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Jacques Herbrand i jego algorytm 

 
Dowodzenie twierdzeń zawsze fascynowa-

ło ludzi, a współcześnie można próbować 

do tego wykorzystać komputery. 

 

Antoni Kościelski 

 

Najprostsza metoda automatycznego do-

wodzenia została przedstawiona w artykule 

Logika z początku XX wieku
1
 i polega po 

prostu na poszukaniu dowodu. Implemen-

tacja tego algorytmu, wynikającego bezpo-

średnio z definicji prawa logicznego, za-

pewne generowałaby najpierw krótkie, 

następnie coraz dłuższe ciągów znaków i 

sprawdzała, czy przypadkiem nie został 

znaleziony dowód danej formuły. Przyj-

mijmy dla uproszczenia, że piszemy do-

wody formalne posługując się dziesięcio-

ma znakami, a interesujące nas prawo ma 

dowód wymagający napisania przynajm-

niej 101 znaków. Taki algorytm, przed 

znalezieniem dowodu, powinien przebadać 

wszystkie stuznakowe teksty. Jest ich 

10
100

. Współczesne komputery bez pro-

blemów wykonują około miliarda rozka-

zów na sekundę. Przyjmijmy, że są w sta-

nie przeanalizować w ciągu sekundy mi-

liard potencjalnych dowodów. Łatwo oce-

nić, ile lat musiałoby trwać poszukiwanie 

dowodu. W ten sposób nie da się stworzyć 

sensownego programu.  

 

Nadzieję na bardziej efektywne programy 

daje między innymi twierdzenie Herbranda 

charakteryzujące tautologie rachunku 

kwantyfikatorów. Dowód tego twierdzenia 

zawiera metodę sprawdzania, czy dana 

formuła jest taką tautologią, znaną jako 

algorytm Herbranda. Wobec twierdzenia o 

pełności w ten sam sposób możemy 

sprawdzać, czy formuła jest prawem ra-

chunku kwantyfikatorów. Po roku 1959 

algorytm Herbranda odegrał znaczącą rolę 

w rozwoju informatyki. 

 

                                                 
1
 Matematyka, 7/2008. Ten artykuł zawiera wiele 

informacji potrzebnych do zrozumienia tego tekstu. 

 
 
Jacques Herbrand podczas ostatniej wspinaczki. 

 

Sylwetka Herbranda  
 

Jacques Herbrand urodził się w Paryżu 12 

lutego 1908 roku. Był jedynakiem, a rodzi-

ce dostrzegli jego ogromny talent i poma-

gali go rozwijać. Zwykle był najlepszy. W 

wieku 17 lat zdał najlepiej spośród kandy-

datów egzaminy do École Normale Supér-

ieure. W 1928 roku zajął pierwsze miejsce 

w Concours d’Agrégation i uzyskał prawo 

nauczania we francuskich szkołach. Dwa 

lata poświęcił na przygotowanie doktoratu. 

Na przełomie 1929 i 1930 roku przerwał 

badania naukowe i odbył służbę wojskową, 

po czym otrzymał z najwyższymi honora-

mi stopień doktora i został wyróżniony 

Nagrodę Rockefellera. Nagroda umożliwi-

ła mu roczny pobyt na uniwersytetach 

niemieckich. Współpracował w Berlinie z 

późniejszym twórcą pierwszego kompute-

ra, Johnem von Neumannem i w Hambur-

gu z Emilem Artinem. Pracował też w Ge-

tyndze z Emmą Nöther. Niezwłocznie po 

powrocie do Francji wybrał się w góry. 

Ledwo rozpoczęte wakacje skończyły się 

szybko i tragicznie: zginął 27 lipca 1931 

roku w pobliżu małej osady La Bérarde w 

Alpach, niedaleko Grenoble, podczas 

schodzenia z czterotysięcznika La Barre 

des Écrins (taki szczegół nie łatwo ustalić z 

całą pewnością). Ot po prostu lina, od któ-

rej zależał los Herbranda, w jednym miej-

scu nie była dobrze zamocowana.  
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La Barre des Écrins, 4102 m npm, jeden z najwyż-

szych szczytów we Francji. 

