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8.2 PiersScienie

Pierscieniem nazywamy algebre z dodawaniem + i mnozeniem -, ktéra z dodawaniem jest
grupa przemienng, oraz w ktorej sa spelnione prawa tacznosci

(-y)-z=a-(y-2)

i rozdzielnosci
(z+y)-z=x-2+y-2z oraz z-(x+y)=z-c+z2-y

Przyktadem pierscienia jest zbior liczb calkowitych ze zwyklymi dzialaniami, pierscien Z, z
dodawaniem i mnozeniem modulo n, zbiér liczb wymiernych ze zwyktymi dziataniami. Pier-
$cien R jest pierScieniem z jednoscia, jezeli mnozenie w R ma element neutralny. Pierdcien
nazywamy przemiennym, jezeli mnozenie w tym pierscieniu jest przemienne.

Element a # 0 (w pierscieniu R) jest dzielnikiem zera, jezeli a - b = 0 dla pewnego b # 0.
Element a € R jest odwracalny, jezeli a-b=b-a = 1 dla pewnego b € R. Dzielniki zera nie
sa elementami odwracalnymi. Zero jest elementem odwracalnym tylko w pierscieniu, ktorego
jedynym elementem jest 0. Wiemy tez, ze w pierscieniu zachodza wzory -0 =0z = 0.

Piercien przemienny z jednoscia nazywamy ciatem, jezeli 0 # 1 i dla kazdego niezerowego
elementu w tym pierscieniu jest element odwrotny.

8.3 Produkt pierscieni

Przypusmy, ze Ry i Ry sa pierscieniami. W produkcie Ry x Ry definiujemy dodawanie i mnozenie
(al, (12) + (bl, bz) = ((11 + bl, as + bz)

(a1,az) - (by,by) = (ay - by, az - ba).

Zbiér Ry X Ry z tymi dzialaniami nazywamy produktem (iloczynem) kartezjanskim pierscieni
Ry i Ry. Jezeli pewna rownosé jest prawdziwa dla wszystkich elementéw pierscieni Ry i Ry, to
jest tez prawdziwa w produkcie Ry x Rs. Stad wynika, ze produkt kartezjanski pierécieni jest
pierscieniem.
Analogicznie definiujemy produkty wiekszej liczby pierscieni Ry X ...x R, albo RXx...xR.
Produkt cial nie jest ciatem.

8.4 Szeregi formalne i wielomiany

Przypusémy, ze R jest pierscieniem. Jezeli ag, aq, ... € R, to wyrazenie postaci
oo
> an
i=0
nazywamy szeregiem formalnym. Szereg formalny mozna tez definiowaé jako ciag ag, a, ... €

R, ale ciag ten powinien kojarzy¢ si¢ z podanym wzorem.
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W zbiorze szeregoéw formalnych definiujemy dodawanie i mnozenie przyjmujac, ze

Soaat+Y b’ = (a;+ b2’
=0 i=0 i=0

oraz )
o0 fe ] . o0 7 .
(% @) - (3 ba') = 3 (L ash)et.
i=0 i=0 i=0 j=0
Zbiér szeregéw formalnych z tymi dzialaniami jest pierscieniem.
Pojecie wielomianu mozna definiowaé na dwa sposoby. Sa to albo szeregi formalne takie,
ze dla pewnej liczby naturalnej n i dla wszystkich ¢ > n mamy a;, = 0 albo tez wielomiany
definiuje sie jako funkcje f: R — R okreslone wzorami postaci

[ =3 a' @)

W zbiorze liczb rzeczywistych majac wielomian-funkcje f zdefiniowang wzorem (2) moze-
my jednoznacznie ustali¢ wspétezynniki ag, ayg, . . .. Podane definicje wielomianu nie sg jednak
réwnowazne. Inaczej jest, jezeli rozwazamy wielomiany o wspoétczynikach nalezacych do ciata
Zp. Dla wszystkich z z tego ciala zachodzi wzér o7 = x. Funkcja f : Z, — Z, zdefiniowana
wzorem f(z) = aP moze tez zosta¢ zdefiniowana wzorem f(z) = z. Wobec tego, znajac sa-
ma funkcja f nie potrafimy w tym przypadku odtworzy¢ wzoru, ktérym ta funkcja zostata
okreslona.

Wielomiany rozumiane jako szeregi formalne tworza podpierscien pierscienia szeregéw for-
malnych. Takze wielomiany rozumiane jako funkcje ze zwyklymi w takim przypadku dziata-
niami tworza pierscien.

8.5 Moduty

Przypusmy, ze R jest pierscieniem przemiennym z jednoscia. Zbiér M nazywamy modulem
nad pierscieniem R, jezeli

1. elementy M potrafimy dodawaé¢ i M z dodawaniem jest grupa przemienna,
2. jest okreslone mnozenie przeksztalcajace R x M w M takie, ze
(ab) -z =a-(b-x)
(a+b)-z=a-z+b-2x
a-(z+y)=a-z+a-y
l-z=u
dla wszystkich a,b € R oraz x,y € M.

