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8.2 Pierścienie

Pierścieniem nazywamy algebrę z dodawaniem + i mnożeniem ·, która z dodawaniem jest
grupą przemienną, oraz w której są spełnione prawa łączności

(x · y) · z = x · (y · z)

i rozdzielności

(x + y) · z = x · z + y · z oraz z · (x + y) = z · x + z · y

Przykładem pierścienia jest zbiór liczb całkowitych ze zwykłymi działaniami, pierścień Zn z
dodawaniem i mnożeniem modulo n, zbiór liczb wymiernych ze zwykłymi działaniami. Pier-
ścień R jest pierścieniem z jednością, jeżeli mnożenie w R ma element neutralny. Pierścień
nazywamy przemiennym, jeżeli mnożenie w tym pierścieniu jest przemienne.

Element a 6= 0 (w pierścieniu R) jest dzielnikiem zera, jeżeli a · b = 0 dla pewnego b 6= 0.
Element a ∈ R jest odwracalny , jeżeli a · b = b · a = 1 dla pewnego b ∈ R. Dzielniki zera nie
są elementami odwracalnymi. Zero jest elementem odwracalnym tylko w pierścieniu, którego
jedynym elementem jest 0. Wiemy też, że w pierścieniu zachodzą wzory x · 0 = 0 · x = 0.

Pierścień przemienny z jednością nazywamy ciałem, jeżeli 0 6= 1 i dla każdego niezerowego
elementu w tym pierścieniu jest element odwrotny.

8.3 Produkt pierścieni

Przypuśmy, że R1 i R2 są pierścieniami. W produkcie R1×R2 definiujemy dodawanie i mnożenie

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

(a1, a2) · (b1, b2) = (a1 · b1, a2 · b2).

Zbiór R1 × R2 z tymi działaniami nazywamy produktem (iloczynem) kartezjańskim pierścieni
R1 i R2. Jeżeli pewna równość jest prawdziwa dla wszystkich elementów pierścieni R1 i R2, to
jest też prawdziwa w produkcie R1 × R2. Stąd wynika, że produkt kartezjański pierścieni jest
pierścieniem.

Analogicznie definiujemy produkty większej liczby pierścieni R1 × . . .×Rn albo R× . . .×R.
Produkt ciał nie jest ciałem.

8.4 Szeregi formalne i wielomiany

Przypuśćmy, że R jest pierścieniem. Jeżeli a0, a1, . . . ∈ R, to wyrażenie postaci

∞∑

i=0

aix
i

nazywamy szeregiem formalnym. Szereg formalny można też definiować jako ciąg a0, a1, . . . ∈
R, ale ciąg ten powinien kojarzyć się z podanym wzorem.
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W zbiorze szeregów formalnych definiujemy dodawanie i mnożenie przyjmując, że

∞∑

i=0

aix
i +

∞∑

i=0

bix
i =

∞∑

i=0

(ai + bi)x
i

oraz

(
∞∑

i=0

aix
i) · (

∞∑

i=0

bix
i) =

∞∑

i=0

(
i∑

j=0

ajbi−j)x
i.

Zbiór szeregów formalnych z tymi działaniami jest pierścieniem.
Pojęcie wielomianu można definiować na dwa sposoby. Są to albo szeregi formalne takie,

że dla pewnej liczby naturalnej n i dla wszystkich i > n mamy ai = 0 albo też wielomiany
definiuje się jako funkcje f : R → R określone wzorami postaci

f(x) =
n∑

i=0

aix
i. (2)

W zbiorze liczb rzeczywistych mając wielomian-funkcję f zdefiniowaną wzorem (2) może-
my jednoznacznie ustalić współczynniki a0, a1, . . .. Podane definicje wielomianu nie są jednak
równoważne. Inaczej jest, jeżeli rozważamy wielomiany o współczynikach należących do ciała
Zp. Dla wszystkich x z tego ciała zachodzi wzór xp = x. Funkcja f : Zp → Zp zdefiniowana
wzorem f(x) = xp może też zostać zdefiniowana wzorem f(x) = x. Wobec tego, znając sa-
mą funkcją f nie potrafimy w tym przypadku odtworzyć wzoru, którym ta funkcja została
określona.

Wielomiany rozumiane jako szeregi formalne tworzą podpierścień pierścienia szeregów for-
malnych. Także wielomiany rozumiane jako funkcje ze zwykłymi w takim przypadku działa-
niami tworzą pierścień.

8.5 Moduły

Przypuśmy, że R jest pierścieniem przemiennym z jednością. Zbiór M nazywamy modułem

nad pierścieniem R, jeżeli

1. elementy M potrafimy dodawać i M z dodawaniem jest grupą przemienną,

2. jest określone mnożenie przekształcające R × M w M takie, że

(ab) · x = a · (b · x)

(a + b) · x = a · x + b · x

a · (x + y) = a · x + a · y

1 · x = x

dla wszystkich a, b ∈ R oraz x, y ∈ M .

Moduły nad ciałami nazywamy przestrzeniami liniowymi lub wektorowymi.
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8.5.1 Uwagi o definicji modułu

W literaturze często są podawane bardziej ogólne definicje modułów. Pojęcie modułu definiuje
się dla dowolnych pierścieni, a nie tylko dla pierścieni przemiennych z jednością. W takim
przypadku w definicji modułu pomija się warunek 1 · x = x. Przytoczona definicja odpowiada
pojęciu modułu lewostronnego. Rozważa się też moduły prawostronne, w których jest określone
mnożenie przekształcające M × R w M spełniające warunek

x · (ab) = (x · a) · b

i równości analogiczne do podanych w rozdziale 8.5. Rozważane są też moduły (obustronne),
które są jednocześnie lewo- i prawostronne. Nietrudno zauważyć, że w module lewostronnym
nad pierścieniem przemiennym R można zdefiniować mnożenie z prawej strony przyjmując, że
dla x ∈ M i a ∈ R mamy

x · a = a · x.

Moduł M z tak zdefiniowanym mnożeniem z prawej strony jest modułem prawostronnym, i w
tym sensie jest też modułem obustronnym.

8.6 Przykłady modułów

Symbole R i R1 będą oznaczać pierścienie przemienne z jednością.

• Dowolna grupa przemienna jest modułem nad pierścieniem liczb całkowitych, jeżeli dla
n ∈ N , n 6= 0 przyjmiemy, że

n · x = x + x + . . . + x
︸ ︷︷ ︸

n razy
,

(−n) · x = (−x) + (−x) + . . . + (−x)
︸ ︷︷ ︸

n razy

,

0 · x = 0.

• Jeżeli pierścień R1 jest podpierścieniem pierścienia R2, to R2 jest modułem nad pierście-
niem R1 z mnożeniem (przekształcającym R1 × R2 w R2) zdefiniowanym jako zwykłe
mnożenie w pierścieniu R2 (ograniczone do sytuacji w których pierwszy argument należy
do R1). W szczególności, pierścień R jest modułem nad R, a także ciało liczb rzeczywi-
stych jest przestrzenią liniową nad ciałem liczb wymiernych.

• Pierścień wielomianów o współczynnikach z R jest modułem nad pierścieniem R z mno-
żeniem

a ·
∞∑

i=0

aix
i =

∞∑

i=0

(aai)x
i.
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• Jeżeli M jest podpierścieniem R i dla wszystkich a ∈ R oraz x ∈ M zachodzi warunek
ax ∈ M , to M ze zwykłym mnożeniem z pierścienia R jest modułem. Moduły tej postaci
nazywamy ideałami (w przypadku pierścieni przemiennych). Zauważmy, że nie każdy
podpierścień jest modułem. Na przykład, Z jest podpierścieniem Q, ale nie jest modułem
nad Q.

• Jeżeli a1, . . . , an ∈ R, to zbiór

{x1a1 + x2a2 + . . . + xnan | x1, x2, . . . , xn ∈ R}

z mnożeniem z pierścienia R jest ideałem. Zauważmy, że rozważany zbiór jest podpier-
ścieniem R generowanym przez a1, . . . , an.

• Modułem jest zbiór Rn = R × . . . × R z działaniami

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

oraz

a · (x1, x2, . . . , xn) = (a · x1, a · x2, . . . , a · xn).

Elementy zbioru Rn nazywamy wektorami o współrzędnych należących do R.

• W zbiorze RX = {f | f : X → R} definiujemy dodawanie oraz mnożenie przez element
a ∈ R przyjmując, że

(f1 + f2)(x) = f1(x) + f2(x)

oraz

(af)(x) = af(x).

Określona w ten sposób algebra jest modułem.

• Jeżeli h : R1 → R2 jest homomorfizmem pierścieni, to

{x ∈ R1 | h(x) = 0}

jest ideałem.

8.7 Podmoduły

Przyjmijmy, że M jest modułem nad R. Niepusty zbiór X ⊆ M nazywamy podmodułem

modułu M , jeżeli

1. ~x + ~y ∈ X dla dowolnych ~x, ~y ∈ X ,

2. −~x ∈ X dla każdego ~x ∈ X ,

3. a~x ∈ X dla wszystkich ~x ∈ X i a ∈ R.
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Warto zauważyć, że warunki podane w definicji podmodułu można zastąpić jednym, stwier-
dzającym, że jeżeli ~x, ~y ∈ X i a, b ∈ R, to a~x + b~y ∈ X .

Jeżeli R jest ciałem, to podmoduł nad R nazywamy podprzestrzenią liniową (lub wekto-
rową) nad ciałem R.

Nietrudno sprawdzić, że podmoduł dowolnego modułu jest modułem. Tak więc podprze-
strzeń liniowa dowolnej przestrzeni liniowej jest przestrzenią liniową.

Dla pierścienia R przykładami podmodułów są:

• zbiór
{(x1, . . . , xn) ∈ Rn : x1a1 + . . . + xnan = 0}

rozwiązań równania liniowego, jest to podmoduł Rn,

• zbiór
{f : R → R : f jest wielomianem},

jest to podmoduł modułu RR,

• a także przekrój dowolnych podmodułów modułu M jest podmodułem M (a więc pod-
modułem jest także zbiór rozwiązań układu równań liniowych).
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9.1 Moduły generowane przez zbiory

Przypuśćmy, że M jest modułem nad pierścieniem R. Zbiór

M ′ = {
m∑

i=1

ai~xi : m ∈ N ∧ a1, . . . am ∈ R ∧ ~x1, . . . ~xm ∈ X}

jest podmodułem M i nazywamy go podmodułem generowanym przez zbiór X . Moduł M
jest generowany przez X , jeżeli M = M ′. Wyrażenie

∑m
i=1 ai~xi nazywamy kombinacją liniową

elementów ~x1, . . . ~xm o współczynnikach a1, . . . am. Zauważmy, że jeżeli X = {~x1, . . . ~xn}, to
M ′ można zdefiniować wzorem

M ′ = {
n∑

i=1

ai~xi : a1, . . . an ∈ R}.

