istnieje continuum istotnie réznych, przeliczalnych modeli
arytmetyki Peano.

6 Dodatek: system dedukcji naturalnej

System dedukcji naturalnej, czyli system dowodéw zalozeniowych, powstal za-
pewne w wyniku analizy zwyktego pojecia dowodu stosowanego na codzien przez
matematykow i formalizuje praktyczne sposoby uzasadniania twierdzen. Jest dosé
ztozony i skomplikowany, trudno za jego pomocg bada¢ wtasnosci logiki
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6.1 Reguly dowodzenia systemu dowodéw zalozeniowych

Reguly systemu dowodéw zatozeniowych opisuja spojniki i kwantyfikatory w spo-
sob — jak sadze — najbardziej zgodny z intuicjami. Spéjniki i kwantyfikatory sa
charakteryzowane zwykle przez reguty dotaczania, ktore mowig jak uzasadnia sie
i dotacza do dowodu stwierdzenia, w ktorych wystepuja, oraz reguty opuszczania,
ktore podaja sposdb wykorzytywania odpowiednich formut w dowodach. Reguty
dotyczace kwantyfikatoréw musza by¢ stosowane z pewnymi ograniczeniami, opi-
sanymi w rozdziale 6.3. W tym systemie przyjmuje si¢ nastepujace reguty:
Reguta odrywania:
=P, ¢
T

Reguty dotyczace koniunkcji:

0,0 AP wAw'

eAY @

Reguty dotyczace alternatywy:

® (0 oV, =
eV oV (0

Regutly dotyczace réwnowaznosci:

p=vv=0 U psY
ey T o=¢ Y=

Reguty dotyczace kwantyfikatora ogdlnego (pierwsza to reguta dotaczania tego
kwantyfikatora, druga — opuszczania):

77 Vrp
Vap' e —t]

Reguly dotyczace kwantyfikatora egzystencjalnego:

plr —t] Jzp

)

dJre T gz ]

System dowoddéw zalozeniowych pozwala definiowaé¢ dodatkowe reguty dowo-
dzenia. W jego ewentualnych rozszerzeniach moga si¢ pojawi¢ tzw. reguty wtorne

(jezeli ¢ = 1 jest twierdzeniem, to Ti jest reguta wtérna), regulty dotyczace defi-

,t=s . ..
nicji oraz réwnodci, np. reguta ©rt=s pozwalajaca pewne wystgpienie termu ¢

plt//s]

w formule ¢ zastapi¢ réwnym mu termem s. Dobrze jest go rozszerzy¢ o regute
tworzenia dowodow polegajacych na rozwazeniu wielu przypadkow, ktéra mogtaby
by¢ stosowany wtedy, gdy wsrod zatozen jest alternatywa.

6.2 Dowody zalozeniowe
Przypusémy, ze chcemy dowie$¢ formute @, ktéra przedstawiliSmy (jakkolwiek, w
tym dla n = 0) w postaci

1= (pn = 1)

Wtedy mozemy przyjac, ze ¢1,..., ¢, sa zalozeniami dowodu, 1 jest teza, a —
jest zatozeniem dowodu nie wprost.



20

W systemie zalozeniowym wszystkie regulty dotyczace kwantyfikatorow moga
by¢ stosowane po spetnieniu pewnych — sformutowanych dalej — warunkéw.

Dowodem wprost nazywamy ciag v, ... 1, formul, w ktorym kazda formuta
jest albo aksjomatem (logicznym i ewentualnie pozalogicznym), albo zalozeniem
(ale nie zalozeniem dowodu nie wprost), albo wezesniej udowodnionym twierdze-
niem, albo tez wnioskiem z formut poprzednich.

Dowodem nie wprost nazywamy ciag ¥y, . . . ¥, formut, w ktérym kazda formu-
ta jest albo aksjomatem, albo zatozeniem, w tym zatozeniem dowodu nie wprost,
albo wezesniej udowodnionym twierdzeniem, albo tez wnioskiem z formut poprzed-
nich.

Dowodem wprost formuty ® nazywamy dowdd wprost, w ktérym znajduje sie
formuta v, czyli teza. Dowodem nie wprost formuty ® nazywamy dowdd nie wprost,
w ktorym znajduje sie pewna formula « i jej zaprzeczenie —a, a wiec w ktorym
uzyskaliSmy sprzecznosc.