 

Zdążył napisać 10 artykułów poświęco-

nych logice – zajmują ponad 250 stron 

druku
2
 – i kilka innych, poświęconych za-

gadnieniom algebraicznym. Najważniej-

szym jest praca doktorska pod tytułem 

Recherches sur la théorie de la démons-

tration. Ciekawostką jest, że ukazała się w 

Polsce, w Pracach Towarzystwa Nauko-

wego Warszawskiego (nr 33) z 1930 roku, 

wydawanych w liczącym się wówczas w 

świecie ośrodku naukowym prowadzącym 

badania logiczne. Zawiera konstruktywny 

dowód twierdzenia o pełności, w tym 

ogólną metodę dowodzenia praw rachunku 

kwantyfikatorów. Przedstawione w niej 

rozumowanie przypomina naszkicowany w 

Logice z początku XX wieku dowód twier-

dzenia o pełności dla rachunku zdań.  

 

Przeglądając osiągnięcia Herbranda można 

zauważyć pewną paralelność z badaniami 

Kurta Gödla. Obaj uczeni zajmowali się 

podobnymi zagadnieniami, choć widać też 

pewne różnice. Największe osiągnięcia 

Gödla tamtego okresu mają wydźwięk ne-

gatywny: wykazywał on niemożność zre-

alizowania programu Hilberta. Herbrand – 

przeciwnie – starał się ten program usilnie 

realizować, a jego podobne rezultaty mają 

charakter pozytywny i są konstruktywne. 

Obaj dowiedli twierdzenie o pełności dla 

rachunku kwantyfikatorów, ale Herbrand 

zrobił to w sposób dający się zalgorytmi-

                                                 
2
 Jacques Herbrand Logical Writings, pod edycją 

Warrena Golfarba, D Reidel Publishing Company, 

1971. 

zować. Razem z twierdzeniem o niezupeł-

ności arytmetyki Gödel opublikował też 

twierdzenie o niedowodliwości nie-

sprzeczności arytmetyki. W odpowiedzi 

Herbrand dowiódł niesprzeczność frag-

mentu arytmetyki. W swoich rozważaniach 

Gödel posłużył się funkcjami pierwotnie 

rekurencyjnymi chyba nie zdając sobie 

sprawy, że wykorzystuje funkcje, które są 

obliczalne. W ostatniej pracy o niesprzecz-

ności arytmetyki ukończonej tuż przed 

tragicznym wyjazdem w góry, która – tak 

się złożyło – dotarła do redakcji w dniu 

śmierci autora, Herbrand posłużył się – być 

może – już klasą funkcji rekurencyjnych i 

niewykluczone, że zdawał sobie sprawę z 

obliczalności tych funkcji. Wcześniej sy-

gnalizował Gödlowi potrzebę i sensowność 

rozszerzenia definicji rekurencyjności.        

 

Te ostatnie pomysły Herbranda są bardzo 

ciekawe dla osób interesujących się po-

czątkami informatyki. Jednak nie będzie-

my się nimi zajmować w tym artykule. 

Dokładniej zapoznamy się teraz z algoryt-

mem pozwalającym automatycznie dowo-

dzić twierdzenia.  

 

Wprowadzenie do algorytmu  

 

Swoje rozważania z pracy doktorskiej 

Herbrand rozpoczyna od charakteryzacji 

tautologii, w których wszystkie kwantyfi-

katory znajdują się na początku formuły i 

są to wyłącznie kwantyfikatory egzysten-

cjalne. Takie formuły będziemy nazywać 

egzystencjalnymi. Herbrand zauważył, że  

 

Lemat. Formuła egzystencjalna x  (dla 

uproszczenia: z jednym kwantyfikatorem) 

jest tautologią wtedy i tylko wtedy, gdy 

tautologią rachunku zdań jest alternatywa  

)(...)()( 21 nttt   , 

otrzymana w wyniku podstawienia w for-

mule φ pewnych wyrażeń nttt ,...,, 21 , które 

tworzymy z symboli występujących w φ.  

 

Trudno podać przykład ciekawej egzysten-

cjalnej tautologii, choć za chwilę przeko-
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namy się, że jest ich bardzo dużo. Aby 

wyjaśnić spostrzeżenie Herbranda, zaj-

miemy się tautologią ψ postaci  

)))(()(( xfAxAx  . 

Formuła ta wyraża pewną własność bliżej 

nieokreślonych elementów i mówi coś o 

relacji oznaczanej symbolem A i funkcji 

nazywanej f.  

