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1 Wstęp

1.1 Kłopoty z analizą matematyczną

Analiza matematyczna jest jednym z podstawowych działów matematyki. Jest
też działem, w którym posługujemy się zdaniami bardzo skomplikownymi pod
względem budowy logicznej. W definicjach podstawowych pojęć z tej dziedziny
często występują trzy zmiany kwantyfikatorów. Tak złożone zdania są już trudne
do wypowiedzenia w języku naturalnym i powodują komplikacje natury logicznej.

Zwykle wykłady z analizy matematycznej zaczynają się od próby zdefiniowa-
nia liczb rzeczywistych. Najczęściej jednak nie zawierają ani definicji, ani choćby
omówienia własności ważnych pojęć takich, jak funkcje i nieskończone ciągi. W
XIX wieku pojawiły się wątpliwości, czy dowody twierdzeń oparte o intuicyjne
własności ciągów nieskończonych są dostatecznie precyzyjne. Wątpliwości budziła
w szczególności zasada wyborów zależnych, przypominająca definiowanie przez in-
dukcję, pozwalająca określać ciąg nieskończony przez określenie jego n-tego wyrazu
jako jednej z wielu liczb spełniających warunek zależny od wyrazów o indeksach
mniejszych od n.

Wątpliwości te były uzasadnione. Zasada wyborów zależnych jest konsekwencją
budzącego kontrowersje aksjomatu wyboru, ale nie wynika z pozostałych aksjo-
matów teorii mnogości. Jest potrzebna w dowodzie, że funkcje ciągłe w pewnym
punkcie według Heinego są też ciągłe w tym punkcje w sensie Cauchy’ego. Po
odrzuceniu zasady wyborów zależnych można konstruować funkcję świadczące o
fałszywości przytoczonego twierdzenia.

Porządkowanie analizy matematycznej przyczyniło się do rozwoju logiki mate-
matycznej i powstania teorii mnogości.
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1.2 Początki teorii mnogości

Teoria mnogości stworzył George Cantor w ostatniej ćwierci XIX wieku. Teoria ta
pozwala sformalizować niemal całą matematykę, w tym oczywiście pojęcia funkcji i
ciągu nieskończonego. Umożliwia przedstawienie analizy matematycznej w sposób
nie budzący formalnych wątpliwości.

Teorię mnogości Cantor uzupełnił o teorię mocy. Używając tej ostatniej w 1874
roku dowiódł, że jest przeliczalnie wiele liczb algebraicznych i nieprzeliczalnie wiele
przestępnych. Tak w nowy sposób rozwiązał problem istnienia liczb przestępnych
i włączył się istotnie w badania prowadzone w drugiej połowie XIX wieku. Dzięki
temu zwrócił uwagę współczesnych na teorię mnogości.

Teoria mnogości Cantora szybko okazała się sprzeczna (patrz przykład ze stro-
ny 11). Znaleziono w niej antynomie, czyli rozumowania dowodzące sprzeczności.
Jedną z najprostszych została znaleziona przez Russela i wykorzystuje rozumowa-
nie przekątniowe zastosowane po raz pierwszy w dowodzie twierdzenia Cantora o
zbiorze potęgowym i mnogościowym dowodzie istnienia liczb przestępnych.

1.3 Metoda przekątniowa i zbiór potęgowy

Starożytni Grecy zauważyli, że o niektórych zdaniach nie da się rozstrzygnąć, czy
są prawdziwe, czy też fałszywe. Tak jest na przykład z paradoksem kłamcy: nie
wiadomo, czy ktokolwiek stwierdzając Skłamałem w tym momencie skłamał, czy
też powiedział prawdę. Jeżeli skłamał, to stwierdzenie Skłamałem jest fałszywe, a
więc jednak powiedział prawdę. Jeżeli powiedział prawdę, to stwierdzenie Skłama-
łem jest prawdziwe, a więc jednak skłamał. Podobnym przykładem jest komen-
towana w Biblii opinia Kreteńczyka Epimenidesa, który stwierdził, że Wszyscy
Kreteńczycy są kłamcami. Fakt, że ta krytyczna opinia była pamiętana kilkaset
lat po śmierci jej autora świadczy, że budziła zainteresowanie i dyskusje. Cechą
charakterystyczną tych zdań jest to, że mówią coś o osobie, która je wypowiada.

Dobrym przykładem takich kłopotów są też takie dwa zdania:

1) Następne zdanie jest prawdziwe.

2) Poprzednie zdanie jest fałszywe.

Każde z nich pośrednio mówi coś o sobie i założenie o którymkolwiek, że jest
prawdziwe bądź fałszywe, prowadzi do przeciwnego wniosku. Jeżeli o tych zdaniach
można coś ustalić, to tylko to, że jednocześnie powinny być prawdziwe i fałszywe.

Cantor zaczął rozumieć paradoks kłamcy i zauważył, że stworzenie w matema-
tyce sytuacji, gdy coś mówi coś o sobie, będzie prowadzić do sprzeczności. Wyko-
rzystał to w dowodzie twierdzenia o zbiorze potęgowym.

Wyobraźmy sobie kwadratową tablicę wypełnioną zerami i jedynkami, na przy-
kład taką oto:

a b c d e
0 1 0 0 1
1 1 0 1 0
1 0 1 1 0
1 1 0 0 1
0 0 0 0 1

Przyjmijmy, że kolejne kolumny tej tablicy odpowiadają kolejnym elementom ze
zbioru U = {a, b, c, d, e}. Elementy wiersza tej tablicy możemy interpretować ja-
ko informacje o należeniu kolejnych elementów zbioru U do pewnego zbioru A.
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Pierwszy wiersz podanej tablicy opisuje więc zbiór A = {b, e}. Przekątna tablicy
(wyróżniona pogrubionymi cyframi) zawiera ciąg 0, 1, 1, 0, 1. W metodzie przekąt-
niowej cyfry w tym ciągu zamienia się na przeciwne i tworzy się ciąg 1, 0, 0, 1, 0
opisujący zbiór X = {a, d}.

Zbiór X ma szczególną własność: „mówi” coś (zawiera informacje) o każdym
zbiorze opisanym w wierszu danej tablicy. Ponieważ pierwszy element U , czyli a,
należy do X, więc a nie jest elementem zbioru A z pierwszego wiersza. Podobnie,
do zbioru z drugiego wiersza należy b (drugi element U), gdyż element ten nie
należy do X. Co więcej, zbiór X „mówi” o zbiorze z tablicy coś przeciwnego do
swoich własności.

Stąd oczywiście wynika, że X jest nowym zbiorem, żaden wiersz naszej tablicy
nie zawiera o nim informacji. Zbiór X bowiem i zbiór z n-tego wiersza różnią n-
tym elementem. Taki wniosek zwykle wystarcza do przeprowadzenia rozumowania
z użyciem metody przekątniowej.

Można jednak pomyśleć inaczej. Jeżeli założymy, że zbiór U ma najwyżej ty-
le podzbiorów, co elementów, to informacje o wszystkich podzbiorach U można
umieścić w takiej tablicy. W ten sposób powstanie taka sytuacja, jak w paradok-
sie kłamcy: zbiór X dla takiej tablicy będzie „mówić” coś o sobie i to w tak, że
nie da się ustalić prawdziwości tej informacji. Założenie o jej prawdziwości będzie
implikować jej fałszywość i odwrotnie.

Wynikający stąd wniosek, że pięcioelementowy zbiór U ma więcej niż 5 pod-
zbiorów, nie jest specjalnie ciekawy. Jeżeli jednak wyobrazimy sobie tablicę, której
wiersze i kolumny są indeksowane liczbami naturalnymi i przeprowadzimy ana-
logiczne rozumowanie, to przekonamy się, że zbiorów liczb naturalnych nie da
się ponumerować liczbami naturalnymi. Ten rezultat jest znacznie ciekawszy od
poprzedniego, a spostrzeżenie, że można porównywać „wielkości” zbiorów nieskoń-
czonych było pod koniec XIX wieku odkryciem naukowym.

Łatwo można wyobrazić sobie tablicę indeksowaną liczbami naturalnymi. Ko-
lejne kolumny i wiersze odpowiadają kolejnym liczbom naturalnym. Trudniej, gdy
chcemy kolumny i wiersze tablicy indeksować dowolnym zbiorem U . Taką tablicę
trudniej przedstawić na rysunku. Można ją utożsamiać z dwuargumentową funkcją
t : U × U → {0, 1}. Taka zmiana sposobu myślenia pozwala dowieść twierdzenie
Cantora o zbiorze potęgowym w pełnej ogólności, dla dowolnego zbioru U .

Można zrobić jeszcze jeden krok i zamiast tablicy indeksowanej elementami
pewnego zbioru U można rozważać tablice indeksowane wszystkimi możliwymi ele-
mentami - zbiorami. Jedna z takich tablic na przecięciu kolumny odpowiadającej
elementowi x i wiersza wyznaczonego przez y może mieć informację o prawdziwości
stwierdzenia x ∈ y. Przekątna tej tablicy zawiera indeksowany wszystkimi możli-
wymi elementami x „ciąg” informacji, czy x ∈ x, metoda przekątniowa definiuje
„ciąg” informacji przeciwnych x 6∈ x, opisujący zbiór X = {x : x 6∈ x}. Zbiór X o
każdym zbiorze - elemencie x mówi, czy x ∈ x. Zawiera też taką informację o so-
bie. Podobnie, jak w paradoksie kłamcy, nie można więc rozstrzygnąć, czy X ∈ X.
Obie możliwe hipotezy prowadzą do przeciwnego wniosku, a więc pozwalają do-
wieść sprzeczność. Rozumowanie to zauważone przez Bertranda Russela i – jak
się wydawało – możliwe do przeprowadzenia w teorii mnogości Cantora jest znane
pod nazwą antynomii bądź paradoksu Russela.