Moduty nad ciatami nazywamy przestrzeniami liniowymi lub wektorowymi.
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8.5.1 Uwagi o definicji modulu

W literaturze czesto sa podawane bardziej ogdlne definicje moduléw. Pojecie modutu definiuje
sie dla dowolnych pierécieni, a nie tylko dla pierScieni przemiennych z jednoscig. W takim
przypadku w definicji modutu pomija si¢ warunek 1 -z = x. Przytoczona definicja odpowiada
pojeciu modulu lewostronnego. Rozwaza sie tez moduty prawostronne, w ktérych jest okreslone
mnozenie przeksztatcajace M x R w M spelniajace warunek

z-(ab)=(x-a)-b

i réwnosci analogiczne do podanych w rozdziale 8.5. Rozwazane sa tez moduly (obustronne),
ktore sg jednoczesnie lewo- i prawostronne. Nietrudno zauwazy¢, ze w module lewostronnym
nad pier§cieniem przemiennym R mozna zdefiniowa¢ mnozenie z prawej strony przyjmujac, ze
dla z € M ia € R mamy

r-a=a-x.

Modut M z tak zdefiniowanym mnozeniem z prawej strony jest modulem prawostronnym, i w
tym sensie jest tez modulem obustronnym.

8.6 Przyklady moduléw

Symbole R i Ry beda oznaczaé pierécienie przemienne z jednoscia.

e Dowolna grupa przemienna jest modutem nad pierécieniem liczb catkowitych, jezeli dla
n € N, n # 0 przyjmiemy, ze

n-r=r+r+...+z,
N 7
n razy

(=n) -z =(=2)+(=2) + ...+ (-2),
n Tazy

0-2=0.

o Jezeli pierscien R; jest podpierécieniem pierscienia Rs, to Ry jest modutem nad pierscie-
niem R; z mnozeniem (przeksztalcajacym Ry X Ry w Rs) zdefiniowanym jako zwykle
mnozenie w pierscieniu Ry (ograniczone do sytuacji w ktérych pierwszy argument nalezy
do R;). W szczegdlnoscei, pierscienn R jest modutem nad R, a takze ciato liczb rzeczywi-
stych jest przestrzenia liniowa nad ciatem liczb wymiernych.

Pierécien wielomianéw o wspétezynnikach z R jest modutem nad pierscieniem R z mno-
Zeniem

. 00
a-Y apt =Y (aa;)at.
i=0

r

Il
)

i
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o Jezeli M jest podpierécieniem R i dla wszystkich a € R oraz v € M zachodzi warunek
ax € M, to M ze zwyklym mnozeniem z pierscienia R jest modutem. Moduly tej postaci
nazywamy idealami (w przypadku pierscieni przemiennych). Zauwazmy, ze nie kazdy
podpierscien jest modulem. Na przyklad, Z jest podpierscieniem @, ale nie jest modutem
nad Q.

Jezeli ay, ..., a, € R, to zbiér
{2101 + @200 + ... + Tpay | 1, 22,..., 2, € R}

z mnozeniem z pierécienia R jest ideatem. Zauwazmy, ze rozwazany zbiér jest podpier-
$cieniem R generowanym przez as, ..., a,.

Modutem jest zbior R" = R x ... x R z dzialaniami
(x1, 2,5 @n) + (Y1, Y25 -5 Un) = (X1 + Y1, T2 + Y2, -, Tn + Yn)

oraz
a-(z1,22,...,2,) = (a- 21,0 Ta,...,a" Tp).

Elementy zbioru R" nazywamy wektorami o wspéirzednych nalezacych do R.

W zbiorze RY = {f | f : X — R} definiujemy dodawanie oraz mnozenie przez element
a € R przyjmujac, ze

(fi+ (@) = fi(z) + fo(2)
oraz

(af)(x) = af(z).

Okreslona w ten sposéb algebra jest modutem.

Jezeli h: Ry — Ry jest homomorfizmem pierscieni, to
{z € Ry | h(z) = 0}

jest ideatem.

8.7 Podmodutly

Przyjmijmy, ze M jest modutem nad R. Niepusty zbiéor X C M nazywamy podmodulem
modutu M, jezeli

1. £+ ¢ € X dla dowolnych #, 7 € X,
2. =% € X dla kazdego 7 € X,

3. ai € X dla wszystkich 7 € X ia € R.
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Warto zauwazy¢, ze warunki podane w definicji podmodutu mozna zastapi¢ jednym, stwier-
dzajacym, ze jezeli ¥,y € X ia,b € R, to af +by € X.

Jezeli R jest ciatem, to podmodul nad R nazywamy podprzestrzenia liniowa (lub wekto-
rowa) nad cialem R.

Nietrudno sprawdzi¢, ze podmodut dowolnego modutu jest modutem. Tak wiec podprze-
strzen liniowa dowolnej przestrzeni liniowej jest przestrzenia liniowa.

Dla pierscienia R przyktadami podmoduléw sa:

e zbidr
{(z1,...,2,) € R" : 2101 + ... + zpa, = 0}
rozwiazan réwnania liniowego, jest to podmodul R",
e zbiér
{f:R— R: f jest wielomianem},

jest to podmodut modutu RE,

e a takze przekr6j dowolnych podmodutéw modutu M jest podmodutem M (a wige pod-
modulem jest takze zbidr rozwigzan ukladu réwnan liniowych).
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9.1 Moduly generowane przez zbiory

Przypusémy, ze M jest modutem nad pierscieniem R. Zbi6r

m
M = {Eaﬁ, :meNANay,...ay € RANT1,... Ty € X}
i1
jest podmodutem M i nazywamy go podmodulem generowanym przez zbiér X. Modut M
jest generowany przez X, jezeli M = M’. Wyrazenie Y.1* | a,%; nazywamy kombinacja liniowa
elementéw Ty, ...&, o wspolczynnikach ay,...a,,. Zauwazmy, ze jezeli X = {#,...Z,}, to
M’ mozna zdefiniowaé¢ wzorem

n
M ={> a :ai...a, € R}.
im1

Modut jest skoriczenie generowalny, jezeli jest generowany przez pewien zbior skonczony.