Formuta ® jest twierdzeniem, jezeli ma dowdd wprost lub ma dowdd nie wprost.

6.3 Warunki stosowania niektérych regut

W systemie zalozeniowym, regute dotaczania kwantyfikatora ogolnego, ktora jest

postaci W stosujemy tylko wtedy, gdy zmienna x nie jest wolna w zatozeniach
Ty

dowodu.

Jxp

Regute opuszczania kwantyfikatora szczegdtowego (egzystencjalnego) ﬁ
ol — ¢

w systemie zalozeniowym stosujemy w nastepujacy sposob:

1) term cjest postaci f(z1,...,z,), gdzie f jest symbolem funkcyjnym, a xy, ..., x,
sa wszystkimi zmiennymi réznymi od z, ktére wystepuja jako wolne w for-
mule ¢,

2) symbol funkcyjny f nie wystepuje ani w aksjomatach, ani w dowodzonej
formule, ani w napisanym juz fragmencie dowodu.

Oczywiscie, wszystkie reguly, w ktérych wystepuje operacja podstawiania o[z —
t], moga by¢ stosowane tylko wtedy, gdy term ¢ jest podstawialny w formule ¢ za
zmienng, x.

7 Dodatek: System z pracy Godla
W pracy Godla z dowodem twierdzenia o niezpetnosci arytmetyki wykorzystywany

jest nizej przedstawiony system logiczny:

7.1 Aksjomaty logiczne w systemie Godla

Aksjomatami w tym systemie sg dowolne formuty nastepujacych postaci:
p=>pVe, pVo=p, oV =9PVe, (p=9)=(EVe=E{VY),

(Vo) = plo — 1], (Vz(pVY)) = (¢ V (Vry))

z tym, ze ostatni aksjomat jest przyjmowany pod warunkiem, ze zmienna x nie
jest wolna w .
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7.2 Reguly systemu z pracy Godla

Godel korzysta z dwoch spojnikow — i V oraz kwantyfikatora V. Dopuszcza sto-
sowanie skrotow, np. formute ze spojnikiem = uwaza za skrocona wersje znanej
formuly z definicji implikacji. Przyjmuje dwie reguty dowodzenia: odrywania i do-
laczania kwantyfikatora ogblnego (patrz reguly systemu zalozeniowego).

8 Dodatek: twierdzenie Godla o pelnosci

Twierdzenie o pelosci sktada sie wlasciwe z dwoch twierdzen: o poprawnosci

i wlasciwego twierdzenia o petnosci. Zostato po raz pierwszy dowiedzione przez
Kurta Godla w 1929 roku.

Twierdzenie 8.1 (o poprawnosci) Jezeli A jest modelem T', a ¢ jest twierdze-
niem teorii T, to formuta @ jest spetniona w strukturze A.

Twierdzenie 8.2 (o pelnoéci) Jezeli formula  jest spetniona w kazdym modelu
teorit T', to ¢ daje sie dowiesé w teorii T'.

8.1 Potrzebne fakty

Zostanie tutaj przedstawiony dowod twierdzenia o petnosci, ktéry by¢ moze przy-
pomina dowdd oryginalny, ale zostal opracowany pozniej i zawiera elementy przy-
pisywane Leonowi Henkinowi. Dowdd bedzie nieefektywny, nie bedzie podawal
konstrukeji dowodu twierdzenia, sprowadzi do sprzecznosci fakt nieistnienia do-
wodu. Zostanie przeprowadzony przy milczacym zatozeniu, ze teoria jest zapisana
w przeliczalnym jezyku (czyli ma przeliczalnie wiele symboli funkcyjnych i re-
lacyjnych). Zatozenie to nie jest istotne, ale po jego opuszczeniu konieczne jest
odwotanie si¢ do aksjomatu wyboru. Dowdd zostanie tez przedstawiony w przy-
padku teorii bez réwnosci. Dla teorii z rownoscig potrzebna jest jeszcze dodatkowa
konstrukcja ilorazowa, ktora zostanie pominieta.

Potrzebne beda dwa pomocnicze twierdzenia.