Moduł jest skończenie generowalny , jeżeli jest generowany przez pewien zbiór skończony.
Każdy pierścień R przemienny z jednością rozważany jako moduł nad R jest skończenie

generowalny, gdyż jest generowany przez zbiór {1}. Moduł Rn też jest skończenie generowalny.
Generują go wektory ~ei = (0, . . . , 0, 1, 0, . . . , 0) (z i-tą współrzędną równą 1). Wynika to z
oczywistego wzoru

(a1, . . . , an) =
n∑

i=1

ai~ei.

Z drugiej strony, skończenie generowalne przestrzenie liniowe nad ciałem liczb wymiernych są
przeliczalne. Stąd wynika, że liczby rzeczywiste nie są skończenie generowalną przestrzenią
liniową nad ciałem liczb wymiernych.

9.2 Zbiory liniowo niezależne

Niech M będzie modułem nad R. Zbiór X ⊆ M jest liniowo zależny , jeżeli istnieją a1, . . . , an ∈
R nie wszystkie równe 0 oraz parami różne elementy ~x1, . . . , ~xn ∈ X takie, że ~0 =

∑n
i=1 ai~xi.

W przeciwnym razie zbiór X nazywamy liniowo niezależnym. Będziemy mówić o wektorach,
że są liniowo zależne (niezależne), jeżeli zbiór tych wektorów jest liniowo zależny (lub odpo-
wiednio: niezależny).

Lemat 9.1 Następujące warunki są równoważne:

1. zbiór X jest liniowo niezależny, a więc dla dowolnych a1, . . . , am ∈ R oraz parami różnych
~x1, . . . , ~xm ∈ X, jeżeli

∑m
i=1 ai~xi = ~0, to a1 = . . . = am = 0,

2. wektor ~0 ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze
zbioru X,

3. pewien wektor ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów
ze zbioru X,

4. każdy element przestrzeni liniowej ma najwyżej jedno przedstawienie w postaci kombina-
cji liniowej wektorów ze zbioru X.
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Dowód. Warunek 2 jest wyrażonym innymi słowami warunkiem 1. Tak więc warunki 1 i 2 są
równoważne. Jest też oczywiste, że warunek 2 implikuje warunek 3.

(3 ⇒ 2). Przypuśćmy, że ~x0 ma dokładnie jedno przedstawienie w postaci kombinacji
liniowej elementów X i ~x0 =

∑m
i=1 bi~xi jest przedstawieniem tego wektora.

Dla dowodu nie wprost załóżmy, że ~0 ma dwa przedstawienia, a więc ma także przedstawie-
nie

∑m
i=1 ai~xi = ~0 dla pewnych wektorów ~xi ∈ X oraz współczynników ai ∈ R nie wszystkich

równych 0. Można założyć, że w obu przedstawieniach występują te same elementy X , po-
nieważ takie przedstawienia można uzupełnić o dowolny wektor ze współczynnikiem 0 (nie
rozróżniamy przedstawień różniących się iloczynami 0 · ~x). Wtedy wzór

~x0 = ~0 + ~x0 =
m∑

i=1

ai~xi +
m∑

i=1

bi~xi =
m∑

i=1

(ai + bi)~xi

daje drugie przedstawienie wektora ~x0, a to przeczy wyborowi ~x0..
(2 ⇒ 4). Jeżeli

m∑

i=1

ai~xi = ~x =
m∑

i=1

bi~xi

są różnymi przedstawieniami wektora ~x, to wektor ~0 można przedstawić jako

m∑

i=1

(ai − bi)~xi,

a więc w postaci kombinacji z niezerowymi współczynnikami.
Implikacja (4 ⇒ 2) jest oczywista, ponieważ wektor ~0 ma odpowiednie przestawienie. 2

9.3 Baza modułu

Liniowo niezależmy zbiór generatorów modułu nazywamy bazą.
Łatwo podać przykłady baz. Zbiór {1} jest bazą pierścienia R traktowanego jako moduł nad

pierścieniem R. Wektory ~e1, . . . , ~en tworzą bazę modułu Rn. Tę bazę Rn będziemy nazywać
standardową. Jednak nie każdy moduł ma bazę. Jeżeli grupę Zn z dodawaniem modulo n
będziemy uważać za moduł nad pierścieniem liczb całkowitych, to z wzoru (n + 1) · x = x
otrzymamy, że dowolne przedstawienie w postaci kombinacji liniowej nie jest jednoznaczne, a
więc żaden podzbiór Zn nie jest liniowo niezależny. Ponadto, ten moduł jest generowany przez
zbiór {1}, a więc jest skończenie generowalny. Zauważmy też, że sytuacja się zmienia, jeżeli
pierścień Zn uważamy za moduł nad nim samym. Wtedy Zn ma bazę równą {1}.

W przypadku modułów, które niekoniecznie są przestrzeniami liniowymi, bazy nazywa się
też zbiorami wolnych generatorów.

9.4 Bazy w przestrzeniach liniowych

Lemat 9.2 W przestrzeni liniowej nad ciałem K, zbiór X jest liniowo zależny wtedy i tylko
wtedy, gdy pewnego ~x ∈ X zachodzi wzór

~x =
n∑

i=1

ai~xi
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dla pewnych x1, . . . , xn ∈ X \ {~x} i pewnych a1, . . . , an ∈ K.

Dowód. Podany wzór oznacza, że ~x ma dwa przedstawienia w postaci kombinacji liniowej
elementów zbioru X . Tak więc X jest liniowo zależny na mocy lematu 9.1 (ten fragment
dowodu nie wymaga założenia, że K jest ciałem).

Jeżeli zbiór X jest liniowo zależny, to

n∑

j=1

aj~xj = ~0

dla pewnych parami różnych wektorów ~xj ∈ X i współczynników aj ∈ K, wśród których jest
współczynnik ai 6= 0. Wtedy

~xi =
∑

j 6=i

−aj

ai

~xj . 2

Wniosek 9.3 Minimalny zbiór generatorów przestrzeni liniowej jest bazą.

Dowód. Przypuśćmy, że X jest minimalnym zbiorem generatorów i nie jest bazą. Wtedy X
jest liniowo zależny i dla pewnego ~x ∈ X , dla pewnych x1, . . . , xn ∈ X\{~x} oraz a1, . . . , an ∈ K
mamy

~x =
n∑

i=1

ai~xi.

Z tego wzoru wynika jednak, że X \{~x} też jest zbiorem generatorów. Przeczy to minimalności
zbioru X . 2

Wniosek 9.4 Każda skończenie generowalna przestrzeń liniowa ma bazę.

Dowód. Bazą jest zbiór generatorów o najmniejszej liczbie elementów. 2

Prawdziwe jest też ogólne twierdzenie o istnieniu bazy przestrzeni liniowej:

Twierdzenie 9.5 Każda przestrzeń liniowa ma bazę. 2

Dowód tego twierdzenia wymaga skomplikowanych środków i został pominięty.

Twierdzenie 9.6 Jeżeli V jest przestrzenią liniową i X ⊆ V , to następujące warunki są
równoważne

1. X jest bazą

2. X jest maksymalnym zbiorem liniowo niezależnym.

3. X jest mininalnym zbiorem generatorów.
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Dowód. (1 ⇒ 2). Przypuśćmy, że X jest bazą i weźmy ~x0 6∈ X . Ponieważ X jest zbiorem
generatorów, więc ~x0 jest kombinacją wektorów z X . To jednak oznacza, że ~x0 ma dwa przed-
stawienia w postaci kombinacji liniowej elementów X ∪ {~x0}. Tak więc na podstawie lematu
9.1, zbiór X ∪ {~x0} jest liniowo zależny. W ten sposób dowiedliśmy, że X jest maksymalnym
zbiorem liniowo niezależnym.

(2 ⇒ 1). Załóżmy teraz, że X jest maksymalnym zbiorem liniowo niezależnym Jeżeli
~w 6∈ X , to zbiór X ∪{~w} jest liniowo zależny. Podobnie jak w dowodzie lematu 9.2, znajdujemy
przedstawienie

~w =
n∑

i=1

ai~xi

w postaci kombinacji liniowej elementów zbioru X . Także wektory ~w ∈ X są kombinacjami
liniowymi elementów X . Tak więc każdy wektor ~w jest kombinacją liniową elementów X , czyli
X jest zbiorem generatorów.

Z przedstawionego rozumowania wynika, że dwa pierwsze warunki z tezy są równoważ-
ne. Wobec wniosku 9.3, aby zakończyć dowód, wystarczy pokazać, że bazy są minimalnymi
zbiorami generatorów.

(1 ⇒ 3). Dla dowodu nie wprost załóżmy, że X jest bazą, ~x0 ∈ X oraz zbiór X \ {~x0}
generuje całą przestrzeń. Wtedy ~x0 jest kombinacją liniową elementów zbioru X \ {~x0}. To
jednak oznacza, że ~x0 ma dwa przedstawienia w postaci kombinacji liniowej elementów zbioru
X . Z lematu 9.1 wynika, że X jest liniowo zależny, a to jest sprzeczne z założeniem. 2

9.5 Lemat o wymianie i wymiar przestrzeni

Lemat 9.7 (lemat o wymianie) Przypuśćmy, że wektory ~u1, . . . , ~uk, ~w1, . . . , ~wm generują
przestrzeń liniową V , a wektory ~w1, . . . , ~wm, ~w ∈ V są liniowo niezależne. Wtedy istnieje
indeks i, 1 ¬ i ¬ k taki, że wektory

~u1, . . . , ~ui−1, ~ui+1 . . . ~uk, ~w1, . . . , ~wm, ~w

generują przestrzeń V .

Dowód. Z założenia o generowaniu V wynika, że

~w =
k∑

i=1

ai~ui +
m∑

j=1

bj ~wj

dla pewnych współczynników a1, . . . , ak i b1, . . . , bm. Gdyby wszystkie współczynniki a1, . . . , ak

były równe 0, to wektor ~w byłby kombinacją liniową wektorów ~w1, . . . , ~wm i przeczyłoby to
liniowej niezależnosci wektorów ~w1, . . . , ~wm, ~w. Niech i0 będzie indeksem takim, że ai0

6= 0.
Wtedy powyższy wzór można przekształcić do postaci

~ui0
=

∑

i 6=i0

a−1

i0
ai~ui +

m∑

j=1

a−1

i0
bj ~wj − a−1

i0
~w.

Stąd wynika, że zbiór z tezy lematu dla i = i0 pozwala na wygenerowanie wszystkich elementów
zbioru generatorów przestrzeni V , i dlatego sam jest zbiorem generatorów. 2
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Wniosek 9.8 W przestrzeni liniowej generowanej przez zbiór n elementowy każdy skończony
zbiór liniowo niezależny jest zawarty n elementowym zbiorze generatorów.