Kazdy pierscien R przemienny z jednoscia rozwazany jako modul nad R jest skonczenie
generowalny, gdyz jest generowany przez zbior {1}. Modul R™ tez jest skoriczenie generowalny.
Generuja go wektory €; = (0,...,0,1,0,...,0) (z i-ta wspéhrzedng réwng 1). Wynika to z
oczywistego wzoru

n
(ary...,a,) = Zaia
i=1

7 drugiej strony, skonczenie generowalne przestrzenie liniowe nad ciatem liczb wymiernych sa
przeliczalne. Stad wynika, ze liczby rzeczywiste nie sa skonczenie generowalng przestrzenia
liniowa nad ciatem liczb wymiernych.

9.2 Zbiory liniowo niezalezne

Niech M bedzie modutem nad R. Zbiér X C M jest liniowo zalezny, jezeli istnicja ay, ..., a, €
R nie wszystkie réwne 0 oraz parami rézne elementy 71, ..., &, € X takie, ze 0 = S ail
W przeciwnym razie zbiér X nazywamy liniowo niezaleznym. Bedziemy moéwié¢ o wektorach,
ze s liniowo zalezne (niezalezne), jezeli zbiér tych wektoréw jest liniowo zalezny (lub odpo-
wiednio: niezalezny).

Lemat 9.1 Nastepujgce warunki sg réwnowazne:
1. zbior X jest liniowo niezalezny, a wige dla dowolnych ay, . .., a,, € R oraz parami réinych
Ty,...,Tm € X, jezeli Y0 a;@; =0, toa; = ... = a,, =0,
2. wektor 0 ma dokladnie jedno przedstawienie w postaci kombinacji liniowej wektoréw ze
zbioru X,
3. pewien wektor ma dokladnie jedno przedstawienie w postaci kombinacji liniowej wektordw
ze zbioru X,

4. kazdy element przestrzeni liniowej ma najwyzej jedno przedstawienie w postaci kombina-
cji liniowej wektorow ze zbioru X .
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Dowdd. Warunek 2 jest wyrazonym innymi stowami warunkiem 1. Tak wiec warunki 11i 2 sa
rownowazne. Jest tez oczywiste, ze warunek 2 implikuje warunek 3.

(3 = 2). Przypus$émy, ze  ma dokladnie jedno przedstawienie w postaci kombinacji
liniowej elementéw X i &y = >_i%, b;@; jest przedstawieniem tego wektora.

Dla dowodu nie wprost zatézmy, ze 0 ma dwa przedstawienia, a wigc ma takze przedstawie-
nie Y7 a;@; = 0 dla pewnych wektoréw #; € X oraz wspolezynnikéw a; € R nie wszystkich
réownych 0. Mozna zalozy¢, ze w obu przedstawieniach wystepuja te same elementy X, po-
niewaz takie przedstawienia mozna uzupelni¢ o dowolny wektor ze wspélezynnikiem 0 (nie
rozrozniamy przedstawien rézniacych sie iloczynami 0 - 7). Wtedy wzoér

m m m
To=0+7 =Y af;, + > bF = > (a; + b)T;
i=1 i=1 i=1
daje drugie przedstawienie wektora 7y, a to przeczy wyborowi ..
(2= 4). Jezeli

sa roznymi przedstawieniami wektora @, to wektor 0 mozna przedstawic¢ jako
m
Z(ai = b)),
i=1
a wiec w postaci kombinacji z niezerowymi wspotezynnikami.
Implikacja (4 = 2) jest oczywista, poniewaz wektor 0 ma odpowiednie przestawienie. O

9.3 Baza modulu

Liniowo niezalezmy zbiér generatoréw modutu nazywamy baza.

Latwo poda¢ przyklady baz. Zbiér {1} jest baza pierécienia R traktowanego jako modul nad
pierscieniem R. Wektory €, ..., €, tworza baze¢ modulu R". Te baz¢ R™ bedziemy nazywaé
standardowa. Jednak nie kazdy modul ma baze. Jezeli grupe Z, z dodawaniem modulo n
bedziemy uwazaé¢ za modutl nad pierdcieniem liczb catkowitych, to z wzoru (n + 1) -z =
otrzymamy, ze dowolne przedstawienie w postaci kombinacji liniowej nie jest jednoznaczne, a
wiec zaden podzbior Z, nie jest liniowo niezalezny. Ponadto, ten modutl jest generowany przez
zbiér {1}, a wiec jest skoniczenie generowalny. Zauwazmy tez, ze sytuacja sie zmienia, jezeli
pierécieit Z,, uwazamy za modul nad nim samym. Wtedy Z,, ma baze réwna {1}.

W przypadku moduléw, ktére niekoniecznie sg przestrzeniami liniowymi, bazy nazywa si¢
tez zbiorami wolnych generatoréw.

