
Jak dowodzimy poprawność konstrukcji automatu
skończonego

Antoni Kościelski

16 marca 2018

1 Zadanie 21

1.1 Treść

Skonstruuj niedeterministyczny automat skończony rozpoznający język tych słów
nad {0, 1}2, które – jako liczba w systemie dwójkowym – dzielą się przez 5, przy
czym liczba jest wczytywana począwszy od najmniej znaczącego bitu.

1.2 Idea rozwiązania

Żeby rozwiązać takie zadanie trzeba coś wiedzieć o liczeniu reszt, czyli znać od-
powiedni fragment arytmetyki. To pozwali wyobrazić sobie potrzebny algorytm.
Algorytm liczenia reszty jest doskonale znany: dzielenie pisemne pozwala znaleźć
zarówno iloraz, jak i resztę z dzielenia. Wymaga jednak czytania danej liczby od
najbardziej znaczącej cyfry. Analizując ten algorytm można też zauważyć, że resz-
ta pojawiająca się na kolejnym etapie zależy od reszty wcześniejszej, niekoniecznie
jednoznacznie, i pojawia się w niewielkiej liczbie przypadków. To stwarza nadzieję
na weryfikowanie, czy na końcu otrzymamy określoną resztę przez „cofanie się do
tyłu”, podobnie jak będziemy to robić w następnym zadaniu. Wiedzy matematycz-
na podpowiada, że takie cofanie jest szczególnie łatwe przy badaniu podzielności
przez liczbę pierwszą.

Zauważmy, że jeżeli liczby n dopiszemy na końcu cyfrę a, to otrzymamy liczbę
2n+ a, która przestaje do x = 2(n mod 5) + a modulo 5. Stąd, znając x możemy
wyliczyć n mod 5. Uwzględniając własności reszt modulo 5 otrzymujemy, że n
przystaje do 3(x− a) modulo 5.

1.3 Konstrukcja żądanego automatu

Oczywiście, posługuje się alfabetem Σ = {0, 1}. Wykorzystuje pięć stanów ze
zbioru Q = {q0, q1, q2, q3, q4}. Stanem początkowym będzie q0, podobnie q0 jest
jedynym stanem akceptującym naszego automatu. Funkcja przejścia δ : Q×Σ→ Q
jest zdefiniowana wzorem

δ(qi, a) = q3(i−a) mod 5.

Analogiczne obliczenia wykonuje algorytm podany w kolejnym podrozdziale.

1.4 Dowód poprawności

Dowody poprawnego działania zdefiniowanego automatu i podanego niżej algoryt-
mu są bardzo podobne. W przypadku automatu zwykle ustalamy, kiedy znajdzie

1



się on w poszczególnych stanach i sprawdzamy, że funkcja przejścia zachowuje te
ustalenia. W przypadku algorytmu wskazujemy odpowiedni niezmiennik.

Przyjmijmy, że mamy dany ciąg cyfr W o wyrazach W [0],W [1], . . . ,W [n− 1] i
napis W [i..0] dla i > 0 oznacza liczbę o przedstawieniu dwójkowym
W [i− 1]W [i− 2] . . .W [0]. Tak więc po przeczytaniu i liter danego słowa automat
zapoznał się z cyframi W [0],W [1], . . . ,W [i − 1], czyli z liczbą o przedstawieniu
W [i − 1] . . .W [1]W [0] oznaczaną dalej napisem W [i..0]. Dobrze jest przyjąć, że
W [0..0] = 0.

Będziemy rozważać następujący algorytm:

dane: tablica W liczb 0 i 1 indeksowana od 0 do n− 1,

stan = 0; i = n;

while (i < n) {

stan = 3(stan - W[i]) mod 5;

i++; }

Zauważmy, że stwierdzenie

liczba 2i · stan+W [i..0] dzieli się przez 5

jest niezmiennikiem podanego algorytmu.
Aby się o tym przekonać, przekształćmy trochę podaną liczbą (symbole bez

primów to wartości zmiennych na początku pętli, z primami – po zakończeniu
wykonywania pętli):

2i·stan+W [i..0] = 2i·(stan−W [i])+2iW [i]+W [i..0] = 2i·(stan−W [i])+W [i+1..0].

Liczba ta jest podzielna przez 5 wtedy i tylko wtedy, gdy podzielna przez 5 jest
liczba

2i ·(stan−W [i])+5·2i ·(stan−W [i])+W [i+1..0] = 6·2i ·(stan−W [i])+W [i+1..0]

= 2i+1 · 3 · (stan−W [i]) +W [i+ 1..0] = 2i
′ · stan′ +W [i′..0].

