
1 Maszyna Minsky’ego

Zacznijmy od sprecyzowania pojęcia maszyny Minsky’ego. Będziemy ją definiować
jako specyficzną maszynę Turinga.

1.1 Maszyna Turinga

Będziemy rozważać maszyny Turinga:

1) z taśmą wejściową i dwoma taśmami roboczymi, taśmy te będą jednostronnie
nieograniczone, będą więc miały pierwszą komórkę, w której będzie stale
zapisana specjalna litera $ oznaczającą początek taśmy. Głowice maszyny
Turinga nie potrafią pisać tej litery, nie mogą jej też zmienić (zastąpić inną),
potrafią ją odczytać i jeżeli ją widzą, nie wykonują ruchu w lewo.

2) służące do akceptowania danego słowa. W słowie tym nie może występować
symbol początku taśmy. Litery danego słowa są zapisywane przed urucho-
mieniem maszyny w kolejnych komórkach taśmy wejściowej, począwszy od
drugiej. Głowica taśmy wejściowej, widząc niezapisaną komórkę, nie wyko-
nuje ruchu w prawo.

3) które w każdym momencie znajdują się w pewnym stanie. Rozpoczynają pra-
cę w stanie początkowym. Akceptują dane, jeżeli podczas pracy w pewnym
momencie znajdą się w stanie akceptującym.

4) działają zgodnie z ustaloną relacją przejścia, ktora może być rozumiana jako
program (a więc wykonują program) będący skończonym zbiorem rozkazów.
Bywa, że rozkazy są zapisywane w postaci

qi w r1 r2 → s1 s2 R0 R1 R2 qj

(symbol → można więc uznać za oznaczenie relacji przejścia). Taki rozkaz
może być wykonany, gdy maszyna znajduje się w stanie qi i obserwuje na
taśmie wejściowej literę w, a na taśmach roboczych – odpowiednio litery r1 i
r2. Jeżeli jest wykonywany, to jego wykonanie polega na zapisaniu w obser-
wowanych komórkach taśm roboczych liter s1 i s2 odpowiednio (zastąpieniu
obserwowanych liter wskazanymi), przesunięciu głowic w lewo lub w prawo,
bądź pozostawieniu ich na swoim miejscu zależnie od znajdujących się w
rozkazie wartości R0 R1 R2 i przejściu do stanu qj. Oczywiście, rozkazy mu-
szą spełniać wyżej podane ograniczenia. Oprócz liter w rozkazach maszyny
Turinga występuje także specjalny symbol B oznaczający zależnie od kon-
tekstu albo pustą komórkę, albo polecenie usunięcia z obserwowanej komórki
zapisanej tam litery.

5) działa zgodnie z następującą zasadą: spośród swoich rozkazów maszyna wy-
biera jeden, możliwy do wykonania (niedetrministycznie) i wykonuje go, a
gdy nie jest to możliwe, to zatrzymuje się.

Maszyny Turinga (i pozostałe) będziemy utożsamiać z programami opisujący-
mi ich działanie. Jest to bardzo wygodne, ale aby było to możliwe, mając dany
program powinniśmy móc ustalić, który ze stanów jest początkowym i jakie stany
są akceptujące.

Konfiguracją maszyny Turinga nazywamy trzy słowa utworzone z liter zapisy-
wanych na taśmach, symboli B i liter będących stanami maszyny (odpowiadają-
cych stanom). Słowa te odpowiadają poszczególnym taśmom. W każdym występuje
dokładnie jeden symbol stanu, ten sam we wszystkich słowach. Maszyna znajduje

1



się w danej konfiguracji, jeżeli znajduje się w stanie podanym w tej konfiguracji i na
poszczególnych taśmach, przed komórką obserwowaną znajdują się litery wymie-
nione w odpowiednim słowie przed stanem, a począwszy od obserwowanej komórki
– litery wymienione po symbolu stanu. Symbol B jest rozumiany odpowiednio.

Konfiguracją k0(s) początkową ze słowem s nazywamy konfigurację, w której
maszyna znajduje się w wyróżnionym stanie początkowym q0, na taśmie wejściowej
jest zapisane słowo s, taśmy robocze są puste (a właściwie zawierają wyłącznie
symbole początku taśmy, które pomijamy w konfiguracjach), a głowice obserwują
komórki znajdujące się bezpośrednio za komórkami z symbolem początku taśmy.
Taką konfigurację można opisać jako trójkę (q0s, q0B, q0B) lub nawet (q0s, q0, q0).