9.4 Bazy w przestrzeniach liniowych

Lemat 9.2 W przestrzeni liniowej nad cialem K, zbior X jest liniowo zaleiny wtedy i tylko
wtedy, gdy pewnego ¥ € X zachodzi wzor

Z= a;T;

M=

1
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dla pewnych x1,...,x, € X \ {Z} i pewnych ay,...,a, € K.

Dowdd. Podany wzér oznacza, ze ¥ ma dwa przedstawienia w postaci kombinacji liniowej
elementéw zbioru X. Tak wigc X jest liniowo zalezny na mocy lematu 9.1 (ten fragment
dowodu nie wymaga zalozenia, ze K jest cialem).

Jezeli zbior X jest liniowo zalezny, to

n
> a;i; =0
=

dla pewnych parami réznych wektoréw ; € X i wspotczynnikéw a; € K, wérod ktorych jest
wspOlezynnik a; # 0. Wtedy
—as
=) —#. 0

i# W
‘Whniosek 9.3 Minimalny zbidr generatordw przestrzeni liniowej jest bazq.
Dowéd. Przypusémy, ze X jest minimalnym zbiorem generatoréw i nie jest baza. Wtedy X

jest liniowo zalezny i dla pewnego @ € X, dla pewnych 1, ..., z, € X\{Z} orazay,...,a, € K

mamy
n

=) .

i=1

7 tego wzoru wynika jednak, ze X \ {Z} tez jest zbiorem generatoréw. Przeczy to minimalnosci
zbioru X. O

‘Whiosek 9.4 Kazda skoriczenie generowalna przestrzen liniowa ma baze.

Dowéd. Baza jest zbiér generatoréw o najmniejszej liczbie elementow. O

Prawdziwe jest tez ogdlne twierdzenie o istnieniu bazy przestrzeni liniowej:
Twierdzenie 9.5 Kazda przestrzen liniowa ma baze. O
Dowdd tego twierdzenia wymaga skomplikowanych srodkéow i zostal pominiety.

Twierdzenie 9.6 Jezeli V' jest przestrzeniq liniowg i X C V, to nastepujgce warunki sq
rownowazne

1. X jest bazg
2. X jest maksymalnym zbiorem liniowo niezaleznym.

3. X jest mininalnym zbiorem generatoréw.
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Dowdéd. (1 = 2). Przypusémy, ze X jest baza i wezmy 7y ¢ X. Poniewaz X jest zbiorem
generatoréw, wiec &y jest kombinacja wektorow z X. To jednak oznacza, ze ¥y ma dwa przed-
stawienia w postaci kombinacji liniowej elementéw X U {Zo}. Tak wiec na podstawie lematu
9.1, zbiér X U {Zy} jest liniowo zalezny. W ten sposéb dowiedlismy, ze X jest maksymalnym
zbiorem liniowo niezaleznym.

(2 = 1). Zalézmy teraz, ze X jest maksymalnym zbiorem liniowo niezaleznym Jezeli
W ¢ X, to zbiér X U{w} jest liniowo zalezny. Podobnie jak w dowodzie lematu 9.2, znajdujemy
przedstawienie

n
’LU = Z ll,‘fi
i=1

w postaci kombinacji liniowej elementéw zbioru X. Takze wektory @ € X sa kombinacjami
liniowymi elementéw X . Tak wiec kazdy wektor @ jest kombinacja liniowa elementéw X, czyli
X jest zbiorem generatorow.

7 przedstawionego rozumowania wynika, ze dwa pierwsze warunki z tezy sa rownowaz-
ne. Wobec wniosku 9.3, aby zakonczy¢ dowdd, wystarczy pokazaé, ze bazy sa minimalnymi
zbiorami generatoréw.

(1 = 3). Dla dowodu nie wprost zatézmy, ze X jest baza, ¥y € X oraz zbiér X \ {Z}
generuje cala przestrzen. Wtedy Z jest kombinacja liniowa elementéw zbioru X \ {@}. To
jednak oznacza, ze Ty ma dwa przedstawienia w postaci kombinacji liniowej elementéw zbioru
X. Z lematu 9.1 wynika, ze X jest liniowo zalezny, a to jest sprzeczne z zatozeniem. O

9.5 Lemat o wymianie i wymiar przestrzeni

Lemat 9.7 (lemat o wymianie) Przypusémy, ze wektory i, ..., U, W, ..., Wy generujg
przestrzen liniowg V, a wektory Wy, ..., Wy, W € V sq¢ liniowo niezalezne. Wtedy istnieje
indeks i, 1 < i < k taki, ze wektory

Wpy ooy Wi gy Ui 1 o Uy Wy« e vy Wi,y W
generujq przestrzen V.