Dowód. Przypuśćmy, że wektory ~u1, . . . , ~un generują przestrzeń liniową, a wektory ~w1, . . . , ~wm

są liniowo niezależne. Każdy układ wektorów postaci ~w1, . . . , ~wi jest liniowo niezależny. Jeżeli
lemat o wymianie zastosujemy kolejno dla i = 1, . . . , m i dla liniowo niezależnych wektorów
~w1, . . . , ~wi, to skonstruujemy zbiór generatorów zawierający ~w1, . . . , ~wm. Zauważmy, że za po-
mocą lematu o wymianie konstruujemy coraz to nowe zbiory generatorów nie zwiększając
liczby elementów. 2

Wniosek 9.9 W przestrzeni liniowej generowanej przez zbiór n elementowy każdy zbiór li-
niowo niezależny jest skończony. 2

Wniosek 9.10 W przestrzeni liniowej generowanej przez zbiór n elementowy każdy zbiór li-
niowo niezależny ma najwyżej n elementów. 2

Wniosek 9.11 Każde dwie bazy skończenie generowalnej przestrzeni liniowej są równoliczne.
2

Wymiarem przestrzeni liniowej V nazywamy liczbę elementów (pewnej) bazy tej przestrze-
ni. Z wniosków 9.4 i 9.11 wynika, że pojęcie wymiaru jest dobrze zdefiniowane dla wszystkich
skończenie generowalnych przestrzeni.

Wniosek 9.12 W przestrzeni liniowej wymiaru n, każdy n elementowy zbiór generatorów i
każdy n elementowy zbiór liniowo niezależny jest bazą.

Dowód. Jest to wniosek z twierdzenia 9.6 i wniosku 9.10. 2

Dla modułów też można wprowadzić pojęcie wymiaru. W tym przypadku nie zawsze ist-
nieją bazy, ale można dowieść poniższe twierdzenie. Pomijamy uzasadnienie tego twierdzenia.
Jest trudniejsze niż uzasadnienie analogicznej własności przestrzeni liniowych.

Twierdzenie 9.13 Jeżeli moduł nad pierścieniem przemiennym (z jednością) ma skończoną
bazę, to każde dwie bazy tego modułu są równoliczne. 2

Z lematu o wymianie wynika jeszcze następujący

Wniosek 9.14 Podprzestrzeń skończenie generowalnej przestrzeni liniowej jest skończenie ge-
nerowalna.

Dowód. Przypuśćmy, że V ′ jest podprzestrzenią przestrzeni liniowej V . Wszystkie liniowo
niezależne układy wektorów podprzestrzeni V ′ są też liniowo niezależne w przestrzeni V , a
więc mają nie więcej niż n elementów dla pewnej liczby n. Wobec tego istnieje najliczniejszy
układ liniowo niezależnych wektorów podprzestrzeni V ′. Jest on oczywiście maksymalnym
takim układem w tej podprzestrzeni i – na podstawie lematu 9.6 – jest bazą, a także zbiorem
generatorów podprzestrzeni V ′. 2
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9.6 Współrzędne wektora

Przypuśćmy, że ~x = (x1, . . . , xn) ∈ Rn. Wtedy elementy x1, . . . , xn ∈ K nazywamy współrzęd-
nymi wektora ~x, a dokładniej, xi nazywamy i-tą współrzędną. Przypomnijmy, że ~ei ∈ Rn jest
wektorem (0, . . . , 1, . . . , 0) z i-tą współrzędną równą 1 i pozostałymi równymi 0. Wiemy już,
że wektory ~e1, . . . , ~en tworzą tzw. standardową bazę modułu Rn. Oczywiście,

~x =
n∑

i=1

xi~ei.

Niech M będzie modułem nad pierścieniem R. Jeżeli układ ~a1, . . . ,~an jest bazą modułu M
i ~x ∈ M , to ~x ma jednoznaczne przedstawienie postaci

~x =
n∑

i=1

yi~ai,

gdzie ~a1, . . . ,~an ∈ X (patrz lemat 9.1). Element yi z tego przedstawienia nazywamy i-tą
współrzędną wektora ~x ∈ M w bazie ~a1, . . . ,~an.

Tak więc współrzędne wektora z modułu Rn są także jego współrzędnymi w bazie stan-
dardowej ~e1, . . . , ~en.

Lemat 9.15 Jeżeli xi i yi są i-tymi współrzędnymi odpowiednio ~x i ~y w bazie ~a1, . . . ,~an, to
xi + yi jest i-tą współrzędną ~x + ~yi, a axi jest i-tą współrzędną a~x w tej bazie.

Dowód. Jest to konsekwencja lematu 9.1. 2

Pojęcie współrzędnych można w podobny sposób zdefiniować też dla baz nieskończonych.

9.7 Homomorfizmy i przekształcenia liniowe

Niech M1 i M2 będą modułami nad pierścieniem R. Funkcję f : V1 → V2 nazywamy homo-

morfizmem (modułów), jeżeli spełnia wszystkie równości

f(a~x + b~y) = af(~x) + bf(~y)

dla ~x, ~y ∈ M1 oraz a, b ∈ R. Homomorfizmy modułów nazywamy też funkcjami lub przekształ-

ceniami liniowymi, zwłaszcza jeżeli ograniczamy się do przestrzeni liniowych. Homomorfizmy
(funkcje liniowe) są addytywne: f(~x+~y) = f(~x)+f(~y), oraz jednorodne: f(a~x) = af(~x), a tak-
że spełnią równość f(~0) = ~0. Funkcje liniowe przyjmujące wartości w szczególnej przestrzeni
liniowej jaką jest ciało R nazywamy funkcjonałami.

Zauważmy też, że homomorfizmy modułów są w szczególności homomorfizmami grup ad-
dytywnych modułów.
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9.8 Pewien sposób definiowania homomorfizmów

Znając wartości homomorfizmu f : M1 → M2 na zbiorze generatorów modułu M1 potrafimy
obliczyć jego wartości dla dowolnego elementu M1. Jeżeli X jest zbiorem generatorów modułu
M1 i ~x ∈ M1, to aby obliczyć f(~x) najpierw przedstawiamy wektor ~x w postaci kombinacji
liniowej generatorów ~a1, . . . ,~an ∈ X . Jeżeli

~x =
n∑

i=1

xi~ai,

to wartość f(~x) obliczamy zgodnie ze wzorem

f(~x) = f(
n∑

i=1

xi~ai) =
n∑

i=1

xif(~ai).

Zachodzi więc następujący

Lemat 9.16 Homomorfizmy przyjmujące te same wartości na zbiorze generatorów modułu są
równe. 2

Dowolna baza jest zbiorem „wolnych” (albo „niepowiązanych”) generatorów. Konsekwencją
tego jest możliwość dowolnego określania funkcji liniowych dla elementów bazy. Jeżeli X jest
bazą przestrzeni M1, a f : X → M2 jest dowolną funkcją przyjmującą wartości w module M2,
to istnieje homomorfizm F : M1 → M2 taki, że F (~a) = f(~a) dla dowolnego ~a ∈ X . Funkcję F
definiujemy przyjmując, że

F (~x) =
n∑

i=1

xif(~ai),

gdzie x1, . . . , xn są współrzędnymi wektora ~x w bazie X . Jest to poprawna definicja, gdyż
współrzędne wektora w dowolnej bazie są wyznaczone jednoznacznie. Łatwo przekonać się, że
jest to definicja funkcji liniowej.

Twierdzenie 9.17 Każda funkcja określona na bazie modułu M1 i przyjmująca wartości w
module M2 rozszerza się jednoznacznie do homomorfizmu określonego na M1 i przyjmującego
wartości w M2. 2
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10.1 Badanie podstawowych własności homomorfizmów

Mając homomorfizm zdefiniowany tak, jak to zostało opisane w rozdziale 9.8, łatwo można
ustalić, czy jest on różnowartościowy lub typu „na”.

Lemat 10.1 Przypuśćmy, że X jest bazą modułu M1 i f : M1 → M2 jest homomorfizmem.
Funkcja f jest typu „na” wtedy i tylko wtedy, gdy obraz ~f(X) jest zbiorem generatorów mo-

dułu M2. Funkcja f jest różnowartościowa wtedy i tylko wtedy, gdy obraz ~f(X) jest liniowo
niezależny.

Dowód. Pierwsza część tezy wynika z wzoru
n∑

i=1

xif(~ai) = f(
n∑

i=1

xi~ai).

Dalej będziemy dowodzić tylko druga część.
Przypuśćmy najpierw, że funkcja f jest różnowartościowa i weźmy kombinację liniową

wektorów z ~f(X) równą zero:

~0 =
n∑

i=1

xif(~ai) = f(
n∑

i=1

xi~ai).

Z różnowartościowości f i równości f(~0) = ~0 wynika, że
n∑

i=1

xi~ai = ~0,

a ponieważ wektory ~ai należą do bazy X , więc xi = 0 dla i = 1, . . . , n. W ten sposób dowie-
dliśmy, że obraz ~f(X) jest liniowo niezależny.

Jeżeli natomiast funkcja f nie jest różnowartościowa, to istnieją dwie różne kombinacje
liniowe wektorów z X przekształcane przez f na ten sam wektor ~x. Tak więc

f(
n∑

i=1

xi~ai) = ~x = f(
n∑

i=1

yi~ai)

dla różnych układów współczynników x1, . . . , xn i y1, . . . , yn. Wtedy jednak wektor ~x ma różne
przedstawienia

n∑

i=1

xif(~ai) = ~x =
n∑

i=1

yif(~ai)

w postaci kombinacji liniowej wektorów z ~f(X). Oznacza to, że ~f(X) jest liniowo zależny. 2

10.2 Rola pojęcia wymiaru

Twierdzenie 10.2 Każde dwa moduły wymiaru n nad dowolnym pierścieniem są izomorficz-
ne, a więc istnieje różnowartościowa funkcja liniowa przekształcająca jeden z nich na drugi.

Dowód. Przypuśćmy, że mamy moduły M1 i M2 oraz bazy ~a1, . . . ,~an i ~b1, . . . ,~bn w tych
modułach. Weźmy funkcję f taką, że f(~ai) = ~bi dla i = 1, . . . , n. Na podstawie twierdzenia
9.17 funkcję f można rozszerzyć do funkcji liniowej F : M1 → M2. Z lematu 10.1 wynika, że
funkcja F jest różnowartościowa i typu „na”. 2
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10.3 Obrazy homomorficzne modułów

Podobnie jak w przypadku homomorfizmów grup, jądrem przekształcenia liniowego (homo-
morfizmu) f : M1 → M2 nazywamy zbiór

ker(f) = {~x ∈ M1 : f(~x) = ~0}.

Jądro przekształcenia liniowego jest zamknięte ze względu na mnożenie przez elementy pier-
ścienia R oraz ze względu na dodawanie (zamkniętość ze względu na dodawanie wynika z teorii
grup). Tak więc jądro jest podmodułem.

Z własności homomorfizmów grup wynika również następujący

Wniosek 10.3 Przekształcenie liniowe jest różnowartościowe wtedy i tylko wtedy, gdy jego
jądro jest jednoelementowe. 2

Rolę dzielników normalnych w teorii modułów pełnią podmoduły. W szczególności, mamy
odpowiedniość między podmodułami modułu i jego obrazami homomorficznymi. Można się o
tym przekonać odpowiednio uzupełniając konstrukcję ilorazową znaną z teorii grup.