Relację przejścia maszyny Turinga rozszerzamy do relacji → w zbiorze konfi-
guracji. Zapis k1 → k2 oznacza, że maszyna znajdująca w konfiguracji k1 po wyko-
naniu jednego z rozkazów z jej programu przechodzi do konfiguracji k2. Symbolem
→∗ oznaczamy zwrotne i przechodnie domknięcie relacji→ w zbiorze konfiguracji.

Mówimy, że maszyna akceptuje słowo s (nad ustalonym alfabetem Σ) jeżeli
k0(s) →∗ k dla pewnej konfiguracji k ze stanem akceptującym. Jeżeli M jest
maszyną Turinga, to L(M) oznacza język akceptowany przez maszynę M , czyli

L(M) = {s ∈ Σ∗ : M akceptuje s}.

Opisany wyżej model maszyny Turinga jest równoważny każdemu innemu sen-
sownemu modelowi maszyny Turinga. W związku z tym możemy się nim równie
dobrze posługiwać, jak każdym innym.

1.2 Maszyny Minsky’ego

Wydaje się, że maszyna Minsky’ego jest to maszyna Turinga, taka jak wyżej, która
na taśmach roboczych nie zapisuje żadnych symboli. Jej rozkazy mają więc postać

qi w b1 b2 → b′1 b′2 R0 R1 R2 qj,

gdzie b1, b2, b′1, b
′
2 są symbolami B lub symbolami początku taśmy $.

Pojęcia opisujące maszyny Minsky’ego definiujemy tak, jak w przypadku ma-
szyn Turinga.

Maszyny Minsky’ego pozwalają symulować maszyny Turinga. Wiadomo w szcze-
gólności, że mamy

Twierdzenie 1.1 Istnieje redukcja f , która programowi P maszyny Turinga roz-
poznającej język L, przyporządkowuje program f(P ) maszyny Minsky’ego również
rozpoznającej język L. 2

Także problem stopu dla maszyn Turinga daje się zredukować do problemu
stopu dla maszyn Minsky’ego.

W dalszym ciągu będziemy posługiwać się jeszcze bardziej uproszczonym mo-
delem maszyn Minsky’ego. Będą to maszyny bez taśmy wejściowej. Będą też wy-
konywać uproszczone rozkazy następujących postaci:

qi t $→ 〈w prawo〉 qj,

qi t B → 〈w prawo〉 qj,

qi t B → 〈w lewo〉 qj.

Rozkazy te analizują zapis i przesuwają głowice tylko na jednej taśmie, znajdujące
się w nich t jest numerem taśmy, której rozkaz dotyczy, t = 1, 2. Interpretacja tych
rozkazów jest, jak sądzę, oczywista.

2



Przez konfigurację uproszczonej maszyny Minsky’go będziemy rozumieć trójkę
złożoną ze stanu maszyny i dwóch liczb naturalnych. Tak rozumiana konfiguracja
z liczbami m i n odpowiada zwykłej konfiguracji, w której głowice taśm roboczych
obserwują odpowiedniom-tą i n-tą z kolei pustą komórkę, a głowica taśmy wejścio-
wej – pierwszą. Konfiguracją początkową uproszczonej maszyny Minsky’ego jest
więc trójka (q0, 1, 1). Inne pojęcia opisujące pracę takich maszyn definiujemy tak,
jak w przypadku zwykłych maszyn Minsky’ego lub maszyn Turinga.

Z uproszczoną maszyną Minsky’ego wiąże się problem akceptowania przez takie
maszyny, czyli pytanie, czy dana taka maszyna podczas pracy w pewnym momencie
znajduje się w stanie akceptującym. Problem ten jest formalizowany zwykle jako
język

Lm = {P : P jest programem dla uproszczonej maszyny Minsky’ego,
która po uruchomieniu przechodzi do stanu akceptującego }

(zamiast języka programów można oczywiście rozważać język numerów progra-
mów).

Niech Lt oznacza język złożony z (numerów) programów dla maszyn Turin-
ga, które akceptują słowo puste. Wiadomo, że język ten jest rozpoznawalny, ale
nierozstrzygalny. Powinno zachodzić

Twierdzenie 1.2 Język Lt redukuje się do języka Lm. Wobec tego język Lm nie
jest rozstrzygalny.