Dowdd. Z zalozenia o generowaniu V' wynika, ze

k m
W= Z a;u; + Z bjw;
i=1 j=1

dla pewnych wspotczynnikéw aq, ..., a1 b1, ..., by. Gdyby wszystkie wspotezynniki ay, . . ., ay
byty réwne 0, to wektor @ bytby kombinacja liniowa wektoréw y, ..., w,, i przeczyloby to

liniowej niezaleznosci wektoréw i, . .., Wy, w. Niech iy bedzie indeksem takim, ze a;, # 0.
Wtedy powyzszy wzér mozna przeksztalcié do postaci

m
- 1. - —17 = —1,-
Ty = Y a;tagll; + Y ag by — a;) 0.

i#io j=1
Stad wynika, ze zbior z tezy lematu dla i = iy pozwala na wygenerowanie wszystkich elementow
zbioru generatoréw przestrzeni V, i dlatego sam jest zbiorem generatorow. O
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‘Whiosek 9.8 W przestrzeni liniowej generowanej przez zbior n elementowy kazdy skorniczony
2bidr liniowo niezalezny jest zawarty n elementowym zbiorze generatoréw.

Dowdd. Przypusémy, ze wektory wy, . . . , i, generujg przestrzen liniowa, a wektory y, . . . , Wy,
sa liniowo niezalezne. Kazdy uktad wektoréw postaci iy, . .., w; jest liniowo niezalezny. Jezeli
lemat o wymianie zastosujemy kolejno dla ¢ = 1,...,m i dla liniowo niezaleznych wektoréw
Wy, ..., W;, to skonstruujemy zbiér generatoréw zawierajacy wy, . . ., W,. Zauwazmy, ze za po-
moca lematu o wymianie konstruujemy coraz to nowe zbiory generatoréow nie zwickszajac
liczby elementéw. O

‘Whniosek 9.9 W przestrzeni liniowej generowanej przez zbior n elementowy kazdy zbior li-
niowo niezalezny jest skonczony. O

‘Whniosek 9.10 W przestrzeni liniowej generowanej przez zbior n elementowy kazdy zbior li-
niowo niezalezny ma najwyzej n elementow. O

‘Whiosek 9.11 KaZde dwie bazy skoticzenie generowalnej przestrzeni liniowej sq réwnoliczne.
O

Wymiarem przestrzeni liniowej V' nazywamy liczbe elementéw (pewnej) bazy tej przestrze-
ni. Z wnioskow 9.4 1 9.11 wynika, ze pojecie wymiaru jest dobrze zdefiniowane dla wszystkich
skonczenie generowalnych przestrzeni.

‘Whiosek 9.12 W przestrzeni liniowej wymiaru n, kazdy n elementowy zbior generatoréw i
kazdy n elementowy zbior liniowo niezaleiny jest bazq.

Dowéd. Jest to wniosek z twierdzenia 9.6 i wniosku 9.10. O

Dla moduléw tez mozna wprowadzi¢ pojecie wymiaru. W tym przypadku nie zawsze ist-
nieja bazy, ale mozna dowies¢ ponizsze twierdzenie. Pomijamy uzasadnienie tego twierdzenia.
Jest trudniejsze niz uzasadnienie analogicznej wlasnosci przestrzeni liniowych.

Twierdzenie 9.13 Jezeli modul nad pierscieniem przemiennym (z jednoscig) ma skonczong
baze, to kazde dwie bazy tego modulu sq réwnoliczne. O

Z lematu o wymianie wynika jeszcze nastepujacy

‘Whiosek 9.14 Podprzestrzeri skoticzenie generowalnej przestrzeni liniowej jest skoticzenie ge-
nerowalna.

Dow6d. Przypusémy, ze V' jest podprzestrzenia przestrzeni liniowej V. Wszystkie liniowo
niezalezne uklady wektoréw podprzestrzeni V' sa tez liniowo niezalezne w przestrzeni V, a
wiec maja nie wiecej niz n elementéow dla pewnej liczby n. Wobec tego istnieje najliczniejszy
uktad liniowo niezaleznych wektoréw podprzestrzeni V'. Jest on oczywiscie maksymalnym
takim uktadem w tej podprzestrzeni i — na podstawie lematu 9.6 — jest baza, a takze zbiorem
generatoréw podprzestrzeni V'. O
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9.6 Wspoélrzedne wektora

Przypusémy, ze & = (x1,...,x,) € R". Wtedy elementy 1, ..., z, € K nazywamy wspoirzed-
nymi wektora Z, a dokladniej, z; nazywamy i-ta wspotrzedna. Przypomnijmy, ze €; € R" jest
wektorem (0,...,1,...,0) z i-ta wspélrzedna réwng 1 i pozostatymi réwnymi 0. Wiemy juz,
ze wektory €7, ..., é, tworza tzw. standardowa baz¢ modulu R™. Oczywiscie,

n
F=) ;6.
i=1

Niech M bedzie modutem nad pierscieniem R. Jezeli uklad d, ..., a, jest baza modutu M
iZ € M, to & ma jednoznaczne przedstawienie postaci

n

7= Zyﬁu

i1
gdzie @,...,d, € X (patrz lemat 9.1). Element y; z tego przedstawienia nazywamy i-ta
wspoélrzedng wektora ¥ € M w bazie dy, ..., d,.

Tak wigc wspoOtrzedne wektora z modutu R™ sa takze jego wspélrzednymi w bazie stan-
dardowej €1, ..., €.

Lemat 9.15 Jezeli x; i y; sq i-tymi wspolrzednymi odpowiednio T i § w bazie @, . ..,d,, to
x; + y; jest i-tq wsplrzedng T + y;, a ax; jest i-tq wspolrzedng aZ w tej bazie.

Dowdd. Jest to konsekwencja lematu 9.1. O

Pojecie wspotrzednych mozna w podobny sposob zdefiniowaé tez dla baz nieskonczonych.