Przypuśćmy, że I jest podmodułem modułu M nad pierścieniem R. Wtedy M jest grupą
przemienną oraz I jest dzielnikiem normalnym M . Możemy więc utworzyć grupę ilorazową
M/I (patrz rozdział 7.4). Grupa ta jest obrazem grupy addytywnej M wyznaczonym przez
homomorfizm (grup) χ : M → M/I zdefiniowany wzorem

χ(x) = x + I = {x + y | y ∈ I}

(zauważmy, że teraz działanie grupowe oznaczamy symbolem +) i jest przemienna jako ob-
raz homomorficzny grupy przemiennej. Oczywiście, I jest jądrem tego homomorfizmu (patrz
rozdział 7.4).

W grupie M/I wzorem
a(x + I) = ax + I

definiujemy dodatkowo mnożenie przez elementy R. Wątpliwości może budzić poprawność tej
definicji. Warunek x + I = y + I jest jednak równoważny x − y ∈ I. Wobec tego, jeżeli
x + I = y + I, to x − y ∈ I oraz

a(x − y) = ax − ay ∈ I

(ponieważ I jest podmodułem). Stąd otrzymujemy, że ax+I = ay+I. Dowodzi to poprawności
podanej definicji.

Wzór na mnożenie w M/I gwarantuje, że χ zachowuje także mnożenie przez elementy R
i jest homomorfizmem modułu M na algebra M/I. Algebra ta jest więc modułem. W ten
sposób dowiedliśmy

Twierdzenie 10.4 Jeżeli I jest podmodułem modułu M , to istnieje homomorfizm (modułów)
określony na M , którego jądrem jest I. 2

Zachodzi także
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Twierdzenie 10.5 Jeżeli dwa homomofizmy modułu M mają to samo jądro, to wyznaczone
przez nie obrazy homomorficzne są izomorficzne.

Dowód. Twierdzenie to dowodzimy tak, jak wniosek 7.4 dodatkowo sprawdzając, że skon-
struowany izomorfizm grup zachowuje także mnożenie przez elementy pierścienia. 2

Aby skonstruować przekształcenie liniowe przestrzeni V o jądrze równym podprzestrzeni
V ′, możemy też skonstruować bazę X przestrzeni V zawierającą bazę podprzestrzeni V ′ (w
przypadku przestrzeni skończonego wymiaru istnienie takiej bazy wynika z lematu o wymia-
nie). Następnie definiujemy funkcję f : X → V przyjmując, że

f(~x) =

{
~0 jeżeli ~x ∈ V ′,
~x w przeciwnym razie

i rozszerzamy ją do przekształcenia liniowego F określonego na V . Jądrem przekształcenia F
jest V ′.

Dla przestrzeni skończonego wymiaru fakt, że jądro wyznacza obraz homomorficzny z do-
kładnością do izomorfizmu wynika też z następującego twierdzenia:

Twierdzenie 10.6 Niech V1 będzie przestrzenią liniową wymiaru n. Jeżeli funkcja liniowa
f : V1 → V2 przekształca V1 na V2, to przestrzeń V2 jest skończenie generowalna i liczba n jest
sumą wymiarów przestrzeni V2 i jądra przekształcenia f .

Dowód. Jeżeli X jest bazą przestrzeni V1 i f jest typu „na”, to ~f(X) jest zbiorem skończonym
generującym V2. Przestrzeń V2 jest więc skończenie generowalna i ma skończoną bazę.

Niech ~a1, . . . ,~am będzie bazą V2. Dla i = 1, . . . , m weźmy wektor ~bi ∈ V1 taki, że f(~bi) = ~ai.

Weźmy też bazę ~c1, . . . ,~ck jądra przekształcenia f . Zauważmy, że ~bi 6= ~cj , gdyż w przeciwnym

razie ~ai = f(~bi) = f(~cj) = ~0 i w bazie ~a1, . . . ,~am znalazłby się wektor ~0. Wobec tego, ciąg
~b1, . . . ,~bm,~c1, . . . ,~ck ma m + k elementów. Pokażemy, że wektory z tego ciągu tworzą bazę
przestrzeni V1 i to zakończy dowód.

Najpierw dowiedziemy liniową niezależność tych wektorów. Przypuśćmy więc, że

m∑

i=1

βi
~bi +

k∑

i=1

γi~ci = ~0.

Wtedy

~0 = f(~0) = f(
m∑

i=1

βi
~bi +

k∑

i=1

γi~ci) =
m∑

i=1

βif(~bi) +
k∑

i=1

γif(~ci) =
m∑

i=1

βi~ai.

Ponieważ wektory ~a1, . . . ,~am są bazą V2, więc βi = 0 dla i = 1, . . . , m. Fakt ten implikuje
dodatkowo, że

k∑

i=1

γi~ci = ~0.

Jeżeli teraz skorzystamy z tego, że wektory ~c1, . . . ,~ck są liniowo niezależne, to otrzymamy, że
także γi = 0 dla i = 1, . . . , k i w ten sposób zakończymy dowód niezależności.

Algebra, wykład 10, wersja z 4 marca 2004 roku 39

Pokażemy jeszcze, że każdy wektor ~x ∈ V1 jest kombinacją liniową wektorów ~b1, . . . ,~bm,
~c1, . . . ,~ck. Przedstawmy f(~x) w postaci

f(~x) =
m∑

i=1

βi~ai = f(
m∑

i=1

βi
~bi)

dla pewnych βi. Stąd otrzymujemy, że

~x −
m∑

i=1

βi
~bi

należy do jądra przekształcenia f i jest równy

k∑

i=1

γi~ci

dla pewnych γi. W ten sposób dowiedliśmy, że

~x =
m∑

i=1

βi
~bi +

k∑

i=1

γi~ci. 2

10.4 Działania w zbiorze homomorfizmów

Przypuśćmy, że M1 i M2 są modułami nad pierścieniem R. Niech L(M1, M2) oznacza zbiór
wszystkich homomorfizmów (przekształceń liniowych) określonych w M1 i przyjmujących war-
tości w M2. Przekształcenia należące do L(M1, M2) dodajemy i mnożymy przez elementy R
w zwykły sposób:

(f1 + f2)(~x) = f1(~x) + f2(~x)

oraz
(af)(~x) = af(~x).

Bez trudu dowodzimy, że oba te działania nie wyprowadzają poza L(M1, M2). Stąd otrzymu-
jemy, że zbiór L(M1, M2) jest podmodułem modułu MM1

2 (patrz rozdział 8.6).

Wniosek 10.7 Zbiór L(M1, M2) z wyżej zdefiniowanymi działaniami jest modułem nad pier-
ścieniem R. 2

10.5 Algebry

Słowo algebra oznacza także specyficzną algebrę. Przypuśćmy, że mamy dany przemienny
pierścień R z jednością. Zbiór A, którego elementy potrafimy dodawać, mnożyć przez siebie i
mnożyć przez elementy pierścienia R nazywamy R-algebrą, jeżeli

1. z dodawaniem i mnożeniem przez elementy R jest modułem nad R oraz

2. z dodawaniem i mnożeniem jest pierścieniem z jednością.
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10.6 Złożenie homomorfizmów (funkcji liniowych)

Dla dowolnych przekształceń f1 ∈ L(M2, M3) i f2 ∈ L(M1, M2) w zwykły sposób definiujemy
złożenie f1f2 przyjmując, że

(f1f2)(~x) = f1(f2(~x)).

Oczywiście, składanie jest operacją łączną. Ponadto złożenie homomorfizmów jest homo-
morfizmem (a więc f1f2 ∈ L(M1, M3)). Wynika to z następujących rachunków:

(f1f2)(a~x + b~y) = f1(f2(a~x + b~y)) = f1(af2(~x) + bf2(~y)) =

= af1(f2(~x)) + bf1(f2(~y)) = a(f1f2)(~x) + b(f1f2)(~y).

Także bez trudu dowodzi się, że składanie jest rozdzielne względem dodawania. Jeżeli
f ∈ L(M2, M3) i f1, f2 : M1 → M2, to dla dowolnego wektora ~x ∈ M1 zachodzą równości

(f(f1 + f2))(~x) = f((f1 + f2)(~x)) = f(f1(~x) + f2(~x)) = f(f1(~x)) + f(f2(~x)) =

= (ff1)(~x) + (ff2)(~x) = (ff1 + ff2)(~x),

czyli f(f1 + f2) = ff1 + ff2 (zauważmy, że wykorzystaliśmy addytywność f).
Podobnie, jeżeli f1, f2 : M2 → M3 i f : M1 → M2, to dla dowolnego wektora ~x ∈ M1

zachodzą równości

((f1 + f2)f)(~x) = (f1 + f2)(f(~x)) = f1(f(~x)) + f2(f(~x)) =

= (f1f)(~x) + (f2f)(~x) = (f1f + f2f)(~x),

a więc mamy (f1 + f2)f = f1f + f2f (ten wzór jest konsekwencją definicji sumy funkcji).
Jest oczywiste, że przekształcenie indentycznościowe I jest homomorfizmem, a więc I ∈

L(M, M) dla dowolnego modułu M (oznaczenie I jest uproszczone, powinno zawierać także
zawierać informacje o dziedzinie przekształcenia). Jeżeli f : M1 → M2, a I ∈ L(M1, M1), to
fI = f . Jeżeli natomiast f : M1 → M2 oraz I ∈ L(M2, M2), to If = f .

Z przeprowadzonych rozważań wynika

Twierdzenie 10.8 Jeżeli M jest modułem nad pierścieniem R, to zbiór L(M, M) z doda-
waniem, mnożeniem przez elementy R oraz z mnożeniem zdefiniowanym jako złożenie jest
R-algebrą. 2

10.7 Macierze

Macierz o n kolumnach i m wierszach (albo o wymiarach n×m, albo też o m wierszach długości
n) możemy zdefiniować jako funkcję określoną w zbiorze {1, . . . , m} × {1, . . . , n}. Jeżeli A jest
taką funkcją oraz A(i, j) = ai,j, to A przedstawiamy jako tablicę









a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

. . .

am,1 am,2 . . . am,n









.
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Czasami wektory będzie wygodnie uważać za specyficzne macierze. W takiej sytuacji wek-
tor (x1, x2, . . . , xn) będziemy uważać za macierz jednokolumnową zgodnie ze wzorem

(x1, x2, . . . , xn) =









x1

x2

...
xn









.

W wielu książkach – przeciwnie – wektor (x1, x2, . . . , xn) utożsamia się z macierzą [x1, x2, . . . , xn].

10.8 Iloczyn skalarny

Przypuśćmy, że mamy wektory ~x, ~y ∈ Rn, ~x = (x1, . . . , xn) i ~y = (y1, . . . , yn). Iloczynem

skalarnym wektorów ~x i ~y nazywamy skalar ~x~y ∈ R zdefiniowany wzorem

~x~y =
n∑

i=1

xiyi.

Iloczyn skalarny jest ważną funkcją. W szkole średniej podawana jest interpretacja geome-
tryczna iloczynu skalarnego. Dla nas w tej chwili będzie to tylko wygodne oznaczenie.

Jest to funkcja liniowa względem każdej zmiennej:

~x(a~y + b~z) = a~x~y + b~x~z oraz (a~x + b~y)~z = a~y~z + b~y~z.