 

Symbole A i f można interpretować na nie-

skończenie wiele sposobów. Można stwo-

rzyć nieskończenie wiele ,,światów”, w 

których formuła ψ – jako tautologia – po-

winna być prawdziwa. Herbrand zauważył, 

że wszystkie te ,,światy” można podzielić 

na skończenie wiele rodzajów i to tak, że w 

każdym ze ,,światów” ustalonego rodzaju 

jeden z elementów, których istnienie 

stwierdza formuła ψ, daje się wyrazić usta-

lonym wzorem, charakterystycznym dla 

,,światów” tego rodzaju. 

 

W przypadku formuły ψ każdy ,,świat” jest 

opisany przez wskazanie zbioru U elemen-

tów, których własności są wyrażane, jed-

noargumentowej relacji A0 w zbiorze U, 

funkcji f0 przekształcającej U w U oraz 

jednego z elementów x0 należącego do U 

(będzie on najczęściej wartością zmiennej 

x). Są dwa rodzaje ,,światów”: takie, w 

których prawdziwa jest formuła A(f(x)) (w 

nich wartość funkcji f0 dla argumentu x0 

jest w relacji A0) i pozostałe. W ,,światach” 

pierwszego rodzaju jednym z elementów, 

których istnienie stwierdza formuła ψ, jest 

x0. Formuła ))(()( xfAxA   okazuje się 

wtedy prawdziwa jako implikacja o praw-

dziwym następniku. W pozostałych 

,,światach” jednym z takich elementów jest 

f0(x0). Jeżeli zmienną x zinterpretujemy 

jako ten element, to formuła 

))(()( xfAxA   będzie prawdziwa jako 

implikacja o fałszywym poprzedniku. Jeże-

li jednak przyjmiemy, że wartością zmien-

nej x jest x0, to będzie prawdziwa formuła 

)))((())(( xffAxfA  . W każdym ze 

,,światów” jest więc prawdziwa alternaty-

wa 

))))((())((()))(()(( xffAxfAxfAxA 

. 

Wobec tego jest to tautologia i to zarówno 

w sensie rachunku kwantyfikatorów, jak i 

rachunku zdań, podobnie jak każda formu-

ła postaci )()( rqqp  .  

 

W dalszym ciągu swojej pracy doktorskiej 

Herbrand pokazuje, że dowolna formuła Ψ 

jest tautologią wtedy i tylko wtedy, gdy 

pewna, dająca się łatwo skonstruować 

formuła egzystencjalna jest tautologią (ist-

nieje więc dużo egzystencjalnych tautolo-

gii). W dowodzie tej równoważności, po 

sprowadzeniu formuły Ψ do postaci nor-

malnej (z kwantyfikatorami na początku 

formuły) Herbrand wykorzystuje prze-

kształcenie zwane skolemizacją. Pierwszy 

raz tego typu przekształcenie zastosował 

norweski matematyk Thoralf Skolem.   

 

Skolemizacja formuły ),( yxyx   polega 

na usunięciu pierwszego kwantyfikatora 

egzystencjalnego i zastąpieniu w formule 

φ(x,y) zmiennej y wyrażeniem f(x), gdzie f  

jest nowym, dotychczas niewykorzystywa-

nym symbolem. Po wykonaniu tego prze-

kształcenia z formuły ),( yxyx   otrzy-

mujemy ))(,( xfxx . Ogólniej, między 

nawiasami w podstawianym wyrażeniu f(x) 

umieszczamy wszystkie zmienne związane 

kwantyfikatorami ogólnymi poprzedzają-

cymi usuwany. Opisaną operację powta-

rzamy tak długo, aż znikną wszystkie 

kwantyfikatory egzystencjalne. Jeżeli usu-

wany kwantyfikator znajduje się na po-

czątku formuły, to zamiast wyrażenia f(x) 

podstawiamy po prostu f. 

 

Skolemizacja  ma pewne logiczne uzasad-

nienie. Zastępuje zdanie stwierdzające, że 

dla każdego x istnieje y o własności φ 

przez zdanie stwierdzające, że dla każdego 

x pewien, zależny od x element  f(x) ma 

własność φ. Zauważmy też, że po skolemi-

zacji otrzymujemy zdanie zapisane w bo-

gatszym języku, za pomocą większej licz-

by symboli.  
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Algorytm Herbranda 

 
Dane: formuła, w naszym przypadku 

(a)                 x A x B x x B x A x( ( ) ( )) ( ( ) ( )) . 