1.4 Teoria mnogości w XX wieku

W 1904 roku Ernst Zermelo poprawił teorię mnogości Cantora i zaproponował jej
aksjomatyzację znaną pod nazwą teorii Zermelo. Teoria ta dzisiaj stanowi pod-
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stawę elementarnych wykładów, których celem jest nauka języka mnogościowego
(mimo to studenci często nie poznają jej akjomatów). Teoria ta została uznana
za zbyt słabą. Kilka osób, w tym Abraham Fraenkel (studiował na początku XX
wieku we Wrocławiu) zaproponowało uzupełnienie jej o schemat zastępowania. W
ten sposób powstała najczęściej stosowana teoria mnogości Zermelo - Fraenkla z
aksjomatem wyboru.

W teorii Zermelo - Fraenkla nie można powtórzyć dowodów znanych antynomii
i nikomu nie udało się wymyślić nowych.

1.5 Logika

Logiką interesowano się1 od starożytności, często też łączono ją z retoryką. Mate-
matycy w poważniejszym stopniu zajęli się logiką pod koniec XIX wieku. Pierw-
sze prace dotyczące kwantyfikatorów zostały napisane w Niemczech przez Gottlo-
ba Fregego (1879) i w Stanach Zjednoczonych przez Charlesa Sandersa Peirce’a
(1885), być może niezależnie od siebie. Były związane (zwłaszcza prace Fregego) z
logicyzmem, filozoficzną koncepcją, zgodnie z którą cała matematyka daje się spro-
wadzić do logiki, jest częścią logiki i nie wymaga żadnych specjalnych aksjomatów
poza logicznymi. (zbiory to przecież własności, o własnościach jakoś mówimy i to
powinno wystarczyć). Ta koncepcja dała niewiele ciekawych rezultatów, owocowała
jednak w wiele prób stworzenia podstaw matematyki, często sprzecznych. Para-
doksalnie, prowadziła do rozwoju teorii mnogości. Ważnym dziełem z tego nurtu
są Principia Mathematica, napisane przez Bertranda Russella i Alfreda White-
heada, kontynuatorów prac Fregego. Kurt Gödel odwoływał się do tego dzieła w
swoich pracach. Zostało w nim wprowadzone pojęcie typu, które bywa uważane za
pierwowzór informatycznego pojęcia typu.

Logika była potrzebna również formalistom do ratowania teorii mnogości. Pro-
ces kształtowania współczesnych systemów logicznych trwał około 50 lat. Czasami
przyjmuje się, że zakończył w 1928 roku się wraz z ukazaniem się książkiGrundzüge
der theoretischen Logik Davida Hilberta i Wilhelma Ackermanna.

1.6 Program Hilberta

Kłopoty z teorią mnogości doprowadziły do powstania opinii2, że matematykę
należy do ograniczyć do zagadnień nie budzących wątpliwości, w których pojęcie
nieskończoności nie występuje, bądź odgrywa mniej istotną rolę. Teorię mnogości
wziął w obronę Dawid Hilbert (główna praca pochodzi z 1926 roku) przy okazji
przedstawiając swoje poglądy i wytyczając program badań. Stanowisko Hilberta
i jego kontynuatorów (m. in. John von Neumann, Abraham Robinson i Haskell
Curry) jest określane jako formalizm.

Zdaniem Hilberta matematyka zajmuje się konkretnymi symbolami, na przy-
kład liczebnikami, które mogą być rozumiane jako ciągi znaków 1, 11, 111, . . . Tak
rozumiane liczby naturalne stanowią punkt wyjścia całej matematyki, mogą być
badane bezpośrednio, a nasza wiedza o nich powinna być niesprzeczna. Pojęcie nie-
skończoności nie może być badane bezpośrednio, nie występuje w rzeczywistości.
Aby móc badać nieskończoność, należy dotyczącą jej część matematyki sformali-
zować, oprzeć na takiej matematyce, która jest pewna. Następnie należy tę część

1Trochę informacji historycznych o logice można znaleźć na przykład w Zarysie logiki mate-
matycznej Andrzeja Grzegorczyka.
2Więcej informacji o poglądach matematyków na przełomie XIX i XX wieku znajduje się w

książeczce Romana Murawskiego pod tytułem Filozofia matematyki. Zarys dziejów.
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zbadać pewnymi środkami, zwłaszcza wykazać jej niesprzeczność. Hilbert sądził
też, że da się wykazać jej zupełność i okaże się ona zachowawcza, czyli da się
sprowadzić do matematyki pewnej, i nie będzie istotnie poza nią wykraczać.

2 Formuły i podstawianie

Formuły są formułami pewnego języka. Język może być rozumiany jako zbiór sym-
boli, których możemy używać. Wśród tych symboli znajdują kwantyfikatory (∀
oraz ∃, oba lub jeden z nich), spójniki logiczne (¬, ∨, ∧, ⇒ i ⇔, wszystkie lub
niektóre z nich), symbole relacyjne i funkcyjne o określonej arności, a także stałe,
które mogą być rozumiane jako symbole funkcyjne o arności 0. Szczególnym dwu-
argumentowym symbolem relacyjnym jest =, który bywa uważany symbol logiczny
(wtedy mówimy o logice z równością). Wśród symboli są też zmienne, określane
jako zmienne indywiduowe (dla odróżnienia np. od zmiennych zdaniowych). Ozna-
czają one elementy, o których mówią formuły. Poza wymienionymi, w formułach
występują jeszcze symbole pomocniczne, na przykład nawiasy doprecyzowujące
budowę formuły.

W faktycznie wykorzystywanych językach nie pojawiają się symboli relacyj-
nych o arności 0. Takie symbole można uważać za zmienne zdaniowe z rachunku
zdań i można je rozważać w teoretycznych systemach logicznych obejmujących
jednoczeście rachunek zdań i kwantyfikatorów.

Przykładem może być język arytmetyki. Występują w nim oprócz symboli lo-
gicznych i pomocniczych stałe 0 i 1, dwuargumentowe symbole funkcyjne + i · i
dwuargumentowe symbole relacyjne = oraz <. Bywa w nim również umieszczany
jednoargumentowy symbol funkcyjny S interpretowany jako operacja następnika.

W klasycznej logice z symboli języka tworzymy napisy, które mogą być in-
terpretowane jako ciągi symboli (znaków) i używamy nawiasów by jednoznacznie
opisać budowę napisu. W logice zinformatyzowanej zamiast napisów rozważa się
drzewa etykietowane symbolami języka.

2.1 Termy

Termy to elementy zbioru termów. Zbiór termów jest najmniejszym zbiorem na-
pisów,

1) do którego należą zmienne i stałe (napisy jednoelementowe złożone ze zmien-
nej lub stałej),

2) który spełnia warunek: jeżeli t1, . . . , tn są termami, a f jest n-arnym symbo-
lem funkcyjnym, to f(t1, . . . , tn) też jest termem (należy do zbioru termów).

W zbiorze termów określamy operację podstawiania. Symbolem t[x← s] ozna-
czamy wynik podstawiania w termie t za zmienną x termu s. Przyjmujemy, że
podstawianie ma następujące własności:

c[x← s] = s dla stałej c
x[x← s] = s
y[x← s] = y dla zmiennej y 6= x

f(t1, . . . , tn)[x← s] = f(t1[x← s], . . . , tn[x← s]).
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2.2 Formuły

Formuły to elementy zbioru formuł. Zbiór formuł jest najmniejszym zbiorem na-
pisów,

1) do którego należą formuły atomowe, a więc napisy r(t1, . . . , tn), gdzie r jest
n-arnym symbolem relacyjnym, a t1, . . . , tn są termami,

2) i który spełnia warunki: jeżeli ϕ i ψ są formułami, to ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ⇒ ψ
oraz ϕ⇔ ψ też są formułami (należą do zbioru formuł),

3) jeżeli ϕ jest formułą, a x – zmienną, to ∀x ϕ oraz ∃x ϕ też są formułami.

Termy z symbolami takimi, jak + oraz formuły atomowe z symbolami takimi,
jak < lub =, będziemy zapisywać w tradycyjny sposób.

Także w zbiorze formuł określamy operację podstawiania. Symbolem ϕ[x← s]
oznaczamy wynik podstawiania w formule ϕ za zmienną x termu s. Przyjmujemy,
że podstawianie spełnia następujące równości:

r(t1, . . . , tn)[x← s] = r(t1[x← s], . . . , tn[x← s]) dla symbolu relacyjnego r,
(¬ϕ)[x← s] = ¬(ϕ[x← s])

(ϕ ∨ ψ)[x← s] = ϕ[x← s] ∨ ψ[x← s] i podobnie dla innych spójników,
(∃x ϕ)[x← s] = ∃x ϕ
(∃y ϕ)[x← s] = ∃y ϕ[x← s] gdy y 6= x

i podobnie dla kwantyfikatora ∀.

2.3 Reguły wnioskowania (dowodzenia)

Większość systemów logicznych posługuje się pewnym zbiorem reguł dowodzenia.
Reguły te oddają najbardziej elementarne i uznawane za oczywiste sposoby wnio-
skowania. W pewnym sensie definiują spójniki logiczne oraz kwantyfikatory.

Przykładem reguły dowodzenia jest reguła odrywania (RO):

ϕ⇒ ψ, ϕ

ψ
.

Reguły dowodzenia zapisujemy używając poziomej kreski. Nad kreską piszemy
kilka formuł zwanych przesłankami. Pod kreską znajduje się jedna formuła zwana
wnioskiem uzyskanym za pomocą tej reguły ze znajdujących się w niej przesłanek.
Reguły dowodzenia rozumiemy jako schematy wnioskowań. W przypadku reguły
odrywania oznacza to, że z dwóch formuł: z implikacji i jej poprzednika zawsze
możemy wywnioskować następnik implikacji (a więc za ϕ i ψ możemy podsta-
wić w regule odrywania jakiekolwiek formuły). W niektórych sytuacjach reguły
dowodzenia są stosowane z pewnymi ograniczeniami.

