Jacques Herbrand i jego algorytm

Dowodzenie twierdzen zawsze fascynowa-
to ludzi, a wspolczesnie mozna probowaé
do tego wykorzysta¢ komputery.

Antoni KoS$cielski

Najprostsza metoda automatycznego do-
wodzenia zostata przedstawiona w artykule
Logika z poczqtku XX wieku* i polega po
prostu na poszukaniu dowodu. Implemen-
tacja tego algorytmu, wynikajacego bezpo-
$rednio z definicji prawa logicznego, za-
pewne generowalaby najpierw krotkie,
nastepnie coraz dtuzsze ciggéw znakow i
sprawdzala, czy przypadkiem nie zostal
znaleziony dowdd danej formuty. Przyj-
mijmy dla uproszczenia, ze piszemy do-
wody formalne postugujac si¢ dziesiecio-
ma znakami, a interesujace nas prawo ma
dowod wymagajacy napisania przynajm-
niej 101 znakoéw. Taki algorytm, przed
znalezieniem dowodu, powinien przebadac
wszystkie stuznakowe teksty. Jest ich
10'%°. Wspotczesne komputery bez pro-
bleméw wykonujg okoto miliarda rozka-
zOw na sekunde. Przyjmijmy, ze s3 w sta-
nie przeanalizowa¢ w ciagu sekundy mi-
liard potencjalnych dowoddéw. Latwo oce-
ni¢, ile lat musiatoby trwa¢ poszukiwanie
dowodu. W ten sposob nie da si¢ stworzy¢
Sensownego programu.

Nadziej¢ na bardziej efektywne programy
daje miedzy innymi twierdzenie Herbranda
charakteryzujace tautologie rachunku
kwantyfikatoréw. Dowod tego twierdzenia
zawiera metod¢ sprawdzania, czy dana
formuta jest taka tautologia, znang jako
algorytm Herbranda. Wobec twierdzenia o
pelnosci w ten sam sposéb mozemy
sprawdza¢, czy formutla jest prawem ra-
chunku kwantyfikatorow. Po roku 1959
algorytm Herbranda odegrat znaczacg role
w rozwoju informatyki.

! Matematyka, 7/2008. Ten artykut zawiera wiele
informacji potrzebnych do zrozumienia tego tekstu.

Jacques Herbrand podczas ostatniej wspinaczki.
Sylwetka Herbranda

Jacques Herbrand urodzit si¢ w Paryzu 12
lutego 1908 roku. Byt jedynakiem, a rodzi-
ce dostrzegli jego ogromny talent i poma-
gali go rozwijaé. Zwykle byt najlepszy. W
wieku 17 lat zdat najlepiej sposrod kandy-
datow egzaminy do Ecole Normale Supér-
ieure. W 1928 roku zajat pierwsze miejsce
w Concours d’Agrégation i uzyskat prawo
nauczania we francuskich szkotach. Dwa
lata po$wiecit na przygotowanie doktoratu.
Na przetomie 1929 1 1930 roku przerwat
badania naukowe i odbyt stuzbe wojskowa,
po czym otrzymat z najwyzszymi honora-
mi stopien doktora i zostal wyrézniony
Nagrode Rockefellera. Nagroda umozliwi-
ta mu roczny pobyt na uniwersytetach
niemieckich. Wspotpracowat w Berlinie z
pdzniejszym tworca pierwszego kompute-
ra, Johnem von Neumannem i w Hambur-
gu z Emilem Artinem. Pracowat tez w Ge-
tyndze z Emma Noéther. Niezwlocznie po
powrocie do Francji wybrat si¢ w gory.
Ledwo rozpoczgte wakacje skonczyty sig
szybko i tragicznie: zginat 27 lipca 1931
roku w poblizu malej osady La Bérarde w
Alpach, niedaleko Grenoble, podczas
schodzenia z czterotysiecznika La Barre
des Ecrins (taki szczegot nie tatwo ustali¢ z
calg pewnoscig). Ot po prostu lina, od kto-
rej zalezatl los Herbranda, w jednym miej-
scu nie byta dobrze zamocowana.



La Barre des Ecrins, 4102 m npm, jeden z najwyz-
szych szczytow we Francji.