9.7 Homomorfizmy i przeksztalcenia liniowe

Niech M; i M5 beda modutami nad pierscieniem R. Funkcje f : Vi — V5 nazywamy homo-
morfizmem (moduléw), jezeli spelnia wszystkie réwnosci

f(aZ + b)) = af (T) + bf ()

dla Z,y € M; oraz a,b € R. Homomorfizmy moduléw nazywamy tez funkcjami lub przeksztal-
ceniami liniowymi, zwlaszcza jezeli ograniczamy sie do przestrzeni liniowych. Homomorfizmy
(funkcje liniowe) sg addytywne: f(Z+9) = f(Z)+ f(9), oraz jednorodne: f(aZ) = af(Z), a tak-
7e spelnig réwnosé f(0) = 0. Funkcje liniowe przyjmujace wartodci w szczegolnej przestrzeni
liniowej jaka jest cialo R nazywamy funkcjonatami.

Zauwazmy tez, ze homomorfizmy moduléw sa w szczegdlnosci homomorfizmami grup ad-
dytywnych modutéw.
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9.8 Pewien sposdb definiowania homomorfizméw

Znajac wartosci homomorfizmu f : M; — M, na zbiorze generatoréow modutu M; potrafimy
obliczy¢ jego wartosci dla dowolnego elementu M. Jezeli X jest zbiorem generatoréw modutu
M, i & € My, to aby obliczy¢ f(F) najpierw przedstawiamy wektor Z w postaci kombinacji
liniowej generatoréw dy, . ..,d, € X. Jezeli

Zachodzi wiec nastepujacy

Lemat 9.16 Homomorfizmy przyjmugjgce te same warto$ci na zbiorze generatoréw modulu sq
rowne. O

Dowolna baza jest zbiorem ,wolnych” (albo ,niepowiazanych”) generatoréw. Konsekwencja
tego jest mozliwosé dowolnego okreslania funkcji liniowych dla elementéw bazy. Jezeli X jest
baza przestrzeni My, a f: X — M, jest dowolna funkcja przyjmujaca wartosci w module Mo,
to istnieje homomorfizm F : M} — M, taki, ze F(d) = f(a) dla dowolnego @ € X. Funkcje F
definiujemy przyjmujac, ze

F@) = Yl @),

gdzie x1,...,x, sa wspdlrzednymi wektora ¥ w bazie X. Jest to poprawna definicja, gdyz
wspotrzedne wektora w dowolnej bazie sa wyznaczone jednoznacznie. Latwo przekonaé sie, ze
jest to definicja funkeji liniowe;j.

Twierdzenie 9.17 Kazda funkcja okreslona na bazie modulu My i przyjmujgca wartosci w
module My rozszerza si¢ jednoznacznie do homomorfizmu okreslonego na My i przyjmujgcego
wartosci w My. O



36 Antoni Kodcielski, 2002/03

10.1 Badanie podstawowych wlasno$ci homomorfizméw

Majac homomorfizm zdefiniowany tak, jak to zostalo opisane w rozdziale 9.8, tatwo mozna

ustali¢, czy jest on réznowartosciowy lub typu ,na”.

Lemat 10.1 Przypusémy, zZe X jest bazq modulu My i f : My — My jest homomorfizmem.

Funkcja f jest typu ,na” wtedy i tylko wtedy, gdy obraz f(X) jest zbiorem generatoréw mo-

dulu My. Funkcja f jest réznowartosciowa wtedy i tylko wtedy, gdy obraz f(X) jest liniowo
niezalezny.

Dowdd. Pierwsza czesé tezy wynika z wzoru
n n
Sowif(@) = f(O @)
i=1 i=1

Dalej bedziemy dowodzi¢ tylko druga czesc.
Przypusémy najpierw, ze funkcja f jest roznowartosciowa i wezmy kombinacje liniowa
wektoréw z f(X) réwna zero:

M:

6= wuf(@) = £(3 i)

Il
-

=

Z réznowartosciowoscl f i réwnosei f(0) = 0 wynika, ze

7

z;d; = 0,
1

a poniewaz wektory d@; naleza do bazy X, wiec z; =0 dlai=1,...,n. W ten sposéb dowie-
dli$my, ze obraz j_"(X ) jest liniowo niezalezny.
Jezeli natomiast funkcja f nie jest réznowartosciowa, to istnieja dwie rézne kombinacje

liniowe wektoréw z X przeksztalcane przez f na ten sam wektor Z. Tak wiec

n n

FQowd) =7 = fFQ yidi)

i=1 i=1
dla réznych uktadéow wspotezynnikéw a1, ..., 2, 1y, ..., Y. Wtedy jednak wektor Z ma roézne
przedstawienia

-

i=1

w postaci kombinacji liniowej wektoréw z f (X). Oznacza to, ze f (X)) jest liniowo zalezny. O

v f (@)

i=1

10.2 Rola pojecia wymiaru

Twierdzenie 10.2 Kazde dwa moduly wymiaru n nad dowolnym pierscieniem sq izomorficz-
ne, a wige istnieje roznowartosciowa funkcja liniowa przeksztatcajgca jeden z nich na drugi.