Pytanie: czy dana formuła jest tautologią? 

 

Krok 1: sprowadzamy formułę (a) do postaci normalnej.  

Eliminujemy z niej wszystkie implikacje i skorzystamy z praw de Morgana:  

   x A x B x x B x A x( ( ) ( )) ( ( ) ( )) . 

Zastępujemy zmienną x przez y: 

   x A x B x y B y A y( ( ) ( )) ( ( ) ( )) . 

Przesuwamy kwantyfikatory na początek formuły:  

(b)                   ))()())()((( yAyBxBxAyx  . 

 

Krok 2: negujemy formułę (b): 

(c)                  ))()())()((( yAyBxBxAyx   

 

Krok 3: przeprowadzamy skolemizację formuły (c): 

 )))(())(())()((( xfAxfBxBxAx  , 

 

Krok 4: raz jeszcze negujemy wynik i otrzymujemy:     

(d)             )))(())(())()((( xfAxfBxBxAx  , 

 

 

Krok 5: w formule (d) opuszczamy kwantyfikator, a pozostałą część sprowadzamy do ko-

niunkcyjnej postaci normalnej: 

(e)        (( ( ) ( ( )) ( ( ))) ( ( ) ( ( )) ( ( ))))A x B f x A f x B x B f x A f x      . 

 

Krok 6: szukamy odpowiednich podstawień (w nieokreślony na razie sposób, na przykład 

przeglądając wszystkie możliwości): w rozważanym przykładzie podstawiamy za zmienną x 

samą zmienną x oraz wyrażenie f(x) otrzymując 

 

 (f)        (( ( ) ( ( )) ( ( ))) ( ( ) ( ( )) ( ( ))))A x B f x A f x B x B f x A f x       

oraz 

 (g)   (( ( ( )) ( ( ( ))) ( ( ( )))) ( ( ( )) ( ( ( ))) ( ( ( )))))A f x B f f x A f f x B f x B f f x A f f x      . 

 

Krok 7: sprawdzamy, czy alternatywa koniunkcji (f) i (g) jest tautologią, na przykład spro-

wadzając ją do koniunkcyjnej postaci normalnej. Aby przekonać się, że jest tautologią, wy-

starczy zaobserwować, że cztery alternatywy utworzone z członów koniunkcji (f) i (g) są tau-

tologiami.  

 

Krok 8: Jeżeli przekonamy się, że alternatywa formuł (f) i (g) jest tautologią (rachunku 

zdań), to stwierdzamy, że formuła (a) jest tautologią (rachunku kwantyfikatorów).  

 

 
Rys. 1
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Łącząc te dwa elementy otrzymujemy  

 

Algorytm Herbranda   
 

Został on przedstawiony na rysunku 1 na 

przykładzie formuły (a)   
           

)),()(())()(( xAxBxxBxAx 

 

która jest prostszą wersją jednej z tautolo-

gii przytoczonych w artykule Logika z po-

czątku XX wieku. Aby zbadać, czy rzeczy-

wiście jest to tautologia rachunku kwanty-

fikatorów, najpierw sprowadzamy ją do 

postaci normalnej, w której wszystkie 

kwantyfikatory znajdują się na początku. 

Formuła (b) jest postacią normalną formu-

ły (a). 

 

Istotnym krokiem algorytmu jest skolemi-

zacja. W przypadku formuły (c) polega ona 

na usunięciu pierwszego kwantyfikatora 

egzystencjalnego i zastąpieniu w reszcie 

formuły związanej tym kwantyfikatorem 

zmiennej y wyrażeniem f(x).  

 

Formuła (a) jest tautologią  wtedy i tylko 

wtedy, gdy formuła (d) jest tautologią. Nie 

podejmuję się uzasadnić teraz tego faktu. 

Może on budzić wątpliwości. Wykonywa-

ne przekształcenia są bardzo formalne, a 

ich sens logiczny nie jest widoczny. Fakt 

ten jest jednak prawdziwy. Sam algorytm 

też można skrócić usuwając dwukrotne 

negowanie. Dzięki negowaniu został 

przedstawiony za pomocą skolemizacji. 