Zdazyl napisa¢ 10 artykutéw poswigco-
nych logice — zajmuja ponad 250 stron
druku® — i kilka innych, poswieconych za-
gadnieniom algebraicznym. Najwazniej-
szym jest praca doktorska pod tytulem
Recherches sur la théorie de la démons-
tration. Cickawostka jest, ze ukazata si¢ w
Polsce, w Pracach Towarzystwa Nauko-
wego Warszawskiego (nr 33) z 1930 roku,
wydawanych w liczacym si¢ woéwczas W
$wiecie osrodku naukowym prowadzacym
badania logiczne. Zawiera konstruktywny
dowdd twierdzenia o pelnosci, w tym
0go6lng metod¢ dowodzenia praw rachunku
kwantyfikatorow. Przedstawione w nigj
rozumowanie przypomina naszkicowany w
Logice z poczgthku XX wieku dowod twier-
dzenia o pelnosci dla rachunku zdan.

Przegladajac osiggniecia Herbranda mozna
zauwazy¢ pewng paralelno$¢ z badaniami
Kurta Godla. Obaj uczeni zajmowali si¢
podobnymi zagadnieniami, cho¢ widac tez
pewne réznice. Najwicksze osiggnigcia
Godla tamtego okresu majg wydzwiek ne-
gatywny: wykazywat on niemozno$¢ zre-
alizowania programu Hilberta. Herbrand —
przeciwnie — staral si¢ ten program usilnie
realizowac¢, a jego podobne rezultaty maja
charakter pozytywny i sg konstruktywne.
Obaj dowiedli twierdzenie o petnosci dla
rachunku kwantyfikatorow, ale Herbrand
zrobil to w sposob dajacy sie zalgorytmi-

2 Jacques Herbrand Logical Writings, pod edycja
Warrena Golfarba, D Reidel Publishing Company,
1971.

zowaé. Razem z twierdzeniem o niezupet-
nosci arytmetyki Godel opublikowat tez
twierdzenie o niedowodliwos$ci nie-
sprzecznosci arytmetyki. W odpowiedzi
Herbrand dowiédt niesprzecznosé frag-
mentu arytmetyki. W swoich rozwazaniach
Godel postuzyt sie funkcjami pierwotnie
rekurencyjnymi chyba nie zdajgc sobie
sprawy, ze wykorzystuje funkcje, ktore sa
obliczalne. W ostatniej pracy o niesprzecz-
nosci arytmetyki ukonczonej tuz przed
tragicznym wyjazdem w gory, ktora — tak
si¢ ztozyto — dotarta do redakcji w dniu
$mierci autora, Herbrand postuzyt si¢ — by¢
moze — juz klasa funkcji rekurencyjnych i
niewykluczone, ze zdawat sobie sprawe z
obliczalnosci tych funkcji. Wczesniej sy-
gnalizowal Godlowi potrzebe i sensownosé
rozszerzenia definicji rekurencyjnosci.

Te ostatnie pomysty Herbranda sg bardzo
ciekawe dla osob interesujacych sie po-
czatkami informatyki. Jednak nie bedzie-
my si¢ nimi zajmowac¢ w tym artykule.
Doktadniej zapoznamy si¢ teraz z algoryt-
mem pozwalajacym automatycznie dowo-
dzi¢ twierdzenia.

Whprowadzenie do algorytmu

Swoje rozwazania z pracy doktorskiej
Herbrand rozpoczyna od charakteryzacji
tautologii, w ktorych wszystkie kwantyfi-
katory znajduja si¢ na poczatku formuty i
s to wylacznie kwantyfikatory egzysten-
cjalne. Takie formuty bedziemy nazywac
egzystencjalnymi. Herbrand zauwazyt, ze

Lemat. Formuta egzystencjalna Ix¢ (dla
uproszczenia: z jednym kwantyfikatorem)
jest tautologia wtedy 1 tylko wtedy, gdy
tautologia rachunku zdan jest alternatywa
pt) v o) v...velt,),
otrzymana w wyniku podstawienia w for-
mule ¢ pewnych wyrazen t,t,,...,t , ktore
tworzymy z symboli wystepujacych w ¢.

Trudno poda¢ przyktad ciekawej egzysten-
cjalnej tautologii, cho¢ za chwile przeko-



namy sig¢, ze jest ich bardzo duzo. Aby
wyjasni¢ spostrzezenie Herbranda, zaj-
miemy si¢ tautologig y postaci

IX(A(X) = A(T (X))).
Formuta ta wyraza pewng wlasno$¢ blizej
nieokreslonych elementow i méwi co$ o
relacji oznaczanej symbolem A i funkcji
nazywanej f.