Dowdd. Przypusémy, ze mamy moduly M, i M, oraz bazy dy,...,d, i 51, ..., b, W tych
modutach. Wezmy funkcje f taka, ze f(d;) = b; dlai = 1,...,n. Na podstawie twierdzenia
9.17 funkcje f mozna rozszerzy¢ do funkcji liniowej F' : My — Ms. Z lematu 10.1 wynika, ze
funkcja F' jest réznowartosciowa i typu ,na”. O
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10.3 Obrazy homomorficzne modutéw

Podobnie jak w przypadku homomorfizméw grup, jadrem przeksztalcenia liniowego (homo-
morfizmu) f : My — M, nazywamy zbiér

ker(f) = {Z € M, : f(%) = 0}.

Jadro przeksztalcenia liniowego jest zamkniete ze wzgledu na mnozenie przez elementy pier-
Scienia R oraz ze wzgledu na dodawanie (zamknietosé ze wzgledu na dodawanie wynika z teorii
grup). Tak wiec jadro jest podmodutem.

Z wtasnosci homomorfizméw grup wynika réwniez nastepujacy

‘Whiosek 10.3 Przeksztalcenie liniowe jest réznowartosciowe wtedy i tylko wtedy, gdy jego
jadro jest jednoelementowe. O

Role dzielnikéw normalnych w teorii moduléw petia podmoduly. W szczegblnosci, mamy
odpowiednio$¢ miedzy podmodutami modutu i jego obrazami homomorficznymi. Mozna sie o
tym przekonaé¢ odpowiednio uzupelniajac konstrukcje ilorazowa znana z teorii grup.

Przypusémy, ze I jest podmodutem modutu M nad pierscieniem R. Wtedy M jest grupa
przemienng oraz I jest dzielnikiem normalnym M. Mozemy wiec utworzy¢ grupe ilorazowa
M/I (patrz rozdzial 7.4). Grupa ta jest obrazem grupy addytywnej M wyznaczonym przez
homomorfizm (grup) x : M — M/I zdefiniowany wzorem

xX@)=z+I={z+ylyel}

(zauwazmy, ze teraz dzialanie grupowe oznaczamy symbolem +) i jest przemienna jako ob-
raz homomorficzny grupy przemiennej. Oczywiscie, I jest jadrem tego homomorfizmu (patrz
rozdzial 7.4).
W grupie M/I wzorem
a(z+1)=ax+1

definiujemy dodatkowo mnozenie przez elementy R. Watpliwosci moze budzi¢ poprawnosé tej
definicji. Warunek = + I = y + [ jest jednak réwnowazny x —y € I. Wobec tego, jezeli
c+I=y+1,tox—yecloraz

alz—y)=ax —ay el

(poniewaz I jest podmodutem). Stad otrzymujemy, ze az+I = ay+I. Dowodzi to poprawnosci
podanej definicji.

Wzér na mnozenie w M /I gwarantuje, ze x zachowuje takze mnozenie przez elementy R
i jest homomorfizmem modutu M na algebra M/I. Algebra ta jest wigc modutem. W ten
sposob dowiedli$my

Twierdzenie 10.4 Jezeli I jest podmodulem modulu M, to istnieje homomorfizm (moduléw)
okreslony na M, ktdrego jadrem jest I. O

Zachodzi takze
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Twierdzenie 10.5 JeZeli dwa homomofizmy modulu M majg to samo jgdro, to wyznaczone
przez nie obrazy homomorficzne sq izomorficzne.

Dowdd. Twierdzenie to dowodzimy tak, jak wniosek 7.4 dodatkowo sprawdzajac, ze skon-
struowany izomorfizm grup zachowuje takze mnozenie przez elementy pierscienia. O

Aby skonstruowaé przeksztalcenie liniowe przestrzeni V o jadrze réwnym podprzestrzeni
V', mozemy tez skonstruowaé baz¢ X przestrzeni V zawierajaca baz¢ podprzestrzeni V' (w
przypadku przestrzeni skonczonego wymiaru istnienie takiej bazy wynika z lematu o wymia-
nie). Nastepnie definiujemy funkcje f: X — V przyjmujac, ze

. 0 jezeli &€V,
f@ =9 = ,- .
I w przeciwnym razie
i rozszerzamy ja do przeksztalcenia liniowego F' okreslonego na V. Jadrem przeksztalcenia F
jest V.
Dla przestrzeni skonczonego wymiaru fakt, ze jadro wyznacza obraz homomorficzny z do-
ktadnoscig do izomorfizmu wynika tez z nastepujacego twierdzenia:

Twierdzenie 10.6 Niech V) bedzie przestrzeniq liniowg wymiaru n. Jezeli funkcja liniowa
[ Vi — Vy przeksztalca Vi na Vs, to przestrzen Vy jest skoriczenie generowalna i liczba n jest
sumgq wymiardw przestrzeni Va i jadra przeksztalcenia f.
Dowdd. Jezeli X jest baza przestrzeni V) i f jest typu ,na”, to f (X) jest zbiorem skonczonym
generujacym Va. Przestrzen V3 jest wigc skonczenie generowalna i ma skonczona baze.

Niech @, . . ., @y bedzie baza Va. Dlai = 1, ..., m wezmy wektor b; € V; taki, ze f(b;) = .