Dalej przedstawimy trzy systemy logiczne: system dowodów założeniowych oraz
systemy z książki Schoefielda i pracy Gödla. System dowodów założeniowych jest
najbardziej naturalną formalizacją rachunku logicznego, odpowiada powszechnie
stosowanym zasadom przedstawiania dowodów.

2.4 Reguły wnioskowania z pewnego systemu

Szczególnie prosty system logiczny jest wykorzystywany w monografii Mathema-
tical Logic napisanej przez Josepha Schoenfielda. W tym systemie posługujemy
się dwoma spójnikami ∨ oraz ¬ i kwantyfikatorem ∃. Formułę zapisaną z użyciem
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innych spójników uważamy za skrót i najpierw przekształcamy po to, by wyelimi-
nować z niej niewłaściwe znaki. System Schoenfielda zawiera następujące reguły
dowodzenia:

ψ

ϕ ∨ ψ
,

ϕ ∨ ϕ
ϕ

,
ϕ ∨ (ψ ∨ ξ)
(ϕ ∨ ψ) ∨ ξ

,
ϕ ∨ ψ, ¬ϕ ∨ ξ

ψ ∨ ξ
,

ϕ⇒ ψ

(∃xϕ)⇒ ψ
,

z tym, że ostatnią stosujemy tylko wtedy, gdy zmienna x nie występuje jako wolna
w ψ (patrz rozdział 3.5.1).

3 Pojęcie dowodu i twierdzenia

3.1 Podstawowa idea

Dowodem najczęściej nazywamy ciąg formuł ϕ1, . . . , ϕn taki, że każda z formuł jest
albo aksjomatem, albo wnioskiem otrzymanym z formuł wcześniejszych za pomocą
jednej z reguł dowodzenia.

Twierdzeniami nazywamy formuły występujące w dowodach. Dowód jest do-
wodem formuły ϕ, jeżeli ϕ jest jedną z formuł w nim występujących. Pojęcia te
zależą jeszcze od przyjmowanych aksjomatów.

Napis ` ϕ będzie oznaczać, że formuła ϕ jest twierdzeniem (rozważanego) sys-
temu logicznego, dowiedzionym bez korzystania z aksjomatów pozalogicznych. Tak
rozumiane twierdzenia nazywa się także prawami logicznymi, prawami rachunku
kwantyfikatorów, bądź tezami tego rachunku. Dla omawianych tutaj systemów
dowodzi się, że pojęcie prawa logicznego nie zależy od systemu. Z tego powodu
symbol ` można uznać za dostatecznie precyzyjny.

Zbiór twierdzeń można też zdefiniować jako najmniejszy zbiór formuł zawiera-
jący aksjomaty i zamknięty ze względu na reguły wnioskowania (czyli spełniający
następujący warunek: jeżeli przesłanki należą do zbioru twierdzeń, to także wnioski
otrzymane za pomocą reguł wnioskowania należą do zbioru twierdzeń).

3.2 Aksjomaty logiczne

Rozróżniamy trzy rodzaje aksjomatów: logiczne, równości i pozalogiczne. Aksjo-
maty logiczne są częścią definicji systemu logicznego. Można je uważać za specjalne
reguły dowodzenia, nie wymagające przesłanek.

W systemie Schoenfielda przyjmuje się, że aksjomatami są niemal wszystkie
(patrz rozdz. 3.5.2) formuły następujących postaci:

¬ϕ ∨ ϕ, ϕ[x← t]⇒ ∃xϕ.

3.3 Aksjomaty równości

W większości teorii posługujemy się pojęciem równości, które jest oznaczane zna-
nym symbolem = i często jest uważane za jedno z pojęć logicznych. Wtedy do
przyjmowanych aksjomatów dołączamy aksjomaty równością. Aksjomaty te wyra-
żają własności relacji równości. Są nimi następujące formuły

x = x,

x1 = y1 ⇒ (. . .⇒ (xn = yn ⇒ (f(x1, . . . , xn) = f(y1, . . . , yn))) . . .),

x1 = y1 ⇒ (. . .⇒ (xn = yn ⇒ (p(x1, . . . , xn)⇒ p(y1, . . . , yn))) . . .).

utworzone dla dowolnego n-arnego symbolu funkcyjnego f i dowolnego n-arnego
symbolu relacyjnego p, w tym dla symbolu =.
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3.4 Teorie i aksjomaty pozalogiczne

Teorią nazywamy dowolny zbiór formuł, zapisany w ustalonym języku, przy użyciu
symboli funkcyjnych i relacyjnych oraz stałych tego języka. Formuły z tego zbioru
nazywamy aksjomatami (rozważanej teorii). Te aksjomaty są określane jako poza-
logiczne, w odróżnieniu od aksjomatów logicznych i równości. Tworząc dowód w
pewnej teorii w możemy nim umieszczać wszelkie jej aksjomaty, logiczne i pozalo-
giczne, a dla teorii z równością – także aksjomaty równości. Formuły, które mają
dowód wykorzystujący aksjomaty teorii T nazywamy twierdzeniami tej teorii. Aby
wyrazić fakt, że ϕ jest twierdzeniem teorii T , będziemy pisać T ` ϕ.

3.5 Szczegóły związane z pojęciem systemu logicznego

Przedstawione definicje zawierają luki, których wypełnienie wymaga wprowadze-
nia kilku drobnych pojęć.

3.5.1 Zasięg kwantyfikatora, zmienne wolne i związane

Nietrudno zauważyć, że w każdej formule po każdym kwantyfikatorze (znaku ∀ lub
∃) znajduje się zmienna. Jeżeli po pewnym kwatyfikatorze znajduje się zmienna x,
to o tym kwantyfikatorze mówimy, że wiąże zmienną x.

Zasięgiem kwantyfikatora (czyli znaku ∀ lub ∃ znajdującego się w określonym
miejscu) w formule ψ nazywamy pewien fragment (podsłowo) formuły ψ, zdefinio-
wany zgodnie z następującymi regułami:

1) jeżeli formuła ψ ma jedną z postaci: ¬ϕ1, ϕ1∨ϕ2, ϕ1∧ϕ2, ϕ1 ⇒ ϕ2, ϕ1 ⇔ ϕ2,
oraz kwantyfikator ten występuje w formule ϕ1 (odpowiednio: w ϕ2), to jego
zasięgiem w ψ jest jego zasięg w ϕ1 (lub odpowiednio w ϕ2),

2) jeżeli formuła ψ jest postaci ∃xϕ lub ∀xϕ i interesujący nas kwantyfikator
występuje w ϕ, to jego zasięgiem w ψ jest jego zasięg w ϕ,

3) jeżeli formuła ψ jest postaci ∃xϕ lub ∀xϕ i interesujący nas kwantyfikator
jest pierwszym znakiem ψ, to jego zasięgiem w ψ jest formuła ϕ.

Wystąpienie zmiennej x w formule ψ jest związane, jeżeli znajduje się w zasięgu
pewnego kwantyfikatora wiążącego zmienną x. Pozostałe wystąpienia zmiennej x
w formule ψ nazywamy wolnymi.

Formułę nazywamy zdaniem, jeżeli żadna zmienna nie występuje w niej jako
wolna.

3.5.2 Dokończenie definicji systemów logicznych

Mówimy, że term t jest podstawialny w formule ϕ za zmienną x, jeżeli żadne wolne
w ϕ wystąpienie zmiennej x nie znajduje się w zasięgu kwantyfikatora wiązącego
jakąkolwiek zmienną występującą w termie t.

We wszystkich systemach logicznych, aksjomaty i reguły dowodzenia zawiera-
jących wyrażenie postaci ϕ[x← t] mogą być stosowane w systemie pod warunkiem,
że term t jest podstawialny w formule ϕ za zmienną x.
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3.6 Przykłady teorii

3.6.1 Teoria grup

Dobrym przykładem pozwalającym łatwo znajdować różne przykłady jest teoria
grup, czyli teoria zapisana za pomocą symboli ·, −1 oraz 1, złożona z następujących
aksjomatów:

1) ∀x∀y∀z ((x · y) · z = x · (y · z)),

2) ∀x (x · 1 = x ∧ 1 · x = x),

3) ∀x (x · x−1 = 1 ∧ x−1 · x = 1).

3.6.2 Arytmetyka Q

Ważnymi przykładami będą arytmetyki, na przykład tzw. arytmetyka Q, odkryta
przez Raphaela Mitchela Robinsona 3, złożona z następujących aksjomatów:

1) ∀x (x+ 1 6= 0),

2) ∀x∀y (x+ 1 = y + 1⇒ x = y),

3) ∀x (x+ 0 = x),

4) ∀x∀y (x+ (y + 1) = (x+ y) + 1),

5) ∀x (x · 0 = 0),

6) ∀x∀y (x · (y + 1) = x · y + x),

7) ∀x (¬x < 0),

8) ∀x∀y (x < y + 1⇔ x < y ∨ x = y),

9) ∀x∀y (x < y ∨ x = y ∨ y < x).

3.6.3 Arytmetyka Peano

Po dopisaniu do teorii Q wszystkich aksjomatów indukcji

(ϕ[x← 0] ∧ ∀x (ϕ⇒ ϕ[x← x+ 1]))⇒ ∀x ϕ,

czyli po dodaniu schematu indukcji, otrzymujemy arytmetykę Peano. Jest to pod-
stawowy zbiór aksjomatów arytmetycznych.

3Przedstawiona lista aksjomatów pochodzi z książki Mathematical Logic Shoenfielda. Orygi-
nalna arytmetyka Q jest sformułowana w języku bez symbolu <, w związku z tym nie ma trzech
ostatnich aksjomatów i nic nie mówi o uporządkowaniu liczb naturalnych. Za to ma dodatkowy
aksjomat x 6= 0 ⇒ ∃y (x = y + 1). Można w niej wprowadzić porządek przyjmując definicję
x < y ⇔ ∃z (x+ (z + 1) = y). W takiej teorii trudno dowieść spójność relacji <.
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3.6.4 Teoria mnogości

Ważna jest też teoria mnogości Zermelo-Fraenkla (ZF), która pozwala sformali-
zować niemal wszystkie rozumowania matematyczne. Do jej wyrażenia wystarczy
język z równością i dwuargumentowym symbolem ∈ oznaczającym relację należe-
nia. Nie ma powodu, aby tutaj przytaczać wszystkie aksjomaty tej teorii. Wśród
nich są aksjomat ekstensjonalności

∀X ∀Y ((∀z (z ∈ X ⇔ z ∈ Y ))⇒ X = Y )

oraz schemat wyróżniania złożony z wszystkich formuł postaci

∀X ∃Y ∀z (z ∈ Y ⇔ z ∈ X ∧ ϕ).