Symbole A i f mozna interpretowac na nie-
skonczenie wiele sposobow. Mozna Stwo-
rzy¢ nieskonczenie wiele ,,swiatow”, w
ktorych formuta y — jako tautologia — po-
winna by¢ prawdziwa. Herbrand zauwazyl,
ze wszystkie te ,,$wiaty” mozna podzieli¢
na skonczenie wiele rodzajow i to tak, ze w
kazdym ze ,,$wiatéw” ustalonego rodzaju
jeden z elementow, ktérych istnienie
stwierdza formuta v, daje si¢ wyrazié usta-
lonym wzorem, charakterystycznym dla
,,Swiatow” tego rodzaju.

W przypadku formuty y kazdy ,,Swiat” jest
opisany przez wskazanie zbioru U elemen-
tow, ktorych wlasnosci s wyrazane, jed-
noargumentowej relacji A w zbiorze U,
funkcji fo przeksztatcajacej U w U oraz
jednego z elementow Xp nalezacego do U
(bedzie on najczesciej wartoscig zmiennej
X). Sa dwa rodzaje ,,$wiatow”: takie, w
ktorych prawdziwa jest formuta A(f(x)) (w
nich wartos¢ funkcji fo dla argumentu xo
jest w relacji Ag) i pozostate. W ,,$wiatach”
pierwszego rodzaju jednym z elementow,
ktorych istnienie stwierdza formuta vy, jest
Xo. Formuta A(X) = A(f (X)) okazuje si¢
wtedy prawdziwa jako implikacja o praw-
dziwym nastepniku. W pozostatych
»Swiatach” jednym z takich elementéw jest
fo(Xo). Jezeli zmienng X zinterpretujemy
jako ten element, to formuta

A(X) = A(f (X)) bedzie prawdziwa jako
implikacja o fatszywym poprzedniku. Jeze-
li jednak przyjmiemy, ze warto$cig zmien-
nej X jest xo, to bedzie prawdziwa formuta
A(T (X)) = A(T(f(x))). W kazdym ze
,»Swiatow” jest wiec prawdziwa alternaty-
wa

(A(X) = AT (x))) v (AT (x)) = A(T (T (x))))

Wobec tego jest to tautologia i to zaréwno
w sensie rachunku kwantyfikatorow, jak i
rachunku zdan, podobnie jak kazda formu-
ta postaci (p=>q)v(g=r).

W dalszym ciagu swojej pracy doktorskiej
Herbrand pokazuje, ze dowolna formuta ¥
jest tautologig wtedy i tylko wtedy, gdy
pewna, dajaca si¢ tatwo skonstruowac
formuta egzystencjalna jest tautologia (ist-
nieje wiec duzo egzystencjalnych tautolo-
gii). W dowodzie tej rownowaznosci, po
sprowadzeniu formuty ¥ do postaci nor-
malnej (z kwantyfikatorami na poczatku
formuty) Herbrand wykorzystuje prze-
ksztatcenie zwane skolemizacja. Pierwszy
raz tego typu przeksztatcenie zastosowat
norweski matematyk Thoralf Skolem.

Skolemizacja formuty Vx3yp(x,y) polega

na usunigciu pierwszego kwantyfikatora
egzystencjalnego 1 zastgpieniu w formule
@(X,y) zmiennej y wyrazeniem f(x), gdzie f
jest nowym, dotychczas niewykorzystywa-
nym symbolem. Po wykonaniu tego prze-
ksztatcenia z formuty Vx3ye(X,y) otrzy-
mujemy Vxe(X, f(x)). Ogdlniej, miedzy
nawiasami w podstawianym wyrazeniu f(x)
umieszczamy wszystkie zmienne zwigzane
kwantyfikatorami og6élnymi poprzedzaja-
cymi usuwany. Opisang operacj¢ powta-
rzamy tak dlugo, az znikng wszystkie
kwantyfikatory egzystencjalne. Jezeli usu-
wany kwantyfikator znajduje si¢ na po-
czatku formuty, to zamiast wyrazenia f(X)
podstawiamy po prostu f.