Funkcje o takich własnościach nazywamy dwuliniowymi. Ponadto, jeżeli mnożymy wektory
o współrzędnych należących do pierścienia przemiennego, jest to funkcja symetryczna, czyli
spełniająca równość ~x~y = ~y~x.

10.9 Macierz przekształcenia liniowego

Do końca wykładu 10 będziemy rozważać dwa moduły M1 i M2 nad pierścieniem R oraz bazy
~a1, . . . ,~an modułu M1 i ~b1, . . . ,~bm modułu M2.

Przypuśćmy, że mamy przekształcenie liniowe f : M1 → M2. Każdy z wektorów f(~ai) ∈ M2

przedstawiamy jako kombinację liniową wektorów ~b1, . . . ,~bm. Jeżeli

f(~ai) =
m∑

j=1

cj,i
~bj .

to macierz 







c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n

. . .

cm,1 cm,2 . . . cm,n









(3)

nazywamy macierzą przekształcenia f wyznaczoną przez bazy ~a1, . . . ,~an oraz ~b1, . . . ,~bm.
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Zauważmy, że i-ta kolumna macierzy funkcji f zawiera współrzędne w bazie ~b1, . . . ,~bm

wektora f(~ai), a więc znając ją potrafimy obliczyć f(~ai). Znając całą macierz przekształcenia
f potrafi obliczyć wartości f(~ai) dla wektorów z bazy ~a1, . . . ,~an.

Niech Mn,m oznacza zbiór macierzy o wyrazach z pierścienia R mających n kolumn i m
wierszy. Dla f ∈ L(M1, M2) przyjmijmy, że µ(f) ∈ Mn,m oznacza macierz przekształcenia f
wyznaczoną przez ustalone bazy.

Lemat 10.9 Funkcja µ, które przekształceniu liniowemu f ∈ L(M1, M2) przyporządkowuje
macierz µ(f) tego przekształcenia, przekształca L(M1, M2) wzajemnie jednoznacznie na Mn,m.

Dowód. Znając macierz przekształcenia znamy wartości przekształcenia dla argumentów na-
leżących do pewnej bazy. Stąd, na podstawie faktu 9.16 otrzymujemy, że istnieje najwyżej
jedno przekształcenie o danej macierzy, a więc µ jest różnowartościowa. Korzystając z lema-
tu 9.17 potrafimy skonstruować przekształcenie, którego macierzą jest dana macierz. W ten
sposób dowodzimy, że µ jest typu „na”. 2

10.10 Macierz sumy przekształceń

Przypuśćmy, że mamy przekształcenia liniowe f, g ∈ L(M1, M2). Niech

A =









α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

. . .

αm,1 αm,2 . . . αm,n









i B =









β1,1 β1,2 . . . β1,n

β2,1 β2,2 . . . β2,n

. . .

βm,1 βm,2 . . . βm,n









(4)

będą odpowiednio macierzami przekształceń f i g (względem ustalonych baz). Znajdziemy
macierz przekształcenia f +g. W tym celu musimy wyliczyć współrzędne wektorów (f +g)(~ai).
Oczywiście,

f(~ai) =
m∑

j=1

αj,i
~bj oraz g(~ai) =

m∑

j=1

βj,i
~bj .

Wobec tego,

(f + g)(~ai) = f(~ai) + g(~ai) =
m∑

j=1

αj
~bj,i +

m∑

j=1

βj,i
~bj =

m∑

j=1

(αj,i + βj,i)~bj .

Współrzędnymi (f + g)(~ai) są elementy α1,i + β1,i, . . . , αm,i + βm,i, a więc przekształcenie
f + g ma macierz









α1,1 + β1,1 α1,2 + β1,2 . . . α1,n + β1,n

α2,1 + β2,1 α2,2 + β2,2 . . . α2,n + β2,n

. . .

αm,1 + βm,1 αm,2 + βm,2 . . . αm,n + βm,n









.
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10.11 Macierz iloczynu przekształcenia i skalaru

Przypuśćmy, że mamy przekształcenie liniowe f ∈ L(M1, M2) o macierzy A z wzoru (4). Dla
c ∈ R znajdziemy macierz przekształcenia cf . Oczywiście,

(cf)(~ai) = c(f(~ai)) = c
m∑

j=1

αj,i
~bj =

m∑

j=1

(cαj,i)~bj .

Wobec tego, macierzą przekształcenia cf jest









cα1,1 cα1,2 . . . cα1,n

cα2,1 cα2,2 . . . cα2,n

. . .

cαm,1 cαm,2 . . . cαm,n









.

10.12 Dodawanie macierzy i mnożenie ich przez skalary

W zbiorze Mn,m definiujemy działania tak, aby funkcja µ przyporządkowująca przekształceniu
f ∈ L(M1, M2) macierz µ(f) tego przekształcenia była izomorfizmem. Sumą A + B macierzy
A i B z wzoru (4) jest więc macierz









α1,1 + β1,1 α1,2 + β1,2 . . . α1,n + β1,n

α2,1 + β2,1 α2,2 + β2,2 . . . α2,n + β2,n

. . .

αm,1 + βm,1 αm,2 + βm,2 . . . αm,n + βm,n









,

a iloczynem cA macierzy A i skalaru c jest macierz









cα1,1 cα1,2 . . . cα1,n

cα2,1 cα2,2 . . . cα2,n

. . .

cαm,1 cαm,2 . . . cαm,n









.

Zbiór Mn,m z tak zdefiniowanymi działaniami jest izomorficzny z L(M1, M2) i jest modułem.

10.13 Współrzędne wartości przekształcenia

Znowu zakładamy, że mamy przekształcenia liniowe f, g ∈ L(M1, M2). Niech A będzie macie-
rzą przekształcenia f (patrz wzór (4)). Weźmy wektor ~x ∈ M1. Będziemy obliczać współrzędne

wektora f(~x) w bazie ~b1, . . . ,~bm.
Przypuśćmy, że wektor ~x ma w bazie ~a1, . . . ,~an przedstawienie dane wzorem

~x =
n∑

i=1

xi~ai. (5)
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Wtedy

f(~x) = f(
n∑

i=1

xi~ai) =
n∑

i=1

xif(~ai) =
n∑

i=1

xi(
m∑

j=1

αj,i
~bj) =

m∑

j=1

(
n∑

i=1

xiαj,i)~bj .

Tak więc f(~x) jest wektorem, który w bazie ~b1, . . . ,~bm ma współrzędne

n∑

i=1

xiα1,i, . . . ,
n∑

i=1

xiαm,i.

Dalsze rozważania będziemy prowadzić przy dodatkowych założeniach, że M1 = Rn oraz
M2 = Rm. Będziemy też zakładać, że bazy ~a1, . . . ,~an oraz~b1, . . . ,~bm są bazami standardowymi.
Założenia te nie są istotne. Ich przyjęcie jednak zdecydowanie uprości dalszy tekst. Nie bę-
dziemy musieli rozróżniać miedzy wektorem ~x ∈ M1 i ciągiem-wektorem (x1, x2, . . . , xn) ∈ Rn

jego współrzednych. Z przyjętych założeń wynika, że wzór (5) jest równoważny równości
~x = (x1, x2, . . . , xn).

Niech ~αi będzie i-tym wierszem macierzy przekształcenia f , a więc ~αi = (αi,1, αi,2, . . . , αi,n).
Z przeprowadzonych rachunków wynika, że i-ta współrzędna wektora f(~x) jest równa iloczy-
nowi skalarnemu ~αi~x. Ponieważ założyliśmy, że rozważamy współrzędne w bazie standardowej,
więc

f(~x) = (~α1~x, ~α2~x, . . . , ~αm~x). (6)

Z przedstawionych rozważań wynika, że każda funkcja liniowa przekształcająca Rn w Rm

daje się zdefiniować wzorem postaci (6). Liniowość iloczynu skalarnego względem drugiego
argumentu implikuje także, że każda funkcja zdefiniowana wzorem (6) jest liniowa.

10.14 Iloczyn macierzy: przypadek szczególny

Przypuśćmy, że mamy dwie macierze A i B. Iloczyn AB tych macierzy definiujemy tylko
wtedy, gdy liczba kolumn (długość wierszy) macierz A jest równa liczbie wierszy (czyli długości
kolumn) macierzy B. Teraz zajmiemy się przypadkiem, gdy B ma jedną kolumnę. Umówiliśmy
się wcześmiej, że wektor (x1, x2, . . . , xn) uważamy za jednokolumnową macierz, której kolejne
wyrazy od góry są równe x1, x2, . . . , xn.

Niech A będzie macierzą z wzoru (4). Przyjmijmy, że ~αi = (αi,1, αi,2, . . . , αi,n) jest i-tym
wierszem macierzy A. Weźmy też wektor ~x = (x1, x2, . . . , xn) ∈ Rn. Iloczyn A~x macierzy A i
jednokolumnowej macierzy ~x definiujemy wzorem

A~x =









α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

. . .

αm,1 αm,2 . . . αm,n

















x1

x2

...
xn









=









~α1~x
~α2~x

...
~αn~x









(postać wzoru sugeruje, że A i ~x maję tyle samo wierszy, ale tak być nie musi).
Oczywistą konsekwencją przyjętej definicji jest wzór

f(~x) = A~x, (7)

Algebra, wykład 10, wersja z 4 marca 2004 roku 45

gdzie f : Rn → Rm jest funkcją liniową i A jest macierzą f wyznaczoną przez bazy standar-
dowe. Łatwo też korzystając z dwuliniowości iloczynu skalarnego dowieść następujące wzory:

(A + B)~x = a~x = B~x oraz A(~x + ~y) = A~x + A~y.

10.15 „Łączenie” macierzy

Operacja „łączenia” jest uogólnieniem konkatenacji (łączenia) ciągów. Przypuśćmy, że mamy
dwie macierze

A =









α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

. . .

αm,1 αm,2 . . . αm,n









i B =









β1,1 β1,2 . . . β1,k

β2,1 β2,2 . . . β2,k

. . .

βl,1 βl,2 . . . βl,k









.

Jeżeli macierze A i B mają tyle samo wierszy (jeżeli m = l), to możemy je połączyć i utworzyć
macierz

[A B] =









α1,1 α1,2 . . . α1,n β1,1 β1,2 . . . β1,k

α2,1 α2,2 . . . α2,n β2,1 β2,2 . . . β2,k

. . .

αm,1 αm,2 . . . αm,n βm,1 βm,2 . . . βm,k









W przypadku, gdy macierze A i B mają tyle samo kolumn (gdy n = k), to też możemy je
połączyć tworząc macierz

[

A
B

]

=




















α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

. . .

αm,1 αm,2 . . . αm,n

β1,1 β1,2 . . . β1,n

β2,1 β2,2 . . . β2,n

. . .

βl,1 βl,2 . . . βl,n




















.

Łatwy do sprawdzenia jest wzór
[

A
B

]

~x =

[

A~x
B~x

]

.

10.16 Mnożenie macierzy

Zdefiniujemy teraz iloczyn AB dowolnych macierzy

A =









α1,1 α1,2 . . . α1,n

α2,1 α2,2 . . . α2,n

. . .