3.6.5 Rachunek kwantyfikatorów

Rachunkiem kwantyfikatorów nazywamy teorię zapisywaną w języku zawierającym
przeliczalne zbiory symboli funkcyjnych (także stałych) i relacyjnych wszystkich
możliwych arności. Taki język umożliwia zapisywanie wszelkich dających się wy-
myślić formuł.

Bywają rozważane dwa rachunki kwantyfikatorów: z równością i bez równości.
Rachunek kwantyfikatorów bez równości nie ma żadnych pozalogicznych aksjo-

matów. Jego aksjomatami są wyłącznie aksjomaty logiczne wymienione w definicji
systemu logicznego.

Rachunkiem kwantyfikatorów z równością nazywamy teorię, której aksjomata-
mi oprócz aksjomatów logicznych są także aksjomaty równości.

3.7 Rodzaje teorii

Pojęcie teorii zostało wprowadzone w rozdziałe 3.4. Teraz zdefiniujemy kilka pojęć
opisujących różne rodzaje teorii.

Teoria T jest sprzeczna wtedy i tylko wtedy, gdy istnieje formuła ϕ taka, że
T ` ϕ oraz T ` ¬ϕ.

Teoria T jest niesprzeczna, jeżeli nie jest sprzeczna.
Teoria T jest zupełna, jeżeli dla każdego zdania ϕ albo T ` ϕ, albo T ` ¬ϕ.
Teoria T jest aksjomatyzowalna, jeżeli zbiór jej aksjomatów (czyli zbiór T ) jest

rekurencyjny. Dokładniej, rekurencyjnym powinien być zbiór numerów gödlowskich
aksjomatów T . Jest to definicja podstawowa. W razie potrzeby będziemy rozważać
trochę słabsze lub trochę mocniejsze pojęcie aksjomatyzowalności. Wtedy będzie-
my przyjmować, że zbiór aksjomatów teorii aksjomatyzowalnej jest rekurencyjnie
przeliczalny, lub też że jest pierwotnie rekurencyjny.

Lemat 3.1 Następujące warunki są równoważne:

1) teoria T jest sprzeczna,

2) istnieje zdanie ϕ takie, że T ` ϕ ∧ ¬ϕ,

3) każda formuła jest twierdzeniem teorii T . 2

Przykładem teorii sprzecznej może być teoria mnogości ze schematem

∃A ∀x (x ∈ A⇔ ϕ)

zamiast schematu wyróżniania przyjmowanego w teorii Zermelo - Fraenkla. Taki
schemat wyróżniania sugerował Cantor w swojej teorii mnogości.
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4 Własności systemu logicznego Schoenfielda

4.1 Definicja systemu raz jeszcze

W tym systemie formuły zapisujemy przy użyciu jedynie dwóch spójników ¬ i ∨
oraz kwantyfikatora szczegółowego ∃. Formuły z innymi spójnikami uważamy za
skróty odpowiednich formuł zapisanych wyłącznie za pomocą ¬, ∨ oraz ∃ zgodnie
z następującymi wzorami

ϕ⇒ ψ = ¬ϕ ∨ ψ,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
ϕ⇔ ψ = (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ),
∀x ϕ = ¬∃x ¬ϕ.

Aksjomatami logicznymi systemu są w zasadzie wszelkie formuły następujących
postaci:

¬ϕ ∨ ϕ oraz ϕ[x← t]⇒ ∃xϕ,
spełniające warunek podstawialności podany w rozdziale 3.5.2.

W systemie posługujemy się następującymi regułami dowodzenia:

ψ

ϕ ∨ ψ
,

ϕ ∨ ϕ
ϕ

,
ϕ ∨ (ψ ∨ ξ)
(ϕ ∨ ψ) ∨ ξ

,
ϕ ∨ ψ, ¬ϕ ∨ ξ

ψ ∨ ξ
,

ϕ⇒ ψ

(∃xϕ)⇒ ψ
,

z tym, że ostatnią stosujemy tylko wtedy, gdy zmienna x nie występuje jako wolna
w ψ (patrz rozdział 3.5.1).

4.2 Kilka własności systemu

Lemat 4.1 Jeżeli w dowodzie wystąpiła formuła ϕ ∨ ψ, to ten dowód możemy
wydłużyć tak, aby znalazła się w nim także formuła ψ ∨ ϕ.

Dowód. Do dowodu
. . . , ϕ ∨ ψ, . . .

dopisujemy aksjomat ¬ϕ ∨ ϕ oraz formułę ψ ∨ ϕ. Otrzymany ciąg

. . . , ϕ ∨ ψ, . . . , ¬ϕ ∨ ϕ, ψ ∨ ϕ

też jest dowodem. Ostatnia formuła wynika na podstawie reguły rezolucji z dwóch
uwidocznionych w dowodzie. 2

Lemat 4.2 (reguła odrywania) Jeżeli formuła ϕ⇒ ψ ma dowód, to każdy do-
wód zawierający formułę ϕ można tak wydłużyć, aby zawierał formułę ψ.

Dowód. Do dowodu
. . . , ϕ, . . .

dopisujemy w pierwszym rzędzie dowód formuły ϕ ⇒ ψ czyli formuły ¬ϕ ∨ ψ
otrzymując

. . . , ϕ, . . . , . . . ¬ϕ ∨ ψ,
a następnie tworzymy ciąg

. . . , ϕ, . . . , . . . ¬ϕ ∨ ψ, ϕ ∨ ψ, ψ ∨ ψ, ψ.

Ten ciąg jest dowodem. Końcowe formuły otrzymujemy stosując kolejno reguły
dołączania, rezolucji i kontrakcji. 2

Alternatywą z członami ϕ1, ϕ2, . . . , ϕn będziemy nazywać formułę ϕ1 ∨ ϕ2 ∨
. . . ∨ ϕn z dowolnym rozmieszczeniem nawiasów.
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Lemat 4.3 Jeżeli ϕ jest członem alternatywy Φ, to każdy dowód zawierający ϕ
można wydłużyć do dowodu zawierającego Φ.

Dowód. Lemat dowodzimy przez indukcję ze względu na liczbę członów alterna-
tywy Φ. Dla alternatyw jednoczłonowych lemat jest oczywisty.

Przyjmijmy, że Φ = Φ1 ∨ Φ2. Formuła ϕ jest albo członem Φ1, albo Φ2. W
pierwszym przypadku, dowód zawierający ϕ na mocy założenia indukcyjnego mo-
żemy wydłużyć do dowodu Φ1, do którego na mocy reguły dołączania możemy
dopisać Φ1 ∨ Φ2, czyli Φ.

W drugi przypadku, jeżeli ϕ jest członem Φ2, to postępując analogicznie dowód
zawierający ϕ wydłużamy do dowodu zawierającego Φ1 ∨ Φ2, a następnie, korzy-
stając z lematu 4.1, przestawiamy człony alternatywy otrzymując Φ1 ∨ Φ2, czyli
Φ. 2

Można dowieść też silniejszy

Lemat 4.4 Jeżeli ϕ jest członem alternatywy Φ, to formuła ϕ ⇒ Φ jest prawem
logicznym.

Dowód. Z tego lematu można wyprowadzić poprzedni lemat posługując się regułą
odrywania. Dowodzimy go również przez indukcję ze względu na liczbę członów
formuły Φ.

Jeżeli alternatywa Φ ma jeden człon, to jest równa ϕ i formuła ϕ ⇒ Φ =
= ϕ ⇒ ϕ = ¬ϕ ∨ ϕ jest aksjomatem logiki, a więc tym bardziej jest prawem
logicznym.

Przypuśćmy, że Φ = Φ1 ∨ Φ2. Formuła ϕ jest albo członem Φ1, albo Φ2. W
pierwszym przypadku, z założenia indukcyjnego mamy, że ϕ ⇒ Φ1 jest prawem
logicznym. Aby dowieść lemat, wystarczy zauważyć, że ciąg

¬ϕ ∨ Φ1, (¬ϕ ∨ Φ1) ∨ Φ2, Φ2 ∨ (¬ϕ ∨ Φ1), (Φ2 ∨ ¬ϕ) ∨ Φ1, Φ1 ∨ (Φ2 ∨ ¬ϕ),

(Φ1 ∨ Φ2) ∨ ¬ϕ, ¬ϕ ∨ (Φ1 ∨ Φ2)

można uzupełnić do pełnego dowodu implikacji ϕ⇒ Φ1 ∨ Φ2.
W drugim przypadku postępujemy podobnie i do dowodu uzupełniamy ciąg

¬ϕ∨Φ2, Φ2∨¬ϕ, (Φ2∨¬ϕ)∨Φ1, Φ1∨(Φ2∨¬ϕ), (Φ1∨Φ2)∨¬ϕ, ¬ϕ∨(Φ1∨Φ2). 2

Twierdzenie 4.5 Jeżeli wszystkie człony alternatywy Ψ są także członami alter-
natywy Φ, to formuła Ψ⇒ Φ jest prawem logicznym, a więc ` Ψ⇒ Φ. Co więcej,
każdy dowód zawierający Ψ można wydłużyć do dowodu zawierającego Φ.

Dowód. Twierdzenie dowodzimy przez indukcję ze względu na liczbę członów al-
ternatywy Ψ. Dla alternatyw jednoczłonowych twierdzenie wynika z poprzedniego
lematu.