Oznacza to, że podane stwierdzenie jest niezmiennikiem pętli znajdującej się
w algorytmie. Trzeba przekonać się, że ten niezmiennik jest prawdziwy przed wy-
konaniem pętli. Jeżeli tak jest, to zachochodzi też po wykonaniu pętli. Wtedy
dodatkowo zachodzi równość i = n. Tak więc po zakończeniu algorytmu

liczba 2n · stan+W [n..0] dzieli się przez 5

Jeżeli po zakończeniu algorytmu zmienna stan ma wartość 0, to oczywiście
liczba W [n..0] (czyli dana liczba) jest podzielna przez 5. W przeciwnym razie
liczba 2n · stan nie dzieli się przez 5 i w konsekwencji liczba W [n..0] też nie dzieli
się przez 5.

W bardzo podobny sposób pokazujemy poprawność konstrukcji automatu skoń-
czonego. Dowód polega na wykazaniu, że zdefiniowany automat po przeczytaniu i
znaków znajduje się w stanie qk wtedy i tylko wtedy, gdy liczba 2i ·k+W [i..0] jest
podzielna przez 5.

2 Zadanie 22

2.1 Treść

Udowodnij, że jeśli dla pewnego języka L istnieje rozpoznajacy go NDFA, to istnieje
również NDFA rozpoznający jezyk LR = {w : wR ∈ L}.

2



2.2 Idea

Zwykle automat skończony wyobrażamy sobie jako urządzenie działające zgodnie
z pewnymi zasadami, ale możemy go również uważać za graf, którego wierzchołki
odpowiadają stanom, krawędzie są etykietowane literami (są różnych rodzajów),
mają określony kierunek i są wyznaczone przez dopuszczalne zmiany stanów. Pa-
trząc na taki graf możemy sobie wyobrażać, że widzimy mapę połączeń drogowych
między pewnymi miastami–stanami. Drogi na tej mapie są jednokierunkowe i są
różnych rodzajów (mogą mieć różne etykiety). Słowo zbudowane z etykiet dróg mo-
żemy interpretować jako plan przejazdu. Słowo jest akceptowane, jeżeli taki plan
jest możliwy do zrealizowania, a więc zgodnie z takim planem można przejechać
od miasta początkowego do końcowego.

Aby sprawdzić, czy dane słowo po odwróceniu jest akceptowalnym planem
można badać, czy zgodnie z danym planem–słowem można przemieśćić się od
stanu końcowego do początkowego jadąc w odwrotnym kierunku, pod prąd.

Dodatkowym problemem jest to, że może być wiele stanów końcowych i nie
wiemy, od którego stanu mamy badać możliwość powrotu. Problem ten rozwiążemy
dodając nowy stan, z którego możemy się wycofać do każdego stanu połączonego
z pewnym stanem końcowym.

Głównym powodem poprawności tej idei jest następujący fakt: Jeżeli dwóch
podróżnych dotarło do miast bezpośrednio połączonych (np. drogą z etykietą a),
to równie dobrze mogą się spotkać w każdym z tych dwóch miast: wystarczy, aby
pierwszy z nich przejechał drogą a w zwykłym kierunku, albo by drugi przejechał
tą drogą „pod prąd”.

2.3 Rozwiązanie

Przypuśćmy, że mamy dany język L rozpoznawny przez niedeterministyczny au-
tomat skończony A nad alfabetem Σ, ze zbiorem stanów Q, stanem początkowym
q0, zbiorem stanów akceptujących F i funkcją przejścia δ : Q× Σ→ P(Q).

Język LR będzie rozpoznawać automat A← posługujący się tym samym alfabe-
tem Σ, ze stanem początkowym q̄0, ze zbiorem stanów Q∪{q̄0} z jedynym stanem
akceptującym q0 i z funkcją przejścia δ←. Funkcja przejścia jest zdefiniowana w
następujący sposób:

δ←(q̄0, a) = {s ∈ Q : δ(s, a) ∩ F 6= ∅}

oraz
δ←(q, a) = {s ∈ Q : q ∈ δ(s, a)}

dla q 6= q̄0. Teraz wystarczy dowieść, że automat A← rzeczywiście rozpoznaje język
LR.

2.4 Formalny opis automatu niedeterministycznego

Funkcję przejścia skończonego automatu niedeterministycznego δ : Q×Σ→ P(Q)
rozszerzamy do funkcji δ̂ : Q× Σ∗ → P(Q) przyjmując, że

δ̂(q, ε) = {q} oraz δ̂(q, wa) =
⋃

s∈δ̂(q,w)

δ(s, a).

Podobnie rozszerzamy funkcję δ←.
Słowo w ∈ Σ∗ jest akceptowane przez automat, jeżeli wśród stanów ze zbioru

δ̂(q0, w) jest stan akceptujący, czyli gdy zbiór δ̂(q0, w) ∩ F jest niepusty.

3



2.5 Dowód poprawności

Najpierw udowodnimy sobie pomocniczy

Lemat 2.1 Przypuśćmy, że mamy dane stany q, q′ ∈ Q, słowa u,w ∈ Σ∗ oraz
literę a ∈ Σ. Wtedy warunek

δ̂(q, wa) ∩ δ̂←(q′, u) 6= ∅

jest równoważny warunkowi

δ̂(q, w) ∩ δ̂←(q′, ua) 6= ∅.