Skolemizacja ma pewne logiczne uzasad-
nienie. Zastgpuje zdanie stwierdzajace, ze
dla kazdego X istnieje y o wlasnosci ¢
przez zdanie stwierdzajace, ze dla kazdego
X pewien, zalezny od x element f(x) ma
wlasnos¢ ¢. Zauwazmy tez, ze po skolemi-
zacji otrzymujemy zdanie zapisane w bo-
gatszym jezyku, za pomocg wigkszej licz-
by symboli.



Algorytm Herbranda

Dane: formuta, w naszym przypadku
@ Vx(A(x) = B(x)) = Vx(—B(x) = —A(x)).
Pytanie: czy dana formuta jest tautologia?

Krok 1: sprowadzamy formule (a) do postaci normalne;.
Eliminujemy z niej wszystkie implikacje i skorzystamy z praw de Morgana:
Ix(A(x) A=B(x)) v Vx(B(x) v —A4(x)).
Zastgpujemy zmienng X przez y:
Ix(A(x) A =B(x)) v V(B(y) v =A() -
Przesuwamy kwantyfikatory na poczatek formuty:
(b) IXVY((A(X) A=B(x)) v B(y) v =A(Y)).

Krok 2: negujemy formutg (b):
(© Vx3y—((A(x) A—B(x)) v B(Y) v —A(Y))

Krok 3: przeprowadzamy skolemizacje formuty (c):
VX—=((A(X) A =B(x)) v B(f (X)) v =A(f (X)),

Krok 4: raz jeszcze negujemy wynik i otrzymujemy:
(d) AX((A(X) A—=B(x)) v B(f (x)) v =A(f (X)),

Krok 5: w formule (d) opuszczamy kwantyfikator, a pozostata cz¢s¢ sprowadzamy do ko-
niunkcyjnej postaci normalnej:

€@ (X)) VvB(f(x) v A () A (=B(x) v B(f(x)) v —A(f (X))

Krok 6: szukamy odpowiednich podstawien (w nieokreslony na razie sposob, na przyktad
przegladajac wszystkie mozliwosci): w rozwazanym przyktadzie podstawiamy za zmienng X
samg zmienng X oraz wyrazenie f(X) otrzymujac

0 (Ax) v B(f(x) v =Af () A (=B(x) v B(f(x)) v —A(f (X))
oraz

@) (A )V Bf (SN V—=AS (S A B () v B (f () v =4S (f (X))

Krok 7: sprawdzamy, czy alternatywa koniunkcji (f) i (g) jest tautologig, na przyktad spro-
wadzajac ja do koniunkcyjnej postaci normalnej. Aby przekonac sie, ze jest tautologia, wy-
starczy zaobserwowac, ze cztery alternatywy utworzone z cztonow koniunkcji (f) i (g) sa tau-
tologiami.

Krok 8: Jezeli przekonamy sig, ze alternatywa formut (f) i (g) jest tautologia (rachunku
zdan), to stwierdzamy, ze formuta (a) jest tautologia (rachunku kwantyfikatorow).

Rys. 1




Laczac te dwa elementy otrzymujemy
Algorytm Herbranda

Zostat on przedstawiony na rysunku 1 na
przyktadzie formuty (a)

VX(A(X) = B(X)) = YX(—B(X) = —A(X)),

ktora jest prostsza wersja jednej z tautolo-
gii przytoczonych w artykule Logika z po-
czqtku XX wieku. Aby zbada¢, czy rzeczy-
wiscie jest to tautologia rachunku kwanty-
fikatoréw, najpierw sprowadzamy ja do
postaci normalnej, w ktorej wszystkie
kwantyfikatory znajduja si¢ na poczatku.
Formuta (b) jest postacig normalng formu-

ty (a).

Istotnym krokiem algorytmu jest skolemi-
zacja. W przypadku formuty (c) polega ona
na usuni¢ciu pierwszego kwantyfikatora
egzystencjalnego 1 zastgpieniu w reszcie
formuly zwigzanej tym kwantyfikatorem
zmiennej y wyrazeniem f(x).

Formuta (a) jest tautologia wtedy i tylko
wtedy, gdy formuta (d) jest tautologia. Nie
podejmuje si¢ uzasadni¢ teraz tego faktu.
Moze on budzi¢ watpliwosci. Wykonywa-
ne przeksztalcenia sa bardzo formalne, a
ich sens logiczny nie jest widoczny. Fakt
ten jest jednak prawdziwy. Sam algorytm
tez mozna skroci¢ usuwajac dwukrotne
negowanie. Dzigki negowaniu zostat
przedstawiony za pomocg skolemizacji.
Przy okazji zauwazmy, ze w podany spo-
sOb mozna skonstruowac wiele egzysten-
cjalnych tautologii.