Przypuśćmy, że Ψ = Ψ1 ∨Ψ2. Z założenia indukcyjnego mamy, że

` Ψ1 ⇒ Φ oraz ` Ψ2 ⇒ Φ.

Pisząc dowód formuły Ψ⇒ Φ odpowiednio uzupełniamy następujący ciąg formuł:

¬Ψ ∨ (Ψ1 ∨Ψ2), (¬Ψ ∨Ψ1) ∨Ψ2, Ψ2 ∨ (¬Ψ ∨Ψ1), ¬Ψ2 ∨ Φ, (¬Ψ ∨Ψ1) ∨ Φ,

Φ ∨ (¬Ψ ∨Ψ1), (Φ ∨ ¬Ψ) ∨Ψ1, ((Φ ∨ ¬Ψ) ∨Ψ1) ∨ ¬Ψ, ¬Ψ ∨ ((Φ ∨ ¬Ψ) ∨Ψ1),

(¬Ψ ∨ (Φ ∨ ¬Ψ)) ∨Ψ1, Ψ1 ∨ (¬Ψ ∨ (Φ ∨ ¬Ψ)), ¬Ψ1 ∨ Φ, (¬Ψ ∨ (Φ ∨ ¬Ψ)) ∨ Φ,

Φ ∨ (¬Ψ ∨ (Φ ∨ ¬Ψ)), (Φ ∨ ¬Ψ) ∨ (Φ ∨ ¬Ψ), (Φ ∨ ¬Ψ), ¬Ψ ∨ Φ. 2
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4.3 Twierdzenie o dedukcji

Twierdzenie 4.6 (o dedukcji, Jacques Herbrand) Niech ϕ będzie zdaniem.
Formuła ψ jest twierdzeniem teorii T z dodatkowym aksjomatem ϕ (teorii T ∪{ϕ})
wtedy i tylko wtedy, gdy implikacja ϕ⇒ ψ jest twierdzeniem teorii T .

Dowód. Wystarczy dowieść implikację „od lewej do prawej”. Implikację przeciwną
łatwo wywnioskować posługując się regułą odrywania, patrz lemat 4.2.

Załóżmy więc, że w teorii T z dodatkowym aksjomatem ϕ można dowieść ψ i
ciąg

ϕ1, ϕ2, . . . , ϕn

jest dowodem, który o tym świadczy. Wtedy między innymi ϕn = ψ. Utwórzmy
teraz ciąg

¬ϕ ∨ ϕ1, ¬ϕ ∨ ϕ2, . . . , ¬ϕ ∨ ϕn.

Pokażemy, że ten ciąg można uzupełnić do dowodu w teorii T . Oczywiście, w ten
sposób dowiedziemy w teorii T formułę ¬ϕ ∨ ϕn, czyli ϕ⇒ ψ.

Zrobimy to przez indukcję: Pokażemy, że dowód zawierający wszystkie formuły
¬ϕ∨ϕi dla i < k można wydłużyć do dowodu zawierającego ¬ϕ∨ϕk. W tym celu
zastanowimy się, z jakiego powodu w dowodzie formuły ψ znalazła się formuła ϕk.

Formuła ϕk mogła być aksjomatem (logicznym, równości lub pozalogicznym z
teorii T ). Wtedy do tworzonego dowodu dołączamy ciąg

ϕk, ϕk ∨ ¬ϕ, ¬ϕk ∨ ϕk, ¬ϕ ∨ ϕk.

Formuła ϕk mogła być dodatkowym aksjomatem ϕ. Wtedy do tworzonego do-
wodu dołączamy aksjomat ¬ϕ ∨ ϕ identyczny z ¬ϕ ∨ ϕk.

Być może formuła ϕk wynikała z formuły ϕi i jednej z trzech pierwszych reguł
dowodzenia rozważanego systemu. W tych trzech przypadkach możliwość wydłuże-
nia dowodu zawierającego ¬ϕ∨ϕi do dowodu zawierającego także ¬ϕ∨ϕk wynika
z twierdzenia 4.5.

Jeżeli formuła ϕk = β ∨ δ wynika z formuł postaci α ∨ β oraz ¬α ∨ δ za
pomocą reguły rezolucji, to formułę ϕ⇒ ϕk dołączamy do tworzonego dowodu w
następujący sposób: najpierw z umieszczonych już w dowodzie formuł ¬ϕ∨(α∨β)
oraz ¬ϕ ∨ (¬α ∨ δ) wyprowadzamy formuły α ∨ (¬ϕ ∨ β) oraz ¬α ∨ (¬ϕ ∨ δ)
korzystając z twierdzenia 4.5, następnie stosujemy regułę rezolucji i dołaczamy do
dowodu (¬ϕ ∨ β) ∨ (¬ϕ ∨ δ) i w końcu po raz kolejny stosujemy twierdzenie 4.5
by uzyskać formułę ¬ϕ ∨ (β ∨ δ) równą ϕ⇒ ϕk.

Analogicznie postępujemy w ostatnim przypadku, gdy formułę ϕk = ∃xα⇒ β
otrzymaliśmy stosując regułę dołączania kwantyfikatora ogólnego do formuły ϕi
postaci α ⇒ β. Wtedy najpierw z formuły ¬ϕ ∨ ϕi = ¬ϕ ∨ (¬α ∨ β) stosując
twierdzenie 4.5 wprowadzamy ¬α∨ (¬ϕ∨ β), następnie dopisujemy kwantyfikator
uzyskując ¬∃xα∨(¬ϕ∨β) (jest to możliwe dzięki założeniu, że ϕ jest zdaniem). W
końcu przestawiamy człony formuły tak, by otrzymać ¬ϕ∨ (¬∃xα∨β) = ¬ϕ∨ϕk.

W ten sposób rozważyliśmy wszystkie możliwe przypadki i udowodniliśmy
twierdzenie o dedukcji. 2

4.4 Domknięcie formuły

Domknięciem formuły ϕ nazywamy formułę ∀ x . . . ϕ powstającą przez dopisanie
do ϕ kwantyfikatorów ogólnych po wszystkich zmiennych x, . . ., które mają wolne
wystąpienia w ϕ.
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Twierdzenie 4.7 Niech T będzie dowolną teorią. Formuła ϕ jest twierdzeniem
teorii T wtedy i tylko wtedy, gdy twierdzeniem T jest domknięcie ϕ. Inaczej, trochę
prościej, ale i dostatecznie dużo: warunek T ` ϕ zachodzi wtedy i tylko wtedy, gdy
T ` ∀x ϕ.

Dowód. Aby w teorii T dowieść ∀x ϕ, mając w teorii T dowód formuły ϕ wydłu-
żamy go w następujący sposób (z drobnymi lukami i kilkoma powtórzeniami):

. . . , ϕ, ϕ ∨ ¬¬ϕ, ¬ϕ ∨ ¬¬ϕ, ¬¬ϕ ∨ ¬¬ϕ, ¬¬ϕ,

¬¬ϕ ∨ ∀x ϕ, ¬ϕ⇒ ∀x ϕ, ∃x ¬ϕ⇒ ∀x ϕ, ¬∃x ¬ϕ ∨ ∀x ϕ, ∀x ϕ ∨ ∀x ϕ, ∀x ϕ.

Aby dowieść implikację odwrotną, najpierw pokażemy, że formuły (∀x ϕ) ⇒
ϕ są prawami rachunku kwantyfikatorów. Stąd, posługując się regułą odrywania
łatwo dowieść interesującą nas implikację.

Nietrudno zauważyć, że dowodem (∀x ϕ)⇒ ϕ jest następujący ciąg

¬ϕ[x← x]⇒ ∃x ¬ϕ, ¬ϕ⇒ ∃x ¬ϕ, ¬¬ϕ ∨ ∃x ¬ϕ, ¬ϕ ∨ ϕ,

ϕ ∨ ∃x ¬ϕ, ¬∃x ¬ϕ ∨ ¬¬∃x ¬ϕ, ¬¬∃x ¬ϕ ∨ ϕ,

¬∃x ¬ϕ⇒ ϕ, ∀x ϕ⇒ ϕ. 2

5 Spełnianie (prawdziwość) formuł

5.1 Struktury

Strukturą nazywamy zbiór A (zwany uniwersum) z wyróżnionymi elementami,
funkcjami wieloargumentowymi przekształcającymi A w A i relacjami w zbiorze
A, też wieloargumentowymi. Strukturą jest następujący układ

A = 〈A,C0, C1, . . . , F0, F1, . . . , R0, R1, . . .〉,

gdzie A jest uniwersum struktury A, Ci ∈ A są wyróżnionymi elementami A, Fi :
Ani → A są wieloargumentowymi funkcjami przekształcającymi A w A, a Ri ⊆ Ani

są wieloargumentowymi relacjami w zbiorze A. Często strukturę o uniwersum A
także oznacza się symbolem A. Oczywiście możemy tak postąpić, jeżeli potrafimy
się domyśleć, jakie wyróżniliśmy elementy i jakie w tej strukturze są funkcje i
relacje, lub też, gdy takie szczegóły są nieistotne.

5.2 Struktury dla danego języka

Jeżeli mamy dany język L, a więc pewien zbiór symboli złożony ze stałych c, . . .,
symboli funkcyjnych f, . . . oraz symboli relacyjnych r, . . ., to zwykle rozważamy
struktury dla języka L. Są to struktury, w których jest określone znaczenie wszyst-
kich stałych oraz symboli funkcyjnych i relacyjnych języka L. Znaczeniem stałej c
jest element C uniwersum struktury, znaczeniem symbolu funkcyjnego f – funkcja
F o liczbie argumentów równej arności symbolu f , a znaczeniem symbolu relacyj-
nego r – relacja R o liczbie argumentów równej arności symbolu r.