Twierdzenie 8.3 (o dedukcji, Jacques Herbrand) Niech ¢ bedzie zdaniem.
Formula v jest twierdzeniem teorii T z dodatkowym aksjomatem ¢ (teorii TU{p})
wtedy 1 tylko wtedy, gdy implikacja ¢ = 1 jest twierdzeniem teorii T'. O

Twierdzenie 8.4 (o stalej) Przypusémy, ze stala ¢ nie wystepuje w formule ¢,
ani w aksjomatach teorii T'. Jezeli formula plx « c] jest twierdzeniem teorii T, to
w teorit T mozna dowie$¢ takze formuly Yy oraz ¢. Co wiecej, mozna to zrobic
nie uzywajgc w tych dowodach statej ¢ (formuly te mozna dowiesé w jezyku bez
statej ¢). O

8.2 Dowdd twierdzenia o pelnosci
Przystepujemy teraz do dowodu twierdzenia o petnosci.

Twierdzenie 8.5 (o pelnosci, Kurt Godel, 1929) Jezeli formula ¢ jest spel-
niona w kazdym modelu teorii T', to ¢ daje sie dowiesé w teorii T'.
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Dowdd. Na razie twierdzenie o petnosci sprowadzimy do innej, nastepujacej po-
staci: jezeli teoria T" jest niesprzeczna, to istnieje struktura, w ktorej sg spetnione
wszystkie aksjomaty teorii 7”.

O ¢ mozemy dodatkowo zaltozy¢, ze jest zdaniem. Zatézmy tez dla dowodu nie
wprost, ze ¢ nie jest twierdzeniem teorii 7T'.

Nietrudno zauwazy¢, ze wtedy teoria TU{—¢} jest niesprzeczna. Gdyby bowiem
istniata formuta o taka, ze

TU{-p}FoA-o,
to na mocy twierdzenia o dedukcji otrzymaliby$my, ze
TkF-p=0A-0o.
Dalej, z prawa kontrapozycji wynikato by, ze
TH=(ocN-0)= o,

i ostatecznie, whrew zalozonej wtasnosci ¢ otrzymalibysmy, ze T .

Istnieje wiec struktura A, w ktorej, oprocz wszystkich aksjomatéow teorii T,
jest spelione zdanie —p. Zalozyliémy jednak, ze strukturze A jest spelnione takze
zdanie . OtrzymaliSmy wiec sprzecznosé, gdyz w zadnej strukturze nie moga by¢
jednoczesnie spetnione zdanie i jego negacja. O

Twierdzenie 8.6 Jezeli teoria T jest niesprzeczna, to istnieje struktura, w ktorej
sq spelnione wszystkie aksjomaty teorii T'.

Dowdd. Teoria T' moéwi o czyms, czego nie znamy, ale wiemy, ze ze stwierdzen
teorii T nie wynika sprzecznos¢. Aby dowies¢ nasze twierdzenie, powinnidmy w
pierwszym rzedzie wyjasni¢, o czym moéwi teoria 7. Wyjasnimy to zgodnie z na-
stepujaca ideg: termy, ktérych uzywamy do okreslania przedmiotéw mozemy uznac
za rzeczy, o ktérych mowimy. W informatyce ta idea lezy u podstaw tzw. semantyk
algebraicznych. Na przyktad, jezeli méwimy o liczbach naturalnych, to termy O,
1,1+ 1, 14+ 1+ 1 itd. oznaczaja liczby naturalne i mozemy je uznac za liczby
naturalne. Pamietajmy jednak, ze mozemy mie¢ bardzo mato statych i operacji.
Wtedy brakuje nam termow oznaczajacych przedmioty, ktérych istnienie mozemy
dowiesc¢.

Krok 1. Do jezyka dodajemy nieskonczony ciag statych aq, as, as, ... W bogat-
szym jezyku mozemy teoretycznie tworzy¢ wiecej dowodéw. Z twierdzenia o stalej
wynika, ze jezeli teoria T jest niesprzeczna, to nie uda nam sie utworzy¢ dowo-
du sprzecznosci korzystajac z nowych statych. Gdyby istnial dowdd sprzecznosci
wykorzystujacy te state, to moznaby je stopniowo eliminowa¢ z dowodu i w kon-
cu utworzy¢ dowdd sprzecznosci nie zawierajacy nowych stalych. To jest jednak
sprzeczne z zalozeniem o niesprzecznosci teorii 7'.