Dalej musimy jeszcze zbadac, czy formuta
(d) jest tautologia. W tym celu korzystamy
ze spostrzezenia Herbranda charakteryzu-
jacego tautologie bedace formutami egzy-
stencjalnymi. Wymaga to znalezienia tau-
tologii okreslonej postaci. Metoda szukania
takiej tautologii nie zostata podana, ale w
ten sposob Herbrand sprowadzil badanie,
czy formuta jest tautologia rachunku kwan-

tyfikatorow, do sprawdzania, czy pewna
szczegolna forma zdaniowa jest tautologia.

Sprobujmy jeszcze przekonac si¢ metoda
Herbranda, ze formuta 3xVyR(x,y) nie
jest tautologia. Nie trzeba jej sprowadzaé
do postaci normalnej. Po zanegowaniu,
skolemizacji i ponownym negowaniu
otrzymujemy formule IxR(x, f (x)). Wy-
konujac podstawienia i tworzac alternaty-
we podstawien otrzymujemy formuty ta-
Kie, jak

R(x, f () v RUF (o), fif () v RO ), [ ()

(pominatem niektore nawiasy). Aby prze-
kona¢ sig¢, ze formuta IxVyR(x,y) nie jest
tautologia, wystarczy zauwazy¢, ze w tak
otrzymywanych alternatywach nie pojawi
si¢ negacja elementarnego cztonu, a w tau-
tologiach — przeciwnie — musi wystapié®.

Twierdzenie o pelnosci wg Herbranda

Swoj algorytm Herbrand zastosowal w
dowodzie twierdzenia o petnosci. Istotna
cze¢$¢ tego twierdzenia polega na wykaza-
niu, ze tautologie sg prawami rachunku
kwantyfikatorow. Majac tautologi¢ ¥,
Herbrand wykonuje algorytm i najpierw
tworzy rownowazna jej formule egzysten-
cjalng IX¢ . Nastepnie znajduje alternaty-

we o(t,) ve(t,) v..ve(t,) bedaca tauto-
logia rachunku zdan. Zgodnie z twierdze-
niem o petnosci dla rachunku zdan ta alter-
natywa ma dowod. Nietrudno zauwazyc,
ze wynika z niej formuta Ix¢ . Dalej Her-
brand konstruktywnie pokazal, jak z tej
formuty wynika formuta . Ten fragment
dowodu wymaga postuzenia si¢ odpo-
wiednimi wlasno$ciami skolemizacji.

Twierdzenie o pelnosci pozwala inaczej
spojrze¢ na algorytm Herbranda. Algorytm
ten nie tylko bada, czy dana formuta jest

® Takze ta kwestia zostala wyjasniona w artykule
Logika z poczgtku XX wieku.



tautologiag rachunku kwantyfikatorow.
Umozliwia takze sprawdzanie, czy intere-
sujaca nas formuta jest prawem rachunku
kwantyfikatorow. Wobec twierdzenia o
dedukcji (znalezionego takze przez Her-
branda), pozwala w wielu przypadkach

bada¢, czy dana formuta jest twierdzeniem.

Nierozstrzygalnos¢ rachunku kwantyfi-
katorow

Zaréwno algorytm Herbranda, jak i opisa-
ny na poczatku artykutu naiwny algorytm
nie pozwalajg rozstrzygaé, czy dana for-
muta jest twierdzeniem. Herbrand nie po-
dal, jak w 6. kroku algorytmu efektywnie
znalez¢ potrzebne podstawienia ty,t,. . ., t.
Najprostsza metoda znowu polega na prze-
szukaniu wszystkich mozliwych podsta-
wien, a jest ich nieskonczenie wiele. Takie
poszukiwanie moze si¢ nigdy nie zakon-
czy¢. Mimo to Herbrand bardzo starannie
przeanalizowal pojecie twierdzenia i uzy-
skal wszystko, co mozna byto uzyskac.
Wspomnianej wady obu algorytmow nie
da si¢ poprawic.