Ważnym przykładem jest język arytmetyki złożony z następujących symboli:
0, 1, +, ·, = oraz <. Ważna strukturą dla tego języka ma uniwersum N ⊆ R
złożone z tych liczb rzeczywistych, które są naturalne, liczb rzeczywistych 0 i 1,
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dodawania +, mnożenia · i porządku <, odziedziczonych ze zbioru liczb rzeczy-
wistych R oraz relacji identyczności {〈x, x〉 : x ∈ N}, która jest standardowym
znaczeniem relacji równości. Strukturę

N = N = 〈N, 0, 1,+, ·,=, <〉

nazywamy standardowym modelem liczb naturalnych. Znaki 0, 1, + itp. mają
więc dwa znaczenia: albo oznaczająją symbole języka, albo liczby rzeczywiste lub
konkretne funkcje bądź relacje. Na podstawie kontekstu zwykle bez trudu ustalamy
właściwe rozumienie tych znaków.

5.3 Wartościowania

Zmienne nie mają ustalonego znaczenia. Zwykle jednak nadajemy im znaczenie
zależne od potrzeb. Robimy to podając tzw. wartościowanie. Wartościowaniem
zmiennych w strukturze o uniwersum A nazywamy dowolną funkcję przyporządko-
wującą zmiennym elementy zbioru A. Wartościowanie może (powinno) być określo-
ne dla wszystkich zmiennych, ale zwykle wystarcza, aby było określone dla zmien-
nych wolnych rozważanej formuły, bądź zmiennych występujących w interesującym
nas termie.

5.4 Wartości termów

Symbolem t[h] oznaczamy wartość termu t przy wartościowaniu h. Pojęcie to de-
finiujemy wzorami

t[h] =


C jeżeli t = c,
h(x) jeżeli t jest zmienną x,
F (t1[h], . . . , tn[h]) jeżeli t = f(t1, . . . , tn),

gdzie c jest stałą, a C jest znaczeniem tej stałej w rozważanej strukturze oraz f
jest n-argumentowym symbolem funkcyjnym, a F – znaczeniem tego symbolu w
tej strukturze.

Zamiast t[h] piszemy także t[a1, a2, . . . , an]. Pisząc tak zakładamy, że zmienne
występujące w t są w jakiś konkretny sposób uporządkowane i rozważamy warto-
ściowanie, które kolejnym zmiennym przypisuje kolejne elementy uniwersum wy-
mienione w nawiasach kwadratowych.

5.5 Spełnianie w strukturze przy danym wartościowaniu

Napis A |= ϕ[h] będzie oznaczać, że formuła ϕ jest spełniona w strukturze A przy
wartościowaniu h.

Mówimy, że formuła ϕ jest spełniona w strukturze A przy wartościowaniu h,
jeżeli

1) (t1[h] . . . , tn[h]) ∈ R, gdzie ϕ = r(t1, . . . , tn) oraz R jest relacją w strukturze
A odpowiadającą symbolowi relacyjnemu r,

2) jedna z formuł ψ1 lub ψ2 jest spełniona w strukturze A przy wartościowaniu
h (A |= ψ1[h] lub A |= ψ2[h]), gdy formuła ϕ = ψ1 ∨ ψ2,

3) formuła ψ nie jest spełniona w strukturze A przy wartościowaniu h (A 6|=
ψ[h]), w przypadku, gdy ϕ = ¬ψ,
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4) w stukturze A jest spełniona formuła ψ przy pewnym wartościowaniu h′

takim, że h′(y) = h(y) dla wszystkich zmiennych y 6= x (A |= ψ[h′]), gdy
ϕ = ∃xψ.

5.6 Spełnianie formuły w strukturze

Formuła ϕ jest spełniona w strukturze A, jeżeli jest spełniona w tej strukturze
przy każdym wartościowaniu.

Napis A |= ϕ oznacza, że formuła ϕ jest spełniona w strukturze A.
Pokazuje się, że zdanie spełnione w strukturze przy pewnym wartościowaniu

jest w tej strukturze spełnione. Prawdziwy jest też ogólniejszy fakt, że spełnia-
nie formuły przy wartościowaniu h zależy tylko interpretacji (znaczenia) symbo-
li występujących w formule oraz od wartości, które wartościowanie h przypisuje
zmiennym występującym w formule jako wolne.

5.7 Modele teorii

Struktura A jest modelem teorii T (A |= T ), jeżeli każdy aksjomat teorii T jest
spełniony w strukturze A.

StrukturaN jest zarówno modelem teorii Q Robinsona, jak i arytmetyki Peano.
Teorią struktury nazywamy zbiór wszystkich zdań spełnionych w tej strukturze.

Lemat 5.1 Jeżeli A jest strukturą, to teoria struktury A, czyli

{ϕ : ϕ jest zdaniem oraz A |= ϕ},

jest niesprzeczna i zupełna. 2

Wniosek 5.2 Teoria struktury N nie jest aksjomatyzowalna. Co więcej, zbiór nu-
merów zdań spełnionych w strukturze N nie jest rekurencyjnie przeliczalny.

Dowód. Wynika to z twierdzenia Gödla, które dalej zostanie udowodnione. 2

O teorii struktury N wiadomo nawet, że nie jest definiowalna w strukturze N
jakąkolwiek formułą. Zbiory rekurencyjnie przeliczalne są definiowalne formułami
klasy

∑
1 (formułami z kwantyfikatorami ograniczonymi poprzedzonymi wyłącznie

nieograniczonymi kwantyfikatorami egzystencjalnymi).

5.8 Podstawowe własności spełniania

Lemat 5.3 Przypuśćmy, że A jest strukturą, x – zmienną, s – termem w języku
tej struktury, a h – wartościowaniem zmiennych w tej strukturze. Niech h′ będzie
wartościowaniem zmiennych takim, że h′(x) = s[h] oraz h′(y) = h(y) dla wszyst-
kich zmiennych y 6= x. Wtedy mamy

t[x← s][h] = t[h′]

dla wszystkich termów t oraz

A |= ϕ[x← s][h]⇔ A |= ϕ[h′]

dla wszystkich formuł ϕ, w których s jest podstawialny za x. 2
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Lemat 5.4 Przypuśćmy, że formuła ϕ jest spełniona w strukturze A przy warto-
ściowaniu h. Wtedy

1) ϕ jest spełniona w A przy każdym wartościowaniu h′ takim, że h(x) = h′(x)
dla wszystkich x będących w ϕ zmiennymi wolnymi (czyli zmiana wartościo-
wania dla zmiennych nie będących wolnymi nie ma wpływu na spełnianie),

2) ϕ jest spełniona przy wartościowaniu h w każdej strukturze A′ o tym samym
uniwersum i takich samych, jak w strukturze A, interpretacjach występują-
cych w ϕ symboli funkcyjnych oraz relacyjnych (czyli bez wpływu na spełnia-
nie możemy zmieniać, a także dodawać i usuwać, interpretacje symboli nie
występujących w ϕ). 2

Lemat 5.5 Formuła jest spełniona w danej strukturze A wtedy i tylko wtedy, gdy
w A jest spełnione domknięcie tej formuły. 2

5.9 Twierdzenie o poprawności

Mamy więc dwa sposoby badania „rzeczywistości”. Możemy wyprowadzać wnioski
z ustalonych aksjomatów lub badać spełnianie (prawdziwość) zdań w odpowied-
nich modelach. Możemy na przykład wyprowadzać wnioski o liczbach natural-
nych z aksjomatów Peano lub badać spełnialność własności liczb naturalnych w
standardowym modelu. Istotne jest więc pytanie zależności między tymi dwoma
metodami.

Jedna z zależności jest łatwa do udowodnienia. Mamy

Twierdzenie 5.6 (o poprawności) Twierdzenia teorii T są prawdziwe w każ-
dym modelu teorii T .

Dowodzimy więc tylko zdania, które są prawdziwe i to bez względu na to, jak
prawdziwość jest rozumiana.

5.10 Twierdzenie o pełności

Z wniosku 5.2 i twierdzenia o poprawności wynika, że nie wszystkie zdania prawdzi-
we w standardowym modelu liczb naturalnych mają dowód w arytmetyce Peano.
Ta sytuacja mogłaby być spowodowana tym, że stosujemy zbyt proste metody
dowodzenia, niewystarczające do wykazania wszystkich zdań prawdziwych.

Tak nie jest, mamy bowiem

Twierdzenie 5.7 (o pełności, Gödel, Herbrand) Każde zdanie spełnione we
wszystkich modelach teorii T ma dowód w teorii T .

Wniosek 5.8 Istnieje model arytmetyki Peano istotnie różny od modelu standar-
dowego, którego teoria różni się od teorii modelu standardowego. 2

W rzeczywistości istnieje continuum istotnie różnych, przeliczalnych modeli
arytmetyki Peano.

6 Dodatek: system dedukcji naturalnej

System dedukcji naturalnej, czyli system dowodów założeniowych, powstał za-
pewne w wyniku analizy zwykłego pojęcia dowodu stosowanego na codzień przez
matematyków i formalizuje praktyczne sposoby uzasadniania twierdzeń. Jest dość
złożony i skomplikowany, trudno za jego pomocą badać własności logiki
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6.1 Reguły dowodzenia systemu dowodów założeniowych

Reguły systemu dowodów założeniowych opisują spójniki i kwantyfikatory w spo-
sób – jak sądzę – najbardziej zgodny z intuicjami. Spójniki i kwantyfikatory są
charakteryzowane zwykle przez reguły dołączania, które mówią jak uzasadnia się
i dołącza do dowodu stwierdzenia, w których występują, oraz reguły opuszczania,
które podają sposób wykorzytywania odpowiednich formuł w dowodach. Reguły
dotyczące kwantyfikatorów muszą być stosowane z pewnymi ograniczeniami, opi-
sanymi w rozdziale 6.3. W tym systemie przyjmuje się następujące reguły:

Reguła odrywania:
ϕ⇒ ψ, ϕ

ψ
.

Reguły dotyczące koniunkcji:

ϕ, ψ

ϕ ∧ ψ
,

ϕ ∧ ψ
ϕ

,
ϕ ∧ ψ
ϕ

.