αm,1 αm,2 . . . αm,n









i B =









β1,1 β1,2 . . . β1,k

β2,1 β2,2 . . . β2,k

. . .

βn,1 βn,2 . . . βn,k








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takich, że długość wierszy macierzy A jest równa długości kolumn macierzy B (wiersze macie-
rzy A i kolumny macierzy B można mnożyć skalarnie). Przyjmijmy, że ~αi = (αi,1, αi,2, . . . , αi,n)

jest i-tym wierszem macierzy A, a ~βi = (β1,i, β2,i, . . . , βn,i) – i-tą kolumną macierzy B. Iloczyn
macierzy zdefiniujemy na trzy sposoby.

Po pierwsze chcemy, aby iloczyn macierzy miał własność

A[B1 B2] = [AB1 AB2]

dla dowolnych macierzy A, B1 i B2, gwarantujących wykonalność występujących w tym wzo-
rze operacji. Wzór ten pozwala sprowadzić mnożenie macierzy do mnożenia macierzy przez
macierz jednokolumnową i razem z definicją mnożenia przez pojedyńczą kolumnę można go
uznać za definicję mnożenia dowolnych macierzy (patrz rozdział 10.14).

Posługując się „łączeniem” definicję iloczynu macierzy możemy wyrazić wzorem

AB = A[~β1
~β2 . . . ~βk] = [A~β1 A~β2 . . . A~βk]. (8)

Najczęściej iloczyn AB macierzy A o wymiarach n × m i macierzy B o wymiarach k × n
definiujemy jako macierz o wymiarach k × m, której wyraz γi,j znajdujący się na przecięciu
i-tego wiersza i j-tej kolumny jest dany wzorem

γi,j = ~αi
~βj =

n∑

l=1

αi,lβl,j.

Zakładając wykonalność odpowiednich operacji można dowieść następujące wzory:

1.

[

A
B

]

C =

[

AC
BC

]

.

2. A(B + C) = AB + AC oraz (A + B)C = AC + BC.
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11.1 Macierz złożenia przekształceń

Przypuśćmy, że mamy przekształcenia f ∈ L(Rm, Rk) i g ∈ L(Rn, Rm). Przyjmijmy, że A jest
macierzą przekształcenia f , a B – macierzą przekształcenia g (dla uproszczenia załóżmy, że A
i B są wyznaczone przez bazy standardowe). Znajdziemy macierz C złożenia fg.

Macierz przekształcenia g otrzymujemy obliczając wektory g(~e1), g(~e2), . . . , g(~en), prze-
kształcając te wektory w jednokolumnowe macierze i łącząc te macierze. Tak więc

B = [g(~e1) g(~e2) . . . g(~en)].

Podobnie
C = [(fg)(~e1) (fg)(~e2) . . . (fg)(~en)].

Zauważmy, że zgodnie z definicją złożenia oraz wzorami (7) i (8)

C = [f(g(~e1)) f(g(~e2)) . . . f(g((~en))] = [Ag(~e1) Ag(~e2) . . . Ag((~en)] =

= A[g(~e1) g(~e2) . . . g((~en)] = AB.

Lemat 11.1 Macierzą złożenia przekształceń liniowych jest iloczyn macierzy tych przekształ-
ceń. 2

Wniosek 11.2 Zbiór macierzy kwadratowych Mn,n o wyrazach z pierścienia R z dodawaniem,
mnożeniem i mnożeniem przez skalary należące do R jest R-algebrą izomorficzną z L(Rn, Rn).
2

11.2 Macierze odwrotne

Zbiór macierzy kwadratowych Mn,n o wyrazach z pierścienia R też jest pierścieniem z jednością.
Jednością w tym pierścieniu jest macierz I, która na przekątnej ma wyrazy równe 1 (wyrazy
postaci ai,i = 1), a pozostałe wyrazy są równe 0. Łatwo sprawdza się, że AI = IA = A dla
dowolnej macierzy A.

Jeżeli macierz A ma w tym pierścieniu element odwrotny, to nazywamy go macierzą od-

wrotną i oznaczamy symbolem A−1.

Lemat 11.3 Przypuśćmy, że M jest modułem z n elementową bazą i A jest macierzą homo-
morfizmu f : M → M . Macierz A jest odwracalna wtedy i tylko wtedy, gdy f jest izomorfi-
zmem. 2

Lemat 11.4 Jeżeli A i B są macierzami o wyrazach należących do ciała K, to następujące
warunki są równoważne:

1. B jest macierzą odwrotna do A,

2. AB = I,

3. BA = I.

Dowód. Lemat ten wynika z zadania 6 z listy 10. 2

Najprostsza metoda znajdowanie macierzy odwrotnej polega na rozwiązywaniu równania
AX = I.
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11.3 Równania liniowe

Niech K będzie ciałem. Równaniem liniowym nazywamy równość postaci

a1x1 + a2x2 + . . . + anxn = b,

gdzie a1, a2, . . . , an, b ∈ K, a x1, x2, . . . , xn są zmiennymi o wartościach ze zbioru K.

Układem równań liniowych nazywamy kilka takich równości. Tak więc równości

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1,
a2,1x1 + a2,2x2 + . . . + a2,nxn = b2,

...
am,1x1 + am,2x2 + . . . + am,nxn = bm

(9)

tworzą układ m równań liniowych z n niewiadomymi.
Zbiór

{(x1, x2, . . . , xn) ∈ Kn : a1,1x1 + a1,2x2 + . . . + a1,nxn = b1 ∧
∧ a2,1x1 + a2,2x2 + . . . + a2,nxn = b2 ∧

...
∧ am,1x1 + am,2x2 + . . . + am,nxn = bm}

nazywamy zbiorem rozwiązań układu (9), a jego elementy – rozwiązaniami tego układu. Będą
nas interesować różne własności zbioru rozwiązań układu równań liniowych, a więc, czy jest
niepusty (czy równanie ma chociaż jedno rozwiązanie, czyli problem niesprzeczności), jego
struktura lub precyzyjny opis.

Macierz








a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

. . .

am,1 am,2 . . . am,n









nazywamy macierzą układu (9), a macierz









a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2

. . .

am,1 am,2 . . . am,n bm









– jego macierzą rozszerzoną (o wektor wyrazów wolnych).

Przyjmijmy, że ~αi = (ai,1, . . . , ai,n) (tak więc ~αi jest i-tym wierszem macierzy układu (9)),

~aj = (a1,j, . . . , am,j) (~aj to j-ta kolumna) oraz ~b = (b1, . . . , bm) (~b jest kolumną wyrazów wol-
nych). Posługując się tymi oznaczeniami układowi równań (9) możemy nadać postać równania
wektorowego

~a1x1 + ~a2x2 + . . . + ~anxn = ~b.
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Można też układowi (9) nadać postać o skróconym zapisie

~α1~x = b1,
~α2~x = b2,

...
~αm~x = bm.

Zdefiniujmy jeszcze funkcję F : Kn → Km przyjmując, że

F (~x) =









a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

. . .

am,1 am,2 . . . am,n

















x1

x2

...
xm









.

Oczywiście, F jest funkcją liniową i macierzą F wyznaczoną przez bazy standardowe jest
macierz układu (9).

Nietrudno zauważyć, że

F (~x) =









a1,1x1 + a1,2x2 + . . . + a1,nxn

a2,1x1 + a2,2x2 + . . . + a2,nxn

...
am,1x1 + am,2x2 + . . . + am,nxn









Lemat 11.5 Wektor ~x spełnia układ (9) wtedy i tylko wtedy, gdy F (~x) = ~b. Wobec tego

zbiorem rozwiązań układu (9) jest {~x ∈ Kn : F (~x) = ~b} . 2

11.4 Najprostsze własności

Lemat 11.6 Jeżeli układ (9) ma dokładnie jedno rozwiązanie, to wektory ~a1,~a2, . . . ,~an są
liniowo niezależne. Jeżeli wektory ~a1,~a2, . . . ,~an są liniowo niezależne, to układ (9) ma najwyżej
jedno rozwiązanie.

Dowód. Tezę dowodzonego lematu możemy wyprowadzić z lematu 9.1 posługując się postacią
wektorową układu równań. 2

11.5 Układy jednorodne

Układ (9) nazywamy jednorodnym, jeżeli ~b = ~0.

Lemat 11.7 Przypuśćmy, że F (~c) = ~b. Wtedy funkcja p(~x) = ~x + ~c przekształca zbiór {~x ∈

Kn : F (~x) = ~0} wzajemnie jednoznacznie na zbiór {~x ∈ Kn : F (~x) = ~b} rozwiązań układu (9).
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Dowód. Funkcja p jest różnowartościowa na mocy prawa skracania. Przypuśćmy, że F (~x) = ~0.
Wtedy

F (p(~x)) = F (~x + ~c) = F (~x) + F (~c) = ~0 +~b = ~b.

Jeżeli natomiast F (~x) = ~b, to oczywiście ~x jest wartością p(~x − ~c) oraz

F (~x − ~c) = F (~x) − F (~c) = ~b −~(b) = ~0. 2

Z powyższego lematu wynika, że aby rozwiązać układ F (~x) = ~b, trzeba znaleźć jedno
rozwiązanie ~c tego układu i rozwiązać układ F (~x) = ~0. Mając rozwiązanie układu F (~x) = ~0,
trzeba do każdego elementu tego rozwiązania dodać wektor ~c i w ten sposób otrzymamy
rozwiązanie wyjściowego układu.

Z udowodnionego lematu wynika, że rozwiązywanie dowolnego układu równań liniowych
sprowadza się do rozwiązywania układu jednorodnego. Zbiór rozwiązań jednorodnego układu
F (~x) = ~0 jest jądrem przekształcenia F .

Lemat 11.8 Zbiór rozwiązań jednorodnego układu równań liniowych o n niewiadomych jest
podprzestrzenią liniową przestrzeni Kn. W szczególności, wektor zerowy jest rozwiązaniem
jednorodnego układu równań liniowych. 2

11.6 Interpretacja geometryczna

Zbiory rozwiązań układu równań liniowych można opisać w języku geometrycznym. Jeże-
li płaszczyznę utożsamimy z przestrzenią R2, to podprzestrzeniami R2 będą: zbiór, którego
jedynym elementem jest początek układu współrzędnych (~0), proste przechodzące przez po-
czątek układu współrzędnych oraz cała płaszczyzna R2. Tylko takie mogą być rozwiązania
układu jednorodnego. Rozwiązaniami dowolnego układu są przesunięcia rozwiązań odpowied-
niego układu jednorodnego, a więc dowolne punkty, dowolne proste oraz cała płaszczyzna.
Rozwiązaniem może też być zbiór pusty. W przypadku układów równań z trzema zmiennymi,
rozwiązaniami mogą być także dowolne płaszczyzny położone w przestrzeni (dla układów jed-
norodnych – zawierające ~0) oraz cała przestrzeń R3. Dla równań z większą liczbą niewiadomych
sytuacja jest analogiczna.