Dowód. Powinien korzystać z tych samych idei co dowód poprzedniego twierdze-
nia. 2

2 Pies

Pies to taki stwór, który porusza się po płaszczyźnie, zostawia po sobie zapach i
czasem szczeka. Poza tym, podobnie jak maszyna Turinga, zachowuje się zgodnie
z określonym programem. Taki pies wydaje się być raczej robotem przypominają-
cym psa, choć Turing upierał się, że definiując swoje maszyny opisał także zasadę
działania mózgu człowieka, a więc może to jednak pies, a nie robot. (Przytoczo-
ny pogląd Turinga jest ważnym argumentem przemawiającym za tezą Turinga-
Churcha: jeżeli nasz mózg działa jak maszyna Turinga, to trudno sobie wyobrazić,
że (używając mózgu) policzymy coś, czego nie da się policzyć na maszynie Turin-
ga).

Płaszczyzna, po której biega pies, składa się z pól (komórek) o całkowitych
współrzędnych. Pola tej płaszczyzny mogą być albo bez zapachu, czyli puste lub
niezapisane, a więc nieodwiedzone jeszcze przez psa, albo z zapachem, czyli zapisa-
ne, a więc już odwiedzone. Pola bez zapachu będziemy uważać za pola z symbolem
B (także przez analogię z niezapisanymi polami maszyn Turinga), z zapachem –
za pola z symbolem Z.

W każdym momencie pies znajduje się w jednym ze skończenie wielu stanów.
W niektórych stanach pies szczeka. Dokładniej: pies szczeka wtedy i tylko wtedy,
gdy znajduje się w jednym ze stanów „szczekających”.

Zachowanie psa określa program. Taki program jest wykonywany analogicznie,
jak program maszyny Turinga. Tym razem składa się jednak z dwóch rodzajów
rozkazów:

qi B → R qj oraz qi Z → R qj,
gdzie R opisuje przemieszczanie się psa. Podane rozkazy są wykonywane, gdy pies
znajduje się w stanie qi i przebywa na polu, które nie pachnie (w przypadku pierw-
szego rozkazu), lub które już posiada zapach (rozkaz drugi). Pies znajdujący się

3



na jakimś polu w wyniku wykonania rozkazu może znaleźć się na jednym z czte-
rech pól sąsiednich, albo znajdująch się powyżej lub poniżej, albo też znajdujących
się z lewej lub z prawej strony. Wykonanie tych rozkazów polega na pozostawie-
niu zapachu (zapisaniu litery Z) na polu, na którym pies się aktualnie znajduje,
przemieszczeniu się na sąsiednie pole wskazane przez R i przejściu do stanu qj.

Aby uprościć programowanie będziemy się też posługiwać złożonymi rozkazami
postaci

qi X → R1, R2, . . . , Rn qj.

Rozkaz taki jest wykonywany, gdy pies znajduje w stanie qi i „obserwuje” X (X =
B lub X = Z). Jego wykonanie polega na wykonaniu serii przejść opisanych przez
R1, R2, . . . , Rn, przy czym drugi ruch i dalsze są wykonywane bez względu na
zapach pola. Taki rozkaz bez trudu daje się wyrazić za pomocą zbioru 2n − 1
rozkazów podstawowej postaci.

W rozważany przypadku konfiguracją będziemy nazywać układ obejmujący:
stan psa, współrzędne pola zajmowanego przez psa oraz współrzędne wszystkich
pachnących pól (zwykle powinno być ich skończenie wiele). W konfiguracji począt-
kowej k0 pies znajduje się w stanie początkowym na polu o współrzędnych (0, 0) i
wszystkie pola są bez zapachu.

Mając program, czyli odpowiednią relację przejścia→, rozszerzamy ją do relacji
przejścia → w zbiorze konfiguracji, a następnie bierzemy zwrotne i przechodnie
domknięcie →∗ relacji → (w zbiorze konfiguracji). W razie potrzeby będziemy
uzupełniać symbole relacji o symbol programu wykorzystanego w definicji.

W dalszym ciągu będziemy zajmować się problemem szczekania, czyli proble-
mem, czy pies zachowujący się zgodnie z danym programem P w pewnym mo-
mencie zaszczeka. Problem ten zwykle formalizuje się jako język Lp złożony z tych
programów P opisujących zachowanie psa, które powodują, że w pewnym momen-
cie pies zaszczeka. Jeszcze inaczej można Lp zdefiniować przyjmując, że

P ∈ Lp ⇔ ∃k k0 →∗P k ∧ k jest konfiguracją ze stanem szczekającym.

Programy powinny być tak rozumiane, aby jakoś z nich wynikało, który stan jest
początkowy, i w których stanach pies szczeka.

3 Zadanie

Zadanie, które mamy rozwiązać, wymaga, by dowieść następujące

Twierdzenie 3.1 Język Lm można zredukować do języka Lp, a więc w szczegól-
ności język Lp, czyli problem szczekania, jest nierozstrzygalny.