Przy okazji zauważmy, że w podany spo-

sób można skonstruować wiele egzysten-

cjalnych tautologii. 

 

Dalej musimy jeszcze zbadać, czy formuła 

(d) jest tautologią. W tym celu korzystamy 

ze spostrzeżenia Herbranda charakteryzu-

jącego tautologie będące formułami egzy-

stencjalnymi. Wymaga to znalezienia tau-

tologii określonej postaci. Metoda szukania 

takiej tautologii nie została podana, ale w 

ten sposób Herbrand sprowadził badanie, 

czy formuła jest tautologią rachunku kwan-

tyfikatorów, do sprawdzania, czy pewna  

szczególna forma zdaniowa jest tautologią.   

 

Spróbujmy jeszcze przekonać się metodą 

Herbranda, że formuła  x yR x y( , )  nie 

jest tautologią. Nie trzeba jej sprowadzać 

do postaci normalnej. Po zanegowaniu, 

skolemizacji i ponownym negowaniu 

otrzymujemy formułę xR x f x( , ( )) . Wy-

konując podstawienia i tworząc alternaty-

wę podstawień otrzymujemy formuły ta-

kie, jak 

 
R x f x R ff x fff x R fff x ffff x( , ( )) ( ( ), ( )) ( ( ), ( )) 

 

(pominąłem niektóre nawiasy). Aby prze-

konać się, że formuła  x yR x y( , )  nie jest 

tautologią, wystarczy zauważyć, że w tak 

otrzymywanych alternatywach nie pojawi 

się negacja elementarnego członu, a w tau-

tologiach – przeciwnie – musi wystąpić
3
. 

 

Twierdzenie o pełności wg Herbranda  

 

Swój algorytm Herbrand zastosował w 

dowodzie twierdzenia o pełności. Istotna 

część tego twierdzenia polega na wykaza-

niu, że tautologie są prawami rachunku 

kwantyfikatorów. Mając tautologię Ψ, 

Herbrand wykonuje algorytm i najpierw 

tworzy równoważną jej formułę egzysten-

cjalną x . Następnie znajduje alternaty-

wę )(...)()( 21 nttt    będącą tauto-

logią rachunku zdań. Zgodnie z twierdze-

niem o pełności dla rachunku zdań ta alter-

natywa ma dowód. Nietrudno zauważyć, 

że wynika z niej formuła x . Dalej Her-

brand konstruktywnie pokazał, jak z tej 

formuły wynika formuła Ψ. Ten fragment 

dowodu wymaga posłużenia się odpo-

wiednimi własnościami skolemizacji.  

 

Twierdzenie o pełności pozwala inaczej 

spojrzeć na algorytm Herbranda. Algorytm 

ten nie tylko bada, czy dana formuła jest 

                                                 
3
 Także ta kwestia została wyjaśniona w artykule 

Logika z początku XX wieku. 
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tautologią rachunku kwantyfikatorów. 

Umożliwia także sprawdzanie, czy intere-

sująca nas formuła jest prawem rachunku 

kwantyfikatorów. Wobec twierdzenia o 

dedukcji (znalezionego także przez Her-

branda), pozwala w wielu przypadkach 

badać, czy dana formuła jest twierdzeniem.  

 

Nierozstrzygalność rachunku kwantyfi-

katorów 
 

Zarówno algorytm Herbranda, jak i opisa-

ny na początku artykułu naiwny algorytm 

nie pozwalają rozstrzygać, czy dana for-

muła jest twierdzeniem. Herbrand nie po-

dał, jak w 6. kroku algorytmu efektywnie 

znaleźć potrzebne podstawienia t1,t2,…,tn. 

Najprostsza metoda znowu polega na prze-

szukaniu wszystkich możliwych podsta-

wień, a jest ich nieskończenie wiele. Takie 

poszukiwanie może się nigdy nie zakoń-

czyć. Mimo to Herbrand  bardzo starannie 

przeanalizował pojęcie twierdzenia i uzy-

skał wszystko, co można było uzyskać. 

Wspomnianej wady obu algorytmów nie 

da się poprawić.  