11.7 Dopełnienie ortogonalne

Dla X ⊆ Kn przyjmijmy, że

VX = {
k∑

i=1

vi ~wi ∈ Kn : v1, . . . , vk ∈ K ∧ ~w1 . . . , ~wk ∈ X}.

Zbiór VX jest więc podprzestrzenią Kn generowaną przez X .
Przyjmijmy też, że

X⊥ = {~x ∈ Kn : ∀~a ∈ X ~a~x = 0}.

Zbiór X⊥ nazywamy dopełnieniem ortogonalnym X . Zauważmy, że jeżeli X = {~α1, ~α2, . . . , ~αm}

i ~b = ~0, to X⊥ jest zbiorem rozwiązań układu (9).
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Wektory ~a i ~x nazywamy ortogonalnymi wtedy i tylko wtedy, gdy ~a~x = 0. Te definicje wiążą
się ze znaną ze szkoły charakteryzacją iloczynu skalarnego: iloczyn skalarny dwóch wektorów
jest iloczynem długości tych wektorów i cosinusa kąta między wektorami. Stąd oczywiście
wynika, że iloczyn skalarny dwóch niezerowych wektorów jest równy 0 wtedy i tylko wtedy,
gdy cosinus kąta między wektorami jest równy 0, a więc, gdy wektory te są prostopadłe
(ortogonalne).

Lemat 11.9 Dopełnienie ortogonalne X⊥ ma dla dowolnych X, Y ⊆ Kn następujące własno-
ści:

1. jeżeli X ⊆ Y , to Y ⊥ ⊆ X⊥,

2. X⊥ ⊆ V ⊥
X , a więc także X⊥ = V ⊥

X ,

3. X⊥ jest podprzestrzenią liniową,

4. VX ⊆ (X⊥)⊥.

Dowód. Punkt 1) jest oczywisty. Jeżeli wektory ~x i ~y są ortogonalne do ~a, to oczywiście
(wystarczy policzyć odpowiedni iloczyn) dowolna ich kombinacja liniowa też jest ortogonalna
do ~a. Stąd wynika punkt 3), a także pierwsza część punktu 2). Część druga punktu 2) wynika
z części pierwszej i punktu 1).

Aby dowieść punkt 4) weźmy dowolny wektor ~v ∈ VX . Jeżeli ~y jest dowolnym wektorem ze
zbioru X⊥, to – na podstawie punktu 2) – ~y ∈ V ⊥

X , a więc ~y~v = 0. Tak więc zachodzi własność
∀~y ∈ X⊥ ~y~v = 0. Własność ta oznacza, że ~v ∈ (X⊥)⊥. 2

11.8 Wymiar dopełnienia ortogonalnego

Niech L(V, K) oznacza zbiór funkcjonałów (funkcji) liniowych określonych w zbiorze V i przyj-
mujących wartości w zbiorze K. Zbiór L(V, K) z dodawaniem funkcji i mnożeniem funkcji przez
skalar z ciała K, zdefiniowanymi w zwykły sposób jest przestrzenią liniową. Zauważmy, że

Lemat 11.10 Jeżeli V jest przestrzenią wymiaru n, to przestrzeń L(V, K) jest izomorficzna
z przestrzenią Kn.

Dowód. Weźmy bazę ~a1, . . . ,~an przestzreni V i zdefiniujmy funkcję ϕ : L(V, K) → Kn przyj-
mując, że

ϕ(f) = (f(~a1), . . . , f(~an)).

Łatwo dowieść, że ϕ jest funkcją liniową. Z lematu 9.16 i twierdzenia 9.17 wynika, że ϕ jest
izomorfizmem. 2

Lemat 11.11 Jeżeli V jest przestrzenią wymiaru n, to przestrzeń L(V, K) też jest wymiaru n.

Dowód. Jest to oczywisty wniosek z poprzedniego lematu. 2
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Lemat 11.12 Jeżeli V jest podprzestrzenią Kn, to n jest sumą wymiarów przestrzeni V i
dopełnienia ortogonalnego V ⊥.

Dowód. Weźmy funkcję ϕ : Kn → L(V, K) taką, że

ϕ(~a)(~x) = ~a~x

(dla ~x ∈ V i ~a ∈ Kn). Z dwuliniowości iloczynu skalarnego wynika, że funkcja ϕ przyjmuje
wartości w zbiorze funkcjonałów L(V, K), a także, że jest to funkcja liniowa.

Funkcja ϕ jest też typu „na”, a więc jest epimorfizmem. Tak jest, ponieważ bazę przestrzeni
V można rozszerzyć do bazy przestrzeni Kn (patrz lemat 9.7 o wymianie) i – w konsekwencji
– każdy funkcjonał f ∈ L(V, K) można rozszerzyć do funkcjonału f ′ : Kn → K (patrz
twierdzenie 9.17). Z wzoru (6) otrzymujemy, że f ′(~x) = ~a~x dla pewnego ~a ∈ Kn. Tym bardziej
f(~x) = ~a~x.

Zauważmy, że zerem w przestrzeni L(V, K) jest funkcja stale równa 0 i implikuje to, że
dopełnienie ortogonalne przestrzeni V jest jądrem epimorfizmu ϕ.

Teraz wystarczy skorzystać z twierdzenia 10.6 i lematu 11.11. 2

Wniosek 11.13 Jeżeli V jest podprzestrzenią Kn, to (V ⊥)⊥ = V .

Dowód. Tak jest, ponieważ przestrzenie V i (V ⊥)⊥ są tego samego wymiaru i zachodzi za-
wieranie V ⊆ (V ⊥)⊥. 2

Wniosek 11.14 Każda podprzestrzeń Kn jest zbiorem rozwiązań pewnego jednorodnego ukła-
du równań liniowych. 2
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12.1 Suma prosta

Przestrzeń liniową V nazywamy sumą prostą podprzestrzeni V1, V2 ⊆ V , jeżeli każdy wektor
~a ∈ V ma jednoznaczne przedstawienie w postaci sumy ~a = ~x + ~y wektorów ~x ∈ V1 i ~y ∈ V2.

Lemat 12.1 Przypuśćmy, że V1 i V2 są podprzestrzeniami przestrzeni liniowej V . Dowolny
wektor ~a ∈ V ma najwyżej jedno przedstawienie w postaci sumy ~x+~y wektorów ~x ∈ V1 i ~y ∈ V2

wtedy i tylko wtedy, gdy V1 ∩ V2 = {~0}.

Dowód. Oczywiście, {~0} ⊆ V1 ∩V2. Jeżeli ~a ∈ V1 ∩V2, to ~a można przedstawić w odpowiedniej
postaci na dwa sposoby: ~a = ~0 + ~a = ~a + ~0. Jednoznaczność przedstawienia w tej postaci
implikuje, że veca = ~0.

Załóżmy, że pewien wektor ~a ma przedstawienia

~x1 + ~y1 = ~a = ~x2 + ~y2

takie, że ~x1, ~x2 ∈ V1 oraz ~y1, ~y2 ∈ V2. Wtedy ~x1−~x2 = ~y2−~y1 ∈ V1∩V2 oraz ~x1−~x2 = ~y2−~y1 = ~0.
Wobec tego, te przedstawienia ~a są identyczne. 2

Lemat 12.2 Jeżeli V jest podprzestrzenią Rn, to V ∩ V ⊥ = {~0}.

Dowód. Jeżeli ~x ∈ V ∩ V ⊥, to iloczyn ~x~x wektorów ~x ∈ V i ~x ∈ V ⊥ jest równy 0. Mamy więc

0 = ~x~x =
n∑

i=1

x2

i .

Ponieważ współrzędne xi wektora ~x są liczbami rzeczywistymi, więc wszystkie są równe 0, a ~x
jest wektorem zerowym. W ten sposób dowiedliśmy, że V ∩ V ⊥ ⊆ {~0}. Drugie zawieranie jest
oczywiste. 2

Lemat 12.3 Jeżeli V jest podprzestrzenią Rn, to każdy wektor ~a ∈ Rn można przedstawić w
postaci sumy ~a = ~x + ~y wektorów ~x ∈ V i ~y ∈ V ⊥.

Dowód. Bierzemy bazy ~a1, . . . ,~am przestrzeni V oraz ~b1, . . . ,~bn−m przestrzeni V ⊥. To, że baza
V ⊥ ma n − m elementów wynika z lematu 11.12.

Układ ~a1, . . . ,~am,~b1, . . . ,~bn−m jest liniowo niezależny. Aby się o tym przekonać załóżmy, że

m∑

i=1

αi~ai +
n−m∑

j=1

βj
~bj = ~0.

Wtedy
m∑

i=1

αi~ai = −
n−m∑

j=1

βj
~bj ∈ V ∩ V ⊥.

Z lematu 12.2 wynika, że obie strony równości są równe ~0, a ponieważ są to kombinacje liniowe
wektorów bazowych, więc ich współczynniki α1 = . . . = αm = β1 = . . . = βn−m = 0. Liniowa
niezależność tego układu implikuje też, że składa się on z n elementów (w układzie liniowo
niezależnym wektory nie mogą się powtarzać).

Teza lematu wynika stąd, że w przestrzeni n wymiarowej każdy n elementowy układ liniowo
niezależny jest zbiorem generatorów. 2
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Twierdzenie 12.4 Jeżeli V jest podprzestrzenią Rn, to Rn jest sumą prostą V i V ⊥.

Dowód. Jest to wniosek z lematów 12.1, 12.2 i 12.3. 2

12.2 Operacje elementarne i równoważność wierszowa

Przypuśćmy, że mamy macierz A, której wierszami są wektory ~α1, . . . , ~αm. Będziemy rozważać
następujące operacje na macierzy A, zwane elementarnymi:

1. zamiana dwóch wierszy macierzy A miejscami,

2. zastąpienia wiersza ~α wektorem c~α dla c 6= 0,

3. dodanie do wiersza innego wiersza, a więc zastąpienie wiersza ~αi wektorem ~αi + ~αj.

Zauważmy, że jeżeli macierz B otrzymujemy z macierzy A wykonując operację elementarną,
to także A można otrzymać z B wykonując najwyżej trzy operacje elemetarne. Jeżeli macierz
B otrzymujemy zastępując wiersz ~αi wektorem ~αi + ~αj, to macierz A otrzymujemy mnożąc
j-ty wiersz macierzy B przez -1, dodając go do i-tego wiersza, a następnie ponownie mnożąc
j-ty wiersz przez -1. Dla pozostałych operacji jest oczywiste, że są odwracalne.

Macierze A i B są równoważne wierszowo, jeżeli jedną z nich można otrzymać z drugiej
wykonując operacje elementarne.