Dowód. Mamy więc zdefiniować pewną redukcję f , która uproszczonej maszynie
Minsky’ego M z programem P przyporządkowuje (właściwie) psa zachowującego
się zgodnie z programem f(P ), taką że

P ∈ Lm ⇔ f(P ) ∈ Lp.

Definiowany pies ma symulować działanie maszynyM . Wyjaśnienie, co to zna-
czy, wymaga dodatkowych pojęć i pewnych ustaleń. W szczególności, jego stanami
będą wszystkie stany maszyny M i wiele stanów pomocniczych, które będą stop-
niowo wymieniane podczas konstruowania programu f(P ). Stanem początkowym
będzie stan początkowy maszyny M , a stanami „szczekającymi” – stany akceptu-
jące M .

Będziemy mówić, że konfiguracja k koduje liczbę n > 0, jeżeli w tej konfiguracji
w kolumnie, w której znajduje się pies, kolejne n−1 pól bezpośrednio poniżej pola,

4



na którym stoi pies, to pola z zapachem, a pozostałe, w tym to, na którym jest pies,
są bez zapachu oraz pola w kolumnach na prawo od psa są pozbawione zapachu
Jak widać, nic nie zakładamy o komórkach na lewo od psa i jest wiele konfiguracji
kodujących liczbę n.

Dla danej konfiguracji K maszyny M będziemy definiować odpowiadającą jej
konfigurację K̃. Obie konfiguracje będą miały te same stany. Jeżeli w konfiguracji
K głowice taśm roboczych znajdują się odpowiednio nad m-tą i n-tą komórką,
to konfiguracja K̃ będzie kodować liczbę 2m · 3n. Nietrudno zauważyć, że znając
konfigurację ze stanem maszyny M , kodującą odpowiednią liczbę, możemy z niej
odtworzyć pewną konfigurację maszyny M .

Przypuśćmy, że mamy konfigurację K1 maszyny M , dla której jest już zdefi-
niowana konfiguracja K̃1, oraz konfigurację K2 maszyny M taką, że K1 → K2. W
takiej sytuacji zdefiniujemy fragment programu f(P ) oraz konfigurację K̃2 taką,
że K̃1 →∗ K̃2.

3.1 Symulacja poszczególnych rozkazów maszyny Minsky’ego

Przypuśćmy, że mamy już konfiguracje K1, K2 oraz K̃1 takie, jak wyżej. Konfigu-
rację K2 otrzymujemy w wyniku wykonania jednego rozkazu w konfiguracji K1.
Przyjmijmy, że tym rozkazem jest

qi 1 $→ 〈w prawo〉 qj.

Odpowiadającą temu rozkazowi zmianę konfiguracji K̃1 może uzyskać pies działa-
jący zgodnie z następującym programem.

q B −→ 〈dół〉 s1,1 dalej i = 0, 1
s1,i Z −→ 〈prawo〉, 〈lewo〉, 〈dół〉 s1,i+1 dodajemy mod 2
s1,i B −→ 〈góra〉 s2,i
s2,i Z −→ 〈góra〉 s2,i
s2,i B −→ 〈dół〉 s3,i
s3,1 Z −→ 〈lewo〉 qpusty
s3,0 Z −→ 〈lewo〉 qniepusty

Symulacja rozkazu
qi t B → 〈w lewo〉 qj.

q B −→ 〈prawo〉, 〈dół〉 s1
s1 Z −→ 〈dół〉 s1
s1 B −→ 〈dół〉, 〈lewo〉 s2
s2 Z −→ 〈prawo〉 s3
s3 Z −→ 〈góra〉 s3
s3 B −→ 〈dół〉 s1
s2 B −→ 〈góra〉 s4 koniec liczenia
s4 Z −→ 〈góra〉 s4
s4 B −→ 〈prawo〉 s5 pocz. kopiowania

wyniku
s5 Z −→ 〈prawo〉, 〈lewo〉, 〈góra〉 s5
s5 B −→ 〈prawo〉 qkoniec

Symulacja rozkazu
qi t B → 〈w prawo〉 qj,

5



q B −→ 〈dół〉 s1
s1 B −→ 〈prawo〉 s5 n=1
s1 Z −→ 〈prawo〉, 〈dół〉 s2
s2 Z −→ 〈dół〉 s2
s2 B −→ 〈lewo〉 s3
s3 Z −→ 〈prawo〉 s4
s4 Z −→ 〈góra〉 s4
s4 B −→ 〈dół〉 s2
s3 B −→ 〈prawo〉 s5 koniec liczenia
s5 Z −→ 〈góra〉 s5
s5 B −→ 〈góra〉 qkoniec

6