Reguły dotyczące alternatywy:

ϕ

ϕ ∨ ψ
,

ψ

ϕ ∨ ψ
,

ϕ ∨ ψ,¬ϕ
ψ

.

Reguły dotyczące równoważności:

ϕ⇒ ψ, ψ ⇒ ϕ

ϕ⇔ ψ
,

ϕ⇔ ψ

ϕ⇒ ψ
,

ϕ⇔ ψ

ψ ⇒ ϕ
.

Reguły dotyczące kwantyfikatora ogólnego (pierwsza to reguła dołączania tego
kwantyfikatora, druga – opuszczania):

ϕ

∀xϕ
,

∀xϕ
ϕ[x← t]

.

Reguły dotyczące kwantyfikatora egzystencjalnego:

ϕ[x← t]
∃xϕ

,
∃xϕ

ϕ[x← c]
.

System dowodów założeniowych pozwala definiować dodatkowe reguły dowo-
dzenia. W jego ewentualnych rozszerzeniach mogą się pojawić tzw. reguły wtórne
(jeżeli ϕ ⇒ ψ jest twierdzeniem, to

ϕ

ψ
jest regułą wtórną), reguły dotyczące defi-

nicji oraz równości, np. reguła
ϕ, t = s

ϕ[t//s]
pozwalająca pewne wystąpienie termu t

w formule ϕ zastąpić równym mu termem s. Dobrze jest go rozszerzyć o regułę
tworzenia dowodów polegających na rozważeniu wielu przypadków, która mogłaby
być stosowany wtedy, gdy wśród założeń jest alternatywa.

6.2 Dowody założeniowe

Przypuśćmy, że chcemy dowieść formułę Φ, którą przedstawiliśmy (jakkolwiek, w
tym dla n = 0) w postaci

ϕ1 ⇒ . . . (ϕn ⇒ ψ).

Wtedy możemy przyjąć, że ϕ1, . . . , ϕn są założeniami dowodu, ψ jest tezą, a ¬ψ
jest założeniem dowodu nie wprost.
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W systemie założeniowym wszystkie reguły dotyczące kwantyfikatorów mogą
być stosowane po spełnieniu pewnych – sformułowanych dalej – warunków.

Dowodem wprost nazywamy ciąg ψ1, . . . ψm formuł, w którym każda formuła
jest albo aksjomatem (logicznym i ewentualnie pozalogicznym), albo założeniem
(ale nie założeniem dowodu nie wprost), albo wcześniej udowodnionym twierdze-
niem, albo też wnioskiem z formuł poprzednich.

Dowodem nie wprost nazywamy ciąg ψ1, . . . ψm formuł, w którym każda formu-
ła jest albo aksjomatem, albo założeniem, w tym założeniem dowodu nie wprost,
albo wcześniej udowodnionym twierdzeniem, albo też wnioskiem z formuł poprzed-
nich.

Dowodem wprost formuły Φ nazywamy dowód wprost, w którym znajduje się
formuła ψ, czyli teza. Dowodem nie wprost formuły Φ nazywamy dowód nie wprost,
w którym znajduje się pewna formuła α i jej zaprzeczenie ¬α, a więc w którym
uzyskaliśmy sprzeczność.

Formuła Φ jest twierdzeniem, jeżeli ma dowód wprost lub ma dowód nie wprost.

6.3 Warunki stosowania niektórych reguł

W systemie założeniowym, regułę dołączania kwantyfikatora ogólnego, która jest
postaci

ϕ

∀xϕ
, stosujemy tylko wtedy, gdy zmienna x nie jest wolna w założeniach

dowodu.
Regułę opuszczania kwantyfikatora szczegółowego (egzystencjalnego)

∃xϕ
ϕ[x← c]

w systemie założeniowym stosujemy w następujący sposób:

1) term c jest postaci f(x1, . . . , xn), gdzie f jest symbolem funkcyjnym, a x1, . . . , xn
są wszystkimi zmiennymi różnymi od x, które występują jako wolne w for-
mule ϕ,

2) symbol funkcyjny f nie występuje ani w aksjomatach, ani w dowodzonej
formule, ani w napisanym już fragmencie dowodu.

Oczywiście, wszystkie reguły, w których występuje operacja podstawiania ϕ[x −→
t], mogą być stosowane tylko wtedy, gdy term t jest podstawialny w formule ϕ za
zmienną x.

7 Dodatek: System z pracy Gödla

W pracy Gödla z dowodem twierdzenia o niezpełności arytmetyki wykorzystywany
jest niżej przedstawiony system logiczny:

7.1 Aksjomaty logiczne w systemie Gödla

Aksjomatami w tym systemie są dowolne formuły następujących postaci:

ϕ⇒ ϕ ∨ ϕ, ϕ ∨ ϕ⇒ ϕ, ϕ ∨ ψ ⇒ ψ ∨ ϕ, (ϕ⇒ ψ)⇒ (ξ ∨ ϕ⇒ ξ ∨ ψ),

(∀xϕ)⇒ ϕ[x← t], (∀x(ϕ ∨ ψ))⇒ (ϕ ∨ (∀xψ))

z tym, że ostatni aksjomat jest przyjmowany pod warunkiem, że zmienna x nie
jest wolna w ϕ.
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7.2 Reguły systemu z pracy Gödla

Gödel korzysta z dwóch spójników ¬ i ∨ oraz kwantyfikatora ∀. Dopuszcza sto-
sowanie skrótów, np. formułę ze spójnikiem ⇒ uważa za skróconą wersję znanej
formuły z definicji implikacji. Przyjmuje dwie reguły dowodzenia: odrywania i do-
łączania kwantyfikatora ogólnego (patrz reguły systemu założeniowego).

8 Dodatek: twierdzenie Gödla o pełności

Twierdzenie o pełności składa się właściwe z dwóch twierdzeń: o poprawności
i właściwego twierdzenia o pełności. Zostało po raz pierwszy dowiedzione przez
Kurta Gödla w 1929 roku.

Twierdzenie 8.1 (o poprawności) Jeżeli A jest modelem T , a ϕ jest twierdze-
niem teorii T , to formuła ϕ jest spełniona w strukturze A.

Twierdzenie 8.2 (o pełności) Jeżeli formuła ϕ jest spełniona w każdym modelu
teorii T , to ϕ daje się dowieść w teorii T .

8.1 Potrzebne fakty

Zostanie tutaj przedstawiony dowód twierdzenia o pełności, który być może przy-
pomina dowód oryginalny, ale został opracowany później i zawiera elementy przy-
pisywane Leonowi Henkinowi. Dowód będzie nieefektywny, nie będzie podawał
konstrukcji dowodu twierdzenia, sprowadzi do sprzeczności fakt nieistnienia do-
wodu. Zostanie przeprowadzony przy milczącym założeniu, że teoria jest zapisana
w przeliczalnym języku (czyli ma przeliczalnie wiele symboli funkcyjnych i re-
lacyjnych). Założenie to nie jest istotne, ale po jego opuszczeniu konieczne jest
odwołanie się do aksjomatu wyboru. Dowód zostanie też przedstawiony w przy-
padku teorii bez równości. Dla teorii z równością potrzebna jest jeszcze dodatkowa
konstrukcja ilorazowa, która zostanie pominięta.

Potrzebne będą dwa pomocnicze twierdzenia.

Twierdzenie 8.3 (o dedukcji, Jacques Herbrand) Niech ϕ będzie zdaniem.
Formuła ψ jest twierdzeniem teorii T z dodatkowym aksjomatem ϕ (teorii T ∪{ϕ})
wtedy i tylko wtedy, gdy implikacja ϕ⇒ ψ jest twierdzeniem teorii T . 2

Twierdzenie 8.4 (o stałej) Przypuśćmy, że stała c nie występuje w formule ϕ,
ani w aksjomatach teorii T . Jeżeli formuła ϕ[x← c] jest twierdzeniem teorii T , to
w teorii T można dowieść także formuły ∀xϕ oraz ϕ. Co więcej, można to zrobić
nie używając w tych dowodach stałej c (formuły te można dowieść w języku bez
stałej c). 2

8.2 Dowód twierdzenia o pełności

Przystępujemy teraz do dowodu twierdzenia o pełności.

Twierdzenie 8.5 (o pełności, Kurt Gödel, 1929) Jeżeli formuła ϕ jest speł-
niona w każdym modelu teorii T , to ϕ daje się dowieść w teorii T .
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Dowód. Na razie twierdzenie o pełności sprowadzimy do innej, następującej po-
staci: jeżeli teoria T ′ jest niesprzeczna, to istnieje struktura, w której są spełnione
wszystkie aksjomaty teorii T ′.

O ϕ możemy dodatkowo założyć, że jest zdaniem. Załóżmy też dla dowodu nie
wprost, że ϕ nie jest twierdzeniem teorii T .

Nietrudno zauważyć, że wtedy teoria T∪{¬ϕ} jest niesprzeczna. Gdyby bowiem
istniała formuła σ taka, że

T ∪ {¬ϕ} ` σ ∧ ¬σ,

to na mocy twierdzenia o dedukcji otrzymalibyśmy, że

T ` ¬ϕ⇒ σ ∧ ¬σ.

Dalej, z prawa kontrapozycji wynikało by, że

T ` ¬(σ ∧ ¬σ)⇒ ϕ,

i ostatecznie, wbrew założonej własności ϕ otrzymalibyśmy, że T ` ϕ.
Istnieje więc struktura A, w której, oprócz wszystkich aksjomatów teorii T ,

jest spełnione zdanie ¬ϕ. Założyliśmy jednak, że strukturze A jest spełnione także
zdanie ϕ. Otrzymaliśmy więc sprzeczność, gdyż w żadnej strukturze nie mogą być
jednocześnie spełnione zdanie i jego negacja. 2

Twierdzenie 8.6 Jeżeli teoria T jest niesprzeczna, to istnieje struktura, w której
są spełnione wszystkie aksjomaty teorii T .