Wniosek 12.5 Relacja wierszowej równoważności macierzy jest relacją równoważności. 2

Lemat 12.6 Wiersze macierzy równoważnych wierszowo generują tę samą podprzestrzeń. 2

Lemat 12.7 Jeżeli macierze rozszerzone dwóch układów równań liniowych są wierszowo rów-
noważne, to układy te są równoważne (a więc mają ten sam zbiór rozwiązań). 2

Zauważmy, że funkcje f1, f2 i f3 definiowane wzorami

• f1(x1, . . . , xi, . . . , xj , . . . , xm) = (x1, . . . , xj , . . . , xi, . . . , xm),

• f2(x1, . . . , xi, . . . , xm) = (x1, . . . , cxi, . . . , xm) (dla (c 6= 0) oraz

• f3(x1, . . . , xi, . . . , xj , . . . , xm) = (x1, . . . , xi + xj, . . . , xj , . . . , xm)

przekształcają Km wzajemnie jednoznacznie na Km i są liniowe. Zauważmy, że jeżeli macierz
B otrzymujemy przez zamianę i-tego wiersza macierzy A z j-tym, to macierz B możemy też
otrzymać zastępując każdą jej kolumnę ~x kolumną f1(~x). Analogiczne własność ma miejsce dla
pozostałych operacji elementarnych, a więc dla mnożenia wiersza i funkcji f2 oraz dodawania
wiersza i funkcji f3.

Lemat 12.8 Jeżeli macierze A i B są wierszowo równoważne, to istnieje różnowartościowe
przekształcenie liniowe f przekształcające zbiór kolumn macierzy A na zbiór kolumn macie-
rzy B. Wobec tego przestrzenie generowane przez kolumny macierzy równoważnych wierszowo
mają ten sam wymiar. 2
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12.3 Macierze zredukowane

Wyrazem kierunkowym wiersza macierzy nazywamy pierwszy niezerowy element tego wiersza.
Oczywiście, wiersz zerowy nie ma wyrazu kierunkowego.

Macierz A o wyrazach ai,j (i to numer wiersza, a j to numer kolumny, w której znajduje
się wyraz ai,j) nazywamy zredukowaną, jeżeli

1. wyrazy kierunkowe wszystkich wierszy (o ile istnieją) są równe 1,

2. jeżeli ai,j jest wyrazem kierunkowym i-tego wiersza, to ak,j = 0 dla k < i,

3. wyrazy kierunkowe są coraz dalej: jeżeli ai,j jest wyrazem kierunkowym i-tego wiersza,
to ak,l = 0 dla k > i oraz l ¬ j,

4. wiersze zerowe znajdują się na końcu macierzy (mają numery większe od numerów wier-
szy niezerowych).

Lemat 12.9 Niezerowe wiersze macierzy zredukowanej są liniowo niezależne. Wymiar prze-
strzeni generowanej przez kolumny macierzy zredukowanej jest równy liczbie niezerowych wier-
szy tej macierzy. 2

Twierdzenie 12.10 Każde dwie równoważne wierszowo macierze zredukowane (o określo-
nych wymiarach) są identyczne.

Dowód. Przypuśćmy, że mamy zredukowane, równoważne wierszowo macierze M1 i M2. Na
mocy lematu 12.6, przestrzenie generowane przez wiersze tych macierzy są równe. W tej sy-
tuacji z lematu 12.9 otrzymujemy, że macierzy M1 i M2 mają tyle samo wierszy niezerowych
i tyle samo zerowych. Dalej będziemy zakładać, że nie mają wierszy zerowych.

Niech ~w1 i ~w2 będą ostatnimi wierszami macierzy M1 i M2, a t1 i t2 – indeksami wyrazów
kierunkowych tych wierszy. Z wyboru wierszy i definicji macierzy zredukowanej wynika, że
wyrazy kierunkowe pozostałych wierszy macierzy M1 mają indeksy < t1. Analogiczna własność
jest prawdziwa dla M2.

Załóżmy, że t1 < t2. Równość przestrzeni wierszy macierzy M1 i M2 implikuje, że ~w2 daje
się przedstawić w postaci kombinacji liniowej wierszy ~v1, . . . , ~vm macierzy M1, np.

~w2 =
m∑

i=1

ai~vi. (10)

Weźmy wiersz ~vi i przyjmijmy, że jego wyraz kierunkowy znajduje się na pozycji t. Oczywiście
t ¬ t1 < t2. Implikuje to, że współrzędna o numerze t wektora w2 jest równa 0. Z definicji
macierzy zredukowanej wynika, że także współrzędne o numerze t pozostałych (o numerach
6= i) wierszy macierzy M1 są równe 0. Oznacza to, że współrzędna o numerze t sumy

m∑

i=1

ai~vi

jest równa ai. Otrzymujemy więc, że ai = 0, a ponieważ rozumowanie to możemy powtórzyć
dla każdego wiersza macierzy M1, więc ~w2 = ~0. W ten sposób otrzymaliśmy sprzeczność.
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W podobny sposób sprowadzamy do sprzeczności założenie, że t2 < t1. Tak więc dowiedli-
śmy, że t1 = t2.

Jeszcze raz skorzystamy z równości (10), ale dodatkowo przyjmijmy, że wiersz ~vm jest
ostatnim, a więc ~vm = ~w1. Podane rozumowanie pozwala teraz uzasadnić, że dla i < m
zachodzi równość ai = 0. Porównując współrzędne obu stron wzoru (10) o numerach t1 i
korzystając dodatkowo z warunku, że wyrazy kierunkowe wierszy macierzy zredukowanej są
równe jeden otrzymujemy, że am = 1. Oznacza to, że równość (10) redukuje się do równości
~w2 = ~vm = ~w1. Ostatnie wierszy macierzy M1 i M3 są więc identyczne.

Korzystając po raz trzeci z podobnego rozumowania pokazujemy, że wiersze macierzy M1

różne od ~w1 i wiersze macierzy M2 różne od ~w2 generują tę samą przestrzeń. Weźmy kombi-
nację X wierszy M1 różnych od ~w1. Współrzędna o numerze t1 tej kombinacji jest równa 0.
Kombinacja X daje się przedstawić jako kombinacja wierszy macierzy M2. Na pozycji t2 w
tej kombinacji jest współczynnik przy wektorze ~w2, a więc współczynnik przy ~w2 jest równy
0. Oznacza to, że X jest kombinacją wierszy macierzy M2 różnych od ~w2.

Aby dokończyć dowód wystarczy powołać się na zasadę indukcji matematycznej. 2

12.4 Macierze zredukowane a układy równań liniowych

Układ równań liniowych czesto ma nieskończenie wiele rozwiązań. Polecenie rozwiązania takie-
go układu nie może więc być rozumiane jako polecenie wymienienia wszystkich jego rozwiązań
(ciągów liczb spełniających układ). Jest rozumiane jako polecenie pewnego opisania zbioru
wszystkich rozwiązań.

Zgodnie z lematem 11.7, zbiór rozwiązań układu równań liniowych można opisać podając
jedno rozwiązanie i opisując zbiór rozwiązań odpowiadającego mu układu jednorodnego. Zbiór
rozwiązań układu jenorodnego jest podprzestrzenią i może zostać opisany (niejednoznacznie)
przez podanie zbioru generatorów lub bazy.

Polecenie rozwiązanie układu równań liniowych może też być rozumiane jako polecenia
znalezienia tzw. rozwiązania parametrycznego, a więc układu równań liniowych szczególnej
postaci, równoważnego danemu. Ten szczególny układ ma postać ~x = C~y + ~d, gdzie ~x i ~y są
zmiennymi danego układu podzielonymi w pewien sposób na dwie części. Zauważmy, że mając
dane parametryczne rozwiązanie łatwo podać jedno z rozwiązań układu (np. ~x = ~d i ~y = ~0)
oraz bazę zbioru rozwiązań odpowiedniego układu jednorodnego (bierzemy ciągi liczb złożone
z ~x = C~ei i ~y = ~ei dla wszystkich możliwych i).

Jeżeli macierz układu równań liniowych ma postać zredukowaną, to bez trudu można z
niej odczytać parametryczne rozwiązanie układu.

Zauważmy jeszcze, że

[I A]

[

−A
I

]

= [0]

Wzór ten pozwala znajdować bazę dopełnienia ortogonalnego podprzestrzeni generowanej
przez wiersze macierzy [I A] (symbole I w tym wzorze oznaczają macierze jednostkowe, ale
mogą to być macierze o różnych wymiarach). Może też być wykorzystany przy szukaniu bazy
zbioru rozwiązań jednorodnego układu równań liniowych.
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12.5 Algorytm eliminacji Gaussa

Przypuśćmy, że mamy daną macierz A o wyrazach ai,j i wierszach ~αi. Podany niżej algorytm
nazywamy algorytmem eliminacji Gaussa.

1. Dla każdego k takiego, że ~αk 6= ~0:

(a) znajdujemy numer l wyrazu kierunkowego wiersza ~αk,

(b) mnożymy wiersz ~αk przez a−1

k,l {wyraz kierunkowy wiersza ~αk staje się równy 1},

(c) dla dowolnego i 6= k

wiersz ~αi zastępujemy przez różnicę ~αi − ai,l~αk {powodujemy, że l-tej kolumnie
poza wierszem o numerze k są same zera},

2. przestawiamy wiersze zerowe za wiersze różne od zera,

3. porządkujemy wiersze ustawiając je według rosnących numerów wyrazów kierunkowych.

Lemat 12.11 Algorytm eliminacji Gaussa przekształca dowolną macierz w równoważną jej
wierszowo macierz zredukowaną. 2

Za pomocą tego algorytmu można rozwiązywać układy równań liniowych, przekształcać
zbiór generatorów w bazę, badać liniową niezależność wektorów, obliczać wymiar przestrzeni
mając zbiór jej generatorów, szukać bazy dopełnienia ortogonalnego, itp. Wiele zastosowań
algorytmu eliminacji Gaussa jest zasygnalizowane na 12. liście zadań.

Zauważmy jeszcze, że z lematów 12.6, 12.8, 12.9 i 12.11 wynika

Lemat 12.12 Dla dowolnej macierzy A, przestrzenie generowane przez wiersze macierzy A i
przez jej kolumny mają ten sam wymiar.

Dowód. Tak jest, ponieważ przekształcenia elementarne zachowują interesujące nas wymiary i
pozwalają sprowadzić macierz do postaci zredukowanej, a dla macierzy zredukowanej wymiary
te są identyczne. 2

12.6 Twierdzenie Kroneckera-Capelliego

Rzędem macierzy nazywamy wymiar podprzestrzeni generowanej przez wiersze tej macierzy.
Z lematu 12.12 wynika, że rząd macierzy możemy zdefiniować równoważnie jako wymiar prze-
strzeni generowanej przez kolumny.

Twierdzenie 12.13 (Kroneckera-Capelliego) Układ równań liniowych ma rozwiązanie wte-
dy i tylko wtedy, gdy rząd macierzy tego układu jest równy rzędowi jego macierzy rozszerzonej.

Dowód. Aby dowieść to twierdzenie, wystarczy układowi równań nadać postać wektorową
i zauważyć, że układ równań liniowych ma rozwiązanie wtedy i tylko wtedy, gdy kolumna
wyrazów wolnych jest kombinacją liniową kolumn macierzy badanego układu. 2

Twierdzenie 12.14 Układ równań liniowych z n niewiadomymi ma dokładnie jedno rozwią-
zanie wtedy i tylko wtedy, gdy rząd macierzy tego układu jest równy n. 2