 

Właściwie powinno być to wiadomo już w 

momencie opublikowania pracy Herbran-

da. Wtedy jednak nikt nie potrafił skoja-

rzyć ustalonych faktów, nikt też nie zdecy-

dował się na sformułowanie twierdzenia o 

nierozstrzygalności rachunku kwantyfika-

torów. Zgodnie z dzisiejszą wiedzą, z pra-

cy Kurta Gödla z 1931 roku o niezupełno-

ści arytmetyki i z twierdzenia Herbranda o 

dedukcji opublikowanego w 1930 roku 

wynika, że zbiór praw rachunku kwantyfi-

katorów jest nierozstrzygalny. W tamtych 

czasach tego twierdzenia nie można było 

jednak dowieść. Głównie dlatego, że nikt 

nie potrafił precyzyjnie zdefiniować ani 

pojęcia algorytmu, ani problemu rozstrzy-

galnego.  

 

Te pojęcia dopiero się kształtowały. Kurt 

Gödel posłużył się już funkcjami pierwot-

nie rekurencyjnymi, ale prawdopodobnie 

nie zdawał sobie sprawy z tego, że był bli-

ski zdefiniowania pojęcia funkcji obliczal-

nej i dowiódł ważne zastosowania obli-

czalności. Jacques Herbrand zaproponował 

rozszerzenie definicji Gödla i był bliski 

zdefiniowania klasy funkcji rekurencyj-

nych, która jest jedną z formalizacji obli-

czalności (to także jest znaczącym osią-

gnięciem tego matematyka). Mało znane 

badania obliczalności prowadził jeszcze w 

dwudziestych latach XX w. Emil Post. 

Dopiero w 1936 roku Alonzo Church i 

niezależnie Alan Turing podali precyzyjną 

definicję obliczalności
4
.  

 

Sformalizowanie pojęcia obliczalności 

umożliwiło Alonzo Churchowi inne odczy-

tanie pracy Gödla o niezupełności arytme-

tyki.  Zauważył on, że rozumowanie Gödla 

dowodzi nie tylko niezupełności arytmety-

ki Peano, ale także uzasadnia nierozstrzy-

galność zbioru twierdzeń tej arytmetyki z 

nieskończonym zbiorem aksjomatów. I to 

właśnie jest powodem jej niezupełności: 

teoria zupełna ma bowiem rozstrzygalny 

zbiór twierdzeń. Nieco później w dość za-

wiły sposób wywnioskował stąd nieroz-

strzygalność rachunku kwantyfikatorów, a 

więc dowiódł, że nie ma algorytmu, który 

po przeanalizowaniu formuły udziela po-

prawnej i jednoznacznej odpowiedzi na 

pytanie, czy ta formuła jest, czy też nie jest 

prawem rachunku kwantyfikatorów.  

 

Ostateczny kształt dowodowi twierdzenia 

o nierozstrzygalności rachunku kwantyfi-

katorów nadał Raphael Mitchel Robinson, 

który zauważył, że dowód twierdzenia 

Gödla o niezupełności arytmetyki, a także 

dowód twierdzenia o nierozstrzygalności 

arytmetyki można powtórzyć dla pewnej 

arytmetyki ze skończonym zbiorem ak-

sjomatów. Aksjomaty tej arytmetyki moż-

na znaleźć w artykule Początki informatyki 

teoretycznej
5
, a Robinson oznaczał ją po 

prostu literą Q. Znając osiągnięcia Robin-

sona twierdzenie o nierozstrzygalności 

rachunku kwantyfikatorów możemy łatwo 

                                                 
4
 Definicja Turinga jest przedstawione w artykule 

Turing i jego maszyna zamieszczonym w 

,,Matematyce” 6/2006   
5
 ,,Matematyka” 1/2006 



7 

 

wyprowadzić z pracy Gödla posługując się 

twierdzeniem o dedukcji. 

 

Mimo że algorytm Herbranda nie w każ-

dym przypadku rozstrzyga, czy dana for-

muła jest prawem logiki, jest wykorzysty-

wany w programach umożliwiających au-

tomatyczne dowodzenie twierdzeń. Jedne z 

pierwszych eksperymentów z tym algo-

rytmem zostały przeprowadzone w IBM 

Research Center w 1959 roku przez Paula 

Gilmora i odegrały ważną rolę w rozwoju 

informatyki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Strona tytułowa ostatniej algebraicznej pracy Herbranda z notatką o autorze pióra Emmy Nöther

 


