
Funkcja Steinhausa - Mosera

Zad. 1. Przyjmijmy, że

M(n, 1, 3) = nn, M(n, 1, p+1) =M(n, n, p), M(n,m+1, p) =M(M(n, 1, p),m, p).

Udowodnij, że te trzy równości definiują funkcję rekurencyjną. Znajdź dziedzinę tej
funkcji. Czy jest to funkcja pierwotnie rekurencyjna (dziedzinę można poprawić!)?
Funkcja ta bywa nazywana funkcją Steinhausa - Mosera.

1 Własności funkcji Steinhausa - Mosera

Lemat 1.1 Funkcja Steinhausa - Mosera jest określona dla wszystkich trójek ze
zbioru {(n,m, p) ∈ N3 : n ­ 1 ∧m ­ 1 ∧ p ­ 3}. 2

Lemat 1.2 Dla wszystkich m ­ 1 i p ­ 3 mamy M(1,m, p) = 1.

Dowód.Najpierw przez indukcję ze względu nam pokazujemy, że jeżeliM(1, 1, p) =
1, to dla wszystkich m ­ 1 zachodzi równość M(1,m, p) = 1.

Pierwszy krok tego dowodu indukcyjnego jest oczywisty. Ponadto, jeżeliM(1,m, p) =
1, to także

M(1,m+ 1, p) =M(M(1, 1, p),m, p) =M(1,m, p) = 1.

Teraz, aby zakoczyć dowód wystarczy pokazać, że równość M(1, 1, p) = 1 za-
chodzi dla wszystkich p ­ 3. To również dowodzimy przez indukcję. Dla p = 3
mamy

M(1, 1, 3) = 11 = 1

i bez trudu zauważamy, że

M(1, 1, p+ 1) =M(1, 1, p). 2

1.1 Monotoniczność ze względu na pierwszą zmienną

Będziemy rozważać funkcje naturalne określone dla argumentów ­ 1 i przyjmu-
jącę wartości ­ 1. W takim przypadku przytoczone własności będzie uważać za
domyślne założenia. Dla takich funkcji mamy w szczególności

Lemat 1.3 Złożenie funkcji rosnących jest funkcją rosnącą. 2

Lemat 1.4 Jeżeli f jest funkcją rosnącą, to n ¬ f(n) dla wszystkich n ­ 1.
Jeżeli dodatkowo założymy, że 2 < f(2), to dla wszystkich n ­ 2 zachodzi także
nierówność n < f(n). 2

Przyjmijmy, że dla m ­ 1 i p ­ 3 funkcja Mm,p jest definiowana wzorem

Mm,p(n) =M(n,m, p).

Fakt 1.5 Z wzoruM(n,m+1, p) =M(M(n, 1, p),m, p) wynika, że funkcjaMm+1,p
jest złożeniem Mm,p ◦M1,p funkcji Mm,p i M1,p. W szczególności mamy

Mm+1,p(n) =Mm,p(M1,p(n)).

Wniosek 1.6 Dla dowolnego p ­ 3, jeżeli funkcja M1,p jest rosnąca, to dla m ­ 1
wszystkie funkcje Mm,p są rosnące.



Dowód. Z powyższego faktu bez trudu wyprowadzamy wniosek korzystając z
zasady indukcji i wcześniejszego lematu o zlożeniu funkcji rosnących. 2

Lemat 1.7 Jeżeli dla pewnego p ­ 3 funkcja M1,p jest rosnąca, to także funkcja
M1,p+1 jest rosnąca.

Dowód. Zauważmy, że

M1,p+1(n+ 1) =M(n+ 1, 1, p+ 1) =M(n+ 1, n+ 1, p) =Mn+1,p(n+ 1) =

=Mn,p(M1,p(n+ 1)) ­Mn,p(n+ 1) > Mn,p(n) =M(n, n, p) =

=M(n, 1, p+ 1) =M1,p+1(n).

Wykazana nierówność świadczy o tym, że funkcja M1,p+1 jest rosnąca. 2

Wniosek 1.8 Dla dowolnych m ­ 1 i p ­ 3 wszystkie funkcje Mm,p są rosnące. 2

1.2 Monotoniczność ze względu na pozostałe zmienne

Lemat 1.9 Dla p ­ 3 wartość M(2, 1, p) jest słabo rosnącą funkcją p. W szcze-
gólności, dla wszystkich takich p mamy M1,p(2) =M(2, 1, p) ­M(2, 1, 3) = 4.