Dowód. Przypuśćmy, że mamy

1) t ∈ δ̂(q, wa) ∩ δ̂←(q′, u).

2) Wtedy t ∈ δ(s, a) dla pewnego s ∈ δ̂(q, w).

3) Takie s należy także do δ←(t, a) oraz do sumy
⋃
t′∈δ̂←(q′,u) δ

←(t′, a).

4) W szczególności s należy do δ̂←(q′, ua), a także do δ̂(q, w).

5) Tak więc zbiór δ̂(q, w) ∩ δ̂←(q′, ua) jest niepusty i kończy to dowód jednej
implikacji z tezy.

Drugą z implikacji dowodzimy analogicznie. 2

Wniosek 2.2 Warunek q′ ∈ δ̂(q, v) zachodzi wtedy i tylko wtedy, gdy q ∈ δ̂←(q′, vR).

Dowód. Załóżmy, że q′ ∈ δ̂(q, v). Warunek ten można wyrazić także pisząc, że

δ̂(q, v) ∩ δ̂←(q′, ε) 6= ∅.

Pokażemy, że dla dowolnego przedstawienia słowa v = wu zachodzi warunek

δ̂(q, w) ∩ δ̂←(q′, uR) 6= ∅

i zrobimy to przez indukcję ze względu na długość słowa u. Dla słowa u długości
0 fakt ten wynika z założenia.

Przypuśćmy, że dla podziału v = wu zachodzi powyższe stwierdzenie, oraz
że w = w′a dla litery a, czyli v = (w′a)u = w′(au). Posługując się poprzednim
lematem w przypadku w = w′a otrzymujemy, że

δ̂(q, w′) ∩ δ̂←(q′, uRa) 6= ∅.

To kończy dowód indukcyjny, gdyż uRa = (au)R.
Jeżeli analizowany warunek zachodzi dla każdego podziału v = wu, to zachodzi

także dla podziału v = εv. Tak więc niepusty jest także zbiór

δ̂(q, ε) ∩ δ̂←(q′, vR) = {q} ∩ δ̂←(q′, vR)

i może do niego należeć wyłącznie q. Stąd (w dowodzie jednej z implikacji) otrzy-
mujemy tezę, a drugą implikację dowodzimy tak samo. 2

Teraz możemy już podjąć próbę wykazania, że skonstruowany automat roz-
poznaje „odwrócenie” języka L. Po pierwsze, niekoniecznie dobrze działa on dla
słowa pustego i języków, w których jest słowo puste. Ten problem pozostaje do
rozwiązania dla zainteresowanych Czytelników.

4



Przypuśćmy, że słowo v należy do L. Słowo v jest więc akceptowane przez au-
tomat A, czyli w zbiorze δ̂(q0, v) jest pewien stan akceptujący, powiedzmy stan qa.
Z wyżej sformułowanego wniosku wynika, że stan q0 (czyli stan akceptujący auto-
matu A←) należy do zbioru δ̂←(qa, vR). Gdyby stan qa był stanem początkowym
automatu A←, to oznaczałoby to, że ten automat akceptuje słowo vR.

Stan qa nie może być stanem początkowym automatu A←, gdyż może być
tylko jeden stan początkowy, ale wiele stanów końcowych. Konieczne jest więc
jakieś „połączenie” stanów końcowych, a jedno z możliwych rozwiązań zostało
wbudowane w definicję automatu A←. Dzięki temu można wykazać, że jeżeli q0 ∈
δ̂←(qa, vR), to także q0 ∈ δ̂←(q̄0, v

R).
Niepuste słowo v jest postaci wa dla pewnej litery a. Wobec tego1

q0 ∈ δ̂←(qa, vR) = δ̂←(qa, awR) =
⋃

s∈δ←(qa,a)

δ̂←(s, wR).

Jest więc w zbiorze δ←(qa, a) taki stan s, że q0 ∈ δ̂←(s, wR). Nietrudno zauważyć,
że na mocy definicji funkcji przejścia stan s należy także do δ←(q̄0, a). Stąd

q0 ∈
⋃

s∈δ←(q̄0,a)

δ̂←(s, wR) = δ̂←(q̄0, aw
R) = δ̂←(q̄0, v

R),

co oznacza, że automat A← akceptuje słowo vR.
W ten sposób dowiedliśmy, że automat A← akceptuje wszystkie słowa należące

do języka LR. Rzecz jasna, należy jeszcze dowieść, że ten automat nie akceptuje
słów spoza języka LR i robi się to tymi samymi metodami.

1Ostatnia równość wynika stąd, że tego typu wzór jest słuszny dla każdego podziału słowa
vR, także dla podziału na pierwszą literę i resztę, i jest to konsekwencja użycia w definicji δ̂←

podziału na najdłuższy właściwy prefiks i ostatnią literę.

5