Krok 2. Nadajemy znaczenie nowym stalym. W tym celu tworzymy ciag

p1(x1), p2(2), p3(x3), - ..

zawierajagcy wszystkie formuty z jedng zmienng wolng w jezyku z nowymi sta-
tymi. Symbol x; oznacza jedyna zmienna wolna w ¢;(z;). Nastepnie indukcyjnie
tworzymy formuty

P, = (T palzn)) = @nlcn)
dobierajac (sposréd dodanych statych) stala ¢, tak, aby nie wystepowala we weze-
$niej utworzonych formutach tej postaci i w samej formule ¢,,. Formuty te bedziemy
uwazaé za nowe aksjomaty. Przyjmijmy, ze T,, = T U {®4,..., D, } oznacza teorie
T uzupetniong o n pierwszych aksjomatow tej postaci.
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Fakt 8.7 Teorie T}, sa niesprzeczne.

Dowdéd. Przez indukcje ze wzgledu na n. Oczywiscie, teoria Ty (czyli sama T
bez nowych aksjomatow) jest niesprzeczna. Zaldzmy teraz, ze teoria T,_; jest
niesprzeczna, a 1,, — sprzeczna. Poniewaz dodane aksjomaty sa zdaniami, mozemy
skorzysta¢ z twierdzenia o dedukcji. Otrzymamy, ze

Toa b ((Frn @n(zn)) = @u(cn)) = o A —o.

Korzystajac z prawa kontrapozycji, prawa wytaczonego srodka i prawa negowania
implikacji (i kilku innych) otrzymujemy, ze

Tl (Frn @n(zn)) A —pnlcn). (1)

Oba czlony powyzszej koniunkcji daja si¢ wiec dowies¢. Z dowodliwosci drugiego
cztonu i z twierdzenia o statej wynika, ze takze

Tt Y, —p(z,).

Wobec odpowiedniego prawa de Morgana, stad i z dowodliwosci pierwszego cztonu
formuly z (1) wynika whrew zalozeniu, ze teoria T,,_; jest sprzeczna. O

7 udowodnionego faktu wynika, ze teoria

To=J T

neN

jest niesprzeczna. Poniewaz ewentualny dowod sprzecznodci zawieratby skonczenie
wiele wyrazéw i powotywalby sie na skonczenie wiele aksjomatow, bytby takze
dowodem sprzecznosci pewnej teorii T}, dla dostatecznie duzego n.

Krok 3. Na koniec teori¢ T, powiekszymy do teorii zupetlnej. Wezmy w tym
celu ciag

77Z}17¢27 ¢3, s
wszystkich mozliwych zdan i przyjmijmy, ze 1§ = T, oraz
. T jezeli T & 41,
LT TEU{~¢ni1} W przeciwnym przypadku.

Przez indukcje dowodzimy, ze wszystkie teorie 7' sa niesprzeczne. Niesprzecznag
jest wiec rOwniez teoria
T = U T:.
neN

Z konstrukcji wynika, ze teoria T™ jest zupetlna. Dowolne zdanie v jest jednym z
wyrazow rozwazanego ciggu zdan, na przyklad ¢4, = 1. Definiujac Ty, | podej-
mujemy decyzje, czy w teorii T* da sie dowie$é¢ zdanie 1, czy jego negacje. Jezeli
T* = 1n41, to oczywiscie T™ = 1. W przeciwnym razie —i,11 uznajemy za nowy
aksjomat teorii 7™ i wtedy mamy 7™ - —).

Udato sie nam skonstruowac niesprzeczna, zupetng teorie 7™ zawierajaca teorie
T i wszystkie aksjomaty henkinowskie W,,. Dla takich teorii tatwo zbudowaé ich
model.