Witasciwie powinno by¢ to wiadomo juz w
momencie opublikowania pracy Herbran-
da. Wtedy jednak nikt nie potrafit skoja-
rzy¢ ustalonych faktow, nikt tez nie zdecy-
dowat sie na sformutowanie twierdzenia o
nierozstrzygalnos$ci rachunku kwantyfika-
torow. Zgodnie z dzisiejsza wiedza, z pra-
cy Kurta Godla z 1931 roku o niezupetno-
Sci arytmetyki 1 z twierdzenia Herbranda o
dedukcji opublikowanego w 1930 roku
wynika, ze zbior praw rachunku kwantyfi-
kator6w jest nierozstrzygalny. W tamtych
czasach tego twierdzenia nie mozna byto
jednak dowies¢. Gtownie dlatego, ze nikt
nie potrafil precyzyjnie zdefiniowac ani
pojecia algorytmu, ani problemu rozstrzy-
galnego.

Te pojecia dopiero si¢ ksztattowaly. Kurt
Godel postuzyt si¢ juz funkcjami pierwot-
nie rekurencyjnymi, ale prawdopodobnie
nie zdawat sobie sprawy z tego, ze byl bli-
ski zdefiniowania pojecia funkcji obliczal-

nej i dowiodt wazne zastosowania obli-
czalno$ci. Jacques Herbrand zaproponowat
rozszerzenie definicji Gddla i byt bliski
zdefiniowania klasy funkcji rekurencyj-
nych, ktora jest jedng z formalizacji obli-
czalnosci (to takze jest znaczacym osia-
gnigciem tego matematyka). Mato znane
badania obliczalnosci prowadzit jeszcze w
dwudziestych latach XX w. Emil Post.
Dopiero w 1936 roku Alonzo Church i
niezaleznie Alan Turing podali precyzyjna
definicje obliczalno$ci®.

Sformalizowanie pojecia obliczalno$ci
umozliwito Alonzo Churchowi inne odczy-
tanie pracy Godla o niezupelnos$ci arytme-
tyki. Zauwazyt on, ze rozumowanie Godla
dowodzi nie tylko niezupetnosci arytmety-
ki Peano, ale takze uzasadnia nierozstrzy-
galnos¢ zbioru twierdzen tej arytmetyki z
nieskonczonym zbiorem aksjomatow. I to
wlasnie jest powodem jej niezupetnosci:
teoria zupelna ma bowiem rozstrzygalny
zbidr twierdzen. Nieco pozniej w dos¢ za-
wity sposob wywnioskowat stad nieroz-
strzygalnos¢ rachunku kwantyfikatorow, a
wiec dowiodt, Ze nie ma algorytmu, ktory
po przeanalizowaniu formuty udziela po-
prawnej i jednoznacznej odpowiedzi na
pytanie, czy ta formuta jest, czy tez nie jest
prawem rachunku kwantyfikatorow.

Ostateczny ksztalt dowodowi twierdzenia
o nierozstrzygalnosci rachunku kwantyfi-
katorow nadal Raphael Mitchel Robinson,
ktory zauwazyt, ze dowdd twierdzenia
Godla o niezupetnosci arytmetyki, a takze
dowdd twierdzenia o nierozstrzygalnosci
arytmetyki mozna powtdrzy¢ dla pewne;j
arytmetyki ze skonczonym zbiorem ak-
sjomatow. Aksjomaty tej arytmetyki moz-
na znalez¢ w artykule Poczqtki informatyki
teoretycznej®, a Robinson oznaczat ja po
prostu litera Q. Znajac osiagnigcia Robin-
sona twierdzenie o nierozstrzygalnosci
rachunku kwantyfikatorow mozemy tatwo

* Definicja Turinga jest przedstawione w artykule
Turing i jego maszyna zamieszczonym w
,,Matematyce” 6/2006
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wyprowadzi¢ z pracy Godla postugujac si¢
twierdzeniem o dedukcji.

Mimo ze algorytm Herbranda nie w kaz-
dym przypadku rozstrzyga, czy dana for-
muta jest prawem logiki, jest wykorzysty-
wany w programach umozliwiajacych au-
tomatyczne dowodzenie twierdzen. Jedne z

pierwszych eksperymentow z tym algo-
rytmem zostaty przeprowadzone w IBM
Research Center w 1959 roku przez Paula
Gilmora i odegraly wazna rol¢ w rozwoju
informatyki.

Strona tytutowa ostatniej algebraicznej pracy Herbranda z notatka o autorze piéra Emmy Nother