Dowód. Zauważmy, że

M(2, 1, p+ 1) =M(2, 2, p) =M(M(2, 1, p), 1, p) ­M(2, 1, p)

na mocy poprzedniego wniosku i lematu 1.4. Druga część tezy jest oczywistym
wnioskiem z pierwszej części. 2

Lemat 1.10 Dla wszystkich p ­ 3 oraz n > 1 wyrażenie M(n,m, p) jest rosnącą
funkcją zmiennej m.

Dowód. Zauważmy, że

M(n,m+ 1, p) =Mm+1,p(n) =Mm,p(M1,p(n)) > Mm,p(n) =M(n,m, p).

Nierówność w powyższym wzorze jest konsekwencją monotoniczności funkcjiMm,p
i wynika z lematu 1.4 na podstawie poprzedniego. 2

Lemat 1.11 Dla wszystkich m ­ 1 oraz n > 1 wyrażenie M(n,m, p) jest rosnącą
funkcją zmiennej p.

Dowód. Udowodnimy przez indukcję ze względu nam, że zwiększając p o 1 zwięk-
szamy wartość wyrażenia M(n,m, p).

Dla m = 1 korzystamy z poprzedniego lematu. Mamy więc

M(n, 1, p) < M(n, n, p) =M(n, 1, p+ 1).

Drugi krok indukcyjny wynika z następujących rachunków:

M(n,m+ 1, p+ 1) =M(M(n, 1, p+ 1),m, p+ 1) > M(M(n, 1, p),m, p+ 1) >

> M(M(n, 1, p),m, p) =M(n,m+ 1, p).

Pierwsza nierówność wynika z nierówności wykazanej w pierwszym kroku induk-
cyjnym i z wniosku 1.8, druga – z założenia indukcyjnego. 2



1.3 Pewna własność

Lemat 1.12 Dla wszystkich m,n ­ 1 oraz p ­ 3 zachodzi wzór

M(M(n, 1, p),m, p) =M(M(n,m, p), 1, p).

Dowód. Lemat dowodzimy przez indukcję ze względu na m. Dla m = 1 wzór jest
oczywisty. Zauważmy, że

M(M(n,m+ 1, p), 1, p) =M(M(M(n,m, p), 1, p), 1, p) =

=M(M(M(n, 1, p),m, p), 1, p) =M(M(n, 1, p),m+ 1, p). 2

1.4 Funkcja Ackermanna

Udowodnione własności funkcji m pozwalają porównać ją z funkcją Ackermana.
Przypomnijmy więc równości definiujące funkcją Ackermana A : N2 → N . Są to
następujące równości

A(0, n) = n+1, A(m+1, 0) = A(m, 1) oraz A(m+1, n+1) = A(m,A(m+1, n)).

Nietrudno zauważyć, że wartość A(3,m) dana jest wzorem

A(3, n) = 2n+3 − 3.

1.5 Związek z funkcją Ackermanna

Twierdzenie 1.13 Dla wszystkich liczb naturalnych n i wszystkich naturalnych
m ­ 3 zachodzi nierówność

m+ A(m,n) < M(m+ n, 1,m).

Dowód. Nierówność tę dowiedziemy przez indukcję ze schematem, który został
wykorzystany w definicji funkcji Ackermanna.

Pierwszy krok: najpierw nierówność dowodzimy dla m = 1 i p = 3. Oczywiście
mamy

3 + A(3, n) = 2n+3 < (n+ 3)n+3 =M(n+ 3, 1, 3).

Drugi krok:

m+ 1 +A(m+ 1, 0) = m+ 1 +A(m, 1) < 1 +M(m+ 1, 1,m) ¬M(m+ 1, 1,m+ 1)

Trzeci krok, założenia:

m+ A(m,n) < M(m+ n, 1,m) dla wszyskich n ∈ N

m+ 1 + A(m+ 1, n) < M(m+ n+ 1, 1,m+ 1).

Teza:
m+ 1 + A(m+ 1, n+ 1) < M(m+ n+ 2, 1,m+ 1).

Dowód:

m+1+A(m+1, n+1) = m+1+A(m,A(m+1, n)) < 1+M(m+A(m+1, n), 1,m) ¬

¬ 1 +M(M(m+ n+ 1, 1,m+ 1), 1,m) < M(M(m+ n+ 1,m+ n+ 1,m), 1,m) =

=M(M(m+ n+ 1, 1,m),m+ n+ 1,m) =M(m+ n+ 1,m+ n+ 2,m) <

< M(m+ n+ 2,m+ n+ 2,m) =M(m+ n+ 2, 1,m+ 1)