Dowód. Teoria T mówi o czymś, czego nie znamy, ale wiemy, że ze stwierdzeń
teorii T nie wynika sprzeczność. Aby dowieść nasze twierdzenie, powinniśmy w
pierwszym rzędzie wyjaśnić, o czym mówi teoria T . Wyjaśnimy to zgodnie z na-
stępującą ideą: termy, których używamy do określania przedmiotów możemy uznać
za rzeczy, o których mówimy. W informatyce ta idea leży u podstaw tzw. semantyk
algebraicznych. Na przykład, jeżeli mówimy o liczbach naturalnych, to termy 0,
1, 1 + 1, 1 + 1 + 1 itd. oznaczają liczby naturalne i możemy je uznać za liczby
naturalne. Pamiętajmy jednak, że możemy mieć bardzo mało stałych i operacji.
Wtedy brakuje nam termów oznaczających przedmioty, których istnienie możemy
dowieść.

Krok 1. Do języka dodajemy nieskończony ciąg stałych a1, a2, a3, . . . W bogat-
szym języku możemy teoretycznie tworzyć więcej dowodów. Z twierdzenia o stałej
wynika, że jeżeli teoria T jest niesprzeczna, to nie uda nam się utworzyć dowo-
du sprzeczności korzystając z nowych stałych. Gdyby istniał dowód sprzeczności
wykorzystujący te stałe, to możnaby je stopniowo eliminować z dowodu i w koń-
cu utworzyć dowód sprzeczności nie zawierający nowych stałych. To jest jednak
sprzeczne z założeniem o niesprzeczności teorii T .

Krok 2. Nadajemy znaczenie nowym stałym. W tym celu tworzymy ciąg

ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .

zawierający wszystkie formuły z jedną zmienną wolną w języku z nowymi sta-
łymi. Symbol xi oznacza jedyną zmienną wolną w ϕi(xi). Następnie indukcyjnie
tworzymy formuły

Φn = (∃xn ϕn(xn))⇒ ϕn(cn)

dobierając (spośród dodanych stałych) stałą cn tak, aby nie występowała we wcze-
śniej utworzonych formułach tej postaci i w samej formule ϕn. Formuły te będziemy
uważać za nowe aksjomaty. Przyjmijmy, że Tn = T ∪ {Φ1, . . . ,Φn} oznacza teorię
T uzupełnioną o n pierwszych aksjomatów tej postaci.



23

Fakt 8.7 Teorie Tn są niesprzeczne.

Dowód. Przez indukcję ze względu na n. Oczywiście, teoria T0 (czyli sama T
bez nowych aksjomatów) jest niesprzeczna. Załózmy teraz, że teoria Tn−1 jest
niesprzeczna, a Tn – sprzeczna. Ponieważ dodane aksjomaty są zdaniami, możemy
skorzystać z twierdzenia o dedukcji. Otrzymamy, że

Tn−1 ` ((∃xn ϕn(xn))⇒ ϕn(cn))⇒ σ ∧ ¬σ.

Korzystając z prawa kontrapozycji, prawa wyłączonego środka i prawa negowania
implikacji (i kilku innych) otrzymujemy, że

Tn−1 ` (∃xn ϕn(xn)) ∧ ¬ϕn(cn). (1)

Oba człony powyższej koniunkcji dają się więc dowieść. Z dowodliwości drugiego
członu i z twierdzenia o stałej wynika, że także

Tn−1 ` ∀xn ¬ϕn(xn).

Wobec odpowiedniego prawa de Morgana, stąd i z dowodliwości pierwszego członu
formuły z (1) wynika wbrew założeniu, że teoria Tn−1 jest sprzeczna. 2

Z udowodnionego faktu wynika, że teoria

T∞ =
⋃
n∈N

Tn

jest niesprzeczna. Ponieważ ewentualny dowód sprzeczności zawierałby skończenie
wiele wyrazów i powoływałby się na skończenie wiele aksjomatów, byłby także
dowodem sprzeczności pewnej teorii Tn dla dostatecznie dużego n.

Krok 3. Na koniec teorię T∞ powiększymy do teorii zupełnej. Weźmy w tym
celu ciąg

ψ1, ψ2, ψ3, . . .

wszystkich możliwych zdań i przyjmijmy, że T ∗0 = T∞ oraz

T ∗n+1 =
{
T ∗n jeżeli T ∗n ` ψn+1,
T ∗n ∪ {¬ψn+1} w przeciwnym przypadku.

Przez indukcję dowodzimy, że wszystkie teorie T ∗n są niesprzeczne. Niesprzeczną
jest więc również teoria

T ∗ =
⋃
n∈N

T ∗n .

Z konstrukcji wynika, że teoria T ∗ jest zupełna. Dowolne zdanie ψ jest jednym z
wyrazów rozważanego ciągu zdań, na przykład ψn+1 = ψ. Definiując T ∗n+1 podej-
mujemy decyzję, czy w teorii T ∗ da się dowieść zdanie ψ, czy jego negację. Jeżeli
T ∗n ` ψn+1, to oczywiście T ∗ ` ψ. W przeciwnym razie ¬ψn+1 uznajemy za nowy
aksjomat teorii T ∗ i wtedy mamy T ∗ ` ¬ψ.

Udało się nam skonstruować niesprzeczną, zupełną teorię T ∗ zawierającą teorię
T i wszystkie aksjomaty henkinowskie Ψn. Dla takich teorii łatwo zbudować ich
model.

Krok 4. Konstrukcja modelu teorii T ∗. Będziemy definiować pewną strukturę
A. Uniwersum tej struktury będzie zbiór Tc termów stałych rozważanego języka
ze stałymi ai. W takiej strukturze w naturalny sposób definiujemy interpretacje
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symboli funkcyjnych: k-argumentowy symbol f jest interpretowany jako funkcja
F : T kc → Tc zdefiniowana wzorem

F (t1, . . . , tk) = f(t1, . . . , tk),

a więc F oznacza operację tworzenia termu zaczynającego się symbolem f . W
takich strukturach dla dowolnego termu t i dowolnego wartościowania h zachodzi
wzór t[h] = t[x ← h(x)][y ← h(y)] . . . (wartością termu t przy wartościowaniu h
jest wynik podstawiania za zmienne termów wskazanych przez wartościowanie h).
Zauważmy też, że w takiej sytuacji t[h] jest zarówno wartością termu i szczególnym
termem stałym. Może więc być częścią innego termu lub formuły, i może być
ponownie wartościowany. Jako term stały, t[h] spełnia równość t[h][h′] = t[h].

Interpretację R w strukturze A symbolu relacyjnego r definiujemy w następu-
jący sposób:

(t1, . . . , tk) ∈ R ⇐⇒ T ∗ ` r(t1, . . . , tk)
dla dowolnych t1, . . . , tk ∈ Tc. W ten sposób struktura A została zdefiniowana.
Bez trudu sprawdzamy, że dla dowolnych termów t1, . . . , tk (niekoniecznie stałych)
i wartościowania h zachodzi następującą własność:

A |= r(t1, . . . , tk)[h] ⇐⇒ T ∗ ` r(t1[h], . . . , tk[h]).

Dla stałych termów t1, . . . , tk zachodzi także

A |= r(t1, . . . , tk) ⇐⇒ T ∗ ` r(t1, . . . , tk).

Aby zakończyć dowód wystarczy pokazać, że dla dowolnego zdania ψ zachodzi
równoważność

A |= ψ ⇐⇒ T ∗ ` ψ. (2)

W dowodzie przyda się następujący lemat:

Lemat 8.8 Przypuśćmy, że T jest teorią niesprzeczną i zupełną, a ϕ i ψ są zda-
niami. Wtedy następujące pary warunków są równoważne:

1) T ` ϕ ∨ ψ oraz T ` ϕ lub T ` ψ,

2) T ` ¬ϕ oraz nieprawda, że T ` ϕ.2

Przytoczoną przed lematem równoważność (2) dowodzimy przez indukcję ze
względu na budowę zdania ψ. Ustaliliśmy już, że ta równoważność zachodzi dla
zdań atomowych. Z podanego lematu wynika, że zachodzi dla zdań będących ne-
gacjami i alternatywami zdań prostszych pod warunkiem, że zachodzi dla członów
tych zdań. Pozostało zająć się zdaniami rozpoczynającymi się kwantyfikatorem.

Przyjmijmy więc, że ψ = ∃xϕ i załóżmy, że A |= ψ. Z definicji spełniania
wynika, że wtedy

A |= ϕ[h]

przy pewnego wartościowania h. Z lematu o podstawianiu (zadanie z listy 1) otrzy-
mujemy, że

A |= ϕ[x← h(x)].

Pamiętajmy, że ϕ[x ← h(x)] jest zdaniem i spełnianie tej formuły nie zależy od
wartościowania. Dla formuły ϕ[x ← h(x)] możemy skorzystać z założenia induk-
cyjnego. Wynika z niego, że

T ∗ ` ϕ[x← h(x)].
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Stąd oczywiście wynika, że

T ∗ ` ∃xϕ, czyli T ∗ ` ψ.

Aby dowieść implikację odwrotną zakładamy, że T ∗ ` ψ, czyli że T ∗ ` ∃xϕ.
Formuła ϕ ma tylko jedną zmienną wolną i jest postaci ϕn(xn) dla pewnego n.
Wobec tego ψ = ∃xnϕn(xn). Wiemy też, że Φn jest jednym z aksjomatów teorii
T ∗. Wobec tego, T ∗ ` ϕn[xn ← cn]. Stąd i z założenia indukcyjnego wynika, że

A |= ϕn[xn ← cn].

Z lematu o podstawianiu (zadanie z listy 1) otrzymujemy, że

A |= ϕn[h], albo A |= ϕ[h]

dla podstawienia h takiego, że h(x) = h(xn) = cn. Teraz wystarczy skorzystać z
definicji spełniania:

A |= ∃xϕ, czyli A |= ψ.

W ten sposób pokazaliśmy, że T ∗ jest teorią modelu A. Więc w szczególności
struktura A jest modelem mniejszej teorii T . 2