Krok 4. Konstrukcja modelu teorii T*. Bedziemy definiowaé pewng strukture
A. Uniwersum tej struktury bedzie zbiér 7. termoéw statych rozwazanego jezyka
ze statymi a;. W takiej strukturze w naturalny sposéb definiujemy interpretacje
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symboli funkcyjnych: k-argumentowy symbol f jest interpretowany jako funkcja
F : TF — 7. zdefiniowana wzorem

F(tl,...,tk) :f(tla---7tk)a

a wiec F' oznacza operacje tworzenia termu zaczynajacego si¢ symbolem f. W
takich strukturach dla dowolnego termu ¢ i dowolnego wartosciowania h zachodzi
wzér tlh] = tlr «— h(x)]ly < h(y)]... (wartodcia termu t przy wartoSciowaniu h
jest wynik podstawiania za zmienne terméw wskazanych przez wartosciowanie h).
Zauwazmy tez, ze w takiej sytuacji t[h] jest zaréwno wartoscia termu i szczegdlnym
termem stalym. Moze wiec by¢ cze$cia innego termu lub formuty, i moze by¢
ponownie warto$ciowany. Jako term staly, t[h] spelnia réwnos¢ t[h][h'] = t[h].

Interpretacje R w strukturze A symbolu relacyjnego r definiujemy w nastepu-
jacy sposob:

(t1,...,tp) E R <= T Fr(ty,... t)

dla dowolnych ti,...,t, € 7.. W ten sposob struktura A zostata zdefiniowana.

Bez trudu sprawdzamy, ze dla dowolnych terméw ¢4, . . ., ¢ (niekoniecznie statych)
i wartosciowania h zachodzi nastepujacg wlasnosc:

AEr(ty, ... ty)h] < T"Fr(tih], ... tlh]).
Dla statych termoéw tq, ..., t; zachodzi takze
A):’l"@l,...,tk) <~ T*l_r<t1,...,tk).

Aby zakonczy¢ dowdd wystarczy pokazaé, ze dla dowolnego zdania ¢ zachodzi
rownowaznoscé

Ay <= T"F 1. (2)
W dowodzie przyda si¢ nastepujacy lemat:

Lemat 8.8 Przypusémy, ze T jest teorig niesprzeczng i zupeing, a ¢ @ Y sq¢ zda-
niami. Wtedy nastepujgce pary warunkow sqg rownowazne:

1) TV orazTF @ lub T F 4,
2) T+ = oraz nieprawda, ze T + ¢.0

Przytoczona przed lematem réwnowaznosé (2) dowodzimy przez indukcje ze
wzgledu na budowe zdania 1. UstaliliSmy juz, ze ta réwnowaznos¢ zachodzi dla
zdan atomowych. Z podanego lematu wynika, ze zachodzi dla zdan bedacych ne-
gacjami i alternatywami zdan prostszych pod warunkiem, ze zachodzi dla cztonéw
tych zdan. Pozostato zajac¢ sie zdaniami rozpoczynajacymi sie kwantyfikatorem.

Przyjmijmy wiec, ze ¥ = Jxyp i zalézmy, ze A = . Z definicji speliania
wynika, ze wtedy

A= olh]
przy pewnego warto$ciowania h. Z lematu o podstawianiu (zadanie z listy 1) otrzy-
mujemy, ze
A glo — h(z))
Pamietajmy, ze p[z < h(x)] jest zdaniem i spelnianie tej formuty nie zalezy od
wartosciowania. Dla formulty plx < h(z)] mozemy skorzystaé z zalozenia induk-
cyjnego. Wynika z niego, ze

T* - p[x < h(x)].
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Stad oczywiscie wynika, ze
T F 3z, czyli T F .

Aby dowiesé¢ implikacje odwrotna zaktadamy, ze T* F 1, czyli ze T* F Jxep.
Formuta ¢ ma tylko jedng zmienna wolna i jest postaci ¢, (z,) dla pewnego n.
Wobec tego ¢ = Fz,p,(,). Wiemy tez, ze @, jest jednym z aksjomatéw teorii
T*. Wobec tego, T* - ¢, [z, < ¢,]. Stad i z zalozenia indukcyjnego wynika, ze

A E onlrn — ¢

Z lematu o podstawianiu (zadanie z listy 1) otrzymujemy, ze

A ¢alh], albo A= ¢[h]

dla podstawienia h takiego, ze h(x) = h(z,) = ¢,. Teraz wystarczy skorzystaé z
definicji spetniania:

AEJzp, czyli AE .

W ten sposob pokazalidmy, ze T™ jest teoria modelu A. Wiec w szczegdlnosci
struktura A jest modelem mniejszej teorii 7. O