Wezmy tez baze ¢, . . ., ¢ jadra przeksztalcenia f. Zauwazmy, ze b; # ¢, gdyz w przeciwnym
razie @; = f(b;) = f(¢;) = 0 i w bazie @,...,a, znalaztby sie wektor (. Wobec tego, ciag
biy.ooybm, Ghy .o, G ma m + k elementéw. Pokazemy, ze wektory z tego ciagu tworza baze

przestrzeni Vi i to zakonczy dowdd.
Najpierw dowiedziemy liniowa niezaleznos$¢ tych wektoréw. Przypuéémy wiec, ze

m k
Zﬁibi + chﬁ =0.
i=1 i=1

Wtedy
N . m . k m . k m
0= f(()) = f(z ﬁ1bl + Z’)/lgz) = Z/‘glf(bl) + Z’\hf(gl) = 2/31[1:1'
i=1 i=1 i=1 i=1 i=1
Poniewaz wektory di,...,d, sa baza Vi, wigc f; = 0 dla ¢ = 1,...,m. Fakt ten implikuje
dodatkowo, ze
k
> w6 = 0.
i=1
Jezeli teraz skorzystamy z tego, ze wektory ¢, ..., ¢ sa liniowo niezalezne, to otrzymamy, ze

takze 7, =0 dlai=1,...,k i w ten sposéb zakonczymy dowdd niezaleznosci.
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Pokazemy jeszcze, ze kazdy wektor ¥ € V; jest kombinacja liniowa wektoréw 51, .. ,gm,
@, ..., C. Przedstawmy f(Z) w postaci

m

7(@) = 3 6 = S5 65

dla pewnych ;. Stad otrzymujemy, ze

dla pewnych 7;. W ten sposéb dowiedlismy, ze

m k

F=3pbi+Y vé. O
=1 =1

10.4 Dzialania w zbiorze homomorfizméw
Przypus$émy, ze M; i M, sa modutami nad pierscieniem R. Niech L(Mj, Ms) oznacza zbior
wszystkich homomorfizméw (przeksztalceni liniowych) okredlonych w M; i przyjmujacych war-
tosci w My. Przeksztalcenia nalezace do L(My, My) dodajemy i mnozymy przez elementy R
w zwykly sposéb:

(fi + £2)(@) = /(@) + fo(T)
oraz

(af)(Z) = af(Z).

Bez trudu dowodzimy, ze oba te dzialania nie wyprowadzaja poza L(M;, Ms). Stad otrzymu-
jemy, ze zbiér L(My, Ms) jest podmodutem modutu M3™ (patrz rozdziat 8.6).
Whiosek 10.7 Zbior L(My, Ms) z wyzej zdefiniowanymi dziataniami jest modutem nad pier-
Scieniem R. O

10.5 Algebry

Stowo algebra oznacza takze specyficzng algebre. Przypu$émy, ze mamy dany przemienny
pierscien R z jedno$cia. Zbior A, ktérego elementy potrafimy dodawaé, mnozy¢ przez siebie i
mnozy¢ przez elementy pierdcienia R nazywamy R-algebra, jezeli

1. z dodawaniem i mnozeniem przez elementy R jest modulem nad R oraz

2. z dodawaniem i mnozeniem jest piericieniem z jednoscia.
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10.6 Zlozenie homomorfizméw (funkcji liniowych)

Dla dowolnych przeksztalcen f; € L(Ma, M3) i fo € L(Mi, Ma) w zwykly sposob definiujemy
ztozenie fifo przyjmujac, ze
(flf2)(f) = fl(fz(f))
Oczywiscie, sktadanie jest operacja taczna. Ponadto ztozenie homomorfizméw jest homo-
morfizmem (a wiec fifa € L(Mi, Ms)). Wynika to z nastepujacych rachunkéw:

(fif2)(aZ + by) = fi(f2(a@ + 1Y) = fi(afe(Z) + 0fo(¥)) =
= afi(f2(2)) + bfi(f2(¥)) = a(f1f2)(Z) + b(f1.f2)(¥)-

Takze bez trudu dowodzi sie, ze skladanie jest rozdzielne wzgledem dodawania. Jezeli
f € L(May, M3) i f1, fo: My — M, to dla dowolnego wektora @ € M; zachodza réwnosci

(f(fr+ £2)@) = f((A+ £2)@) = F(AE) + () = FUAE) + () =
= (L)@ + (L)) = (L + [ 1) @),

czyli f(f1+ fo) = ff1+ [ fo (zauwazmy, ze wykorzystalismy addytywnosé f).
Podobnie, jezeli fi,fo : My — Mz i f : My — M,, to dla dowolnego wektora & € M,
zachodza réwnosci

(i + R)NE) = (A + L)) = A(f(@) + L(f(@) =
= (AN@) + (N)E) = (L f + L0)(@),

a wiec mamy (f1 + f2)f = fif + fof (ten wzér jest konsekwencja definicji sumy funkcji).
Jest oczywiste, ze przeksztalcenie indentycznosciowe I jest homomorfizmem, a wige I €
L(M, M) dla dowolnego modutu M (oznaczenie I jest uproszczone, powinno zawieraé takze
zawiera¢ informacje o dziedzinie przeksztalcenia). Jezeli f : My — M,, a I € L(M,, M), to
fI = f. Jezeli natomiast f: My — My oraz I € L(Ms, Ms), to [f = f.
7 przeprowadzonych rozwazan wynika

Twierdzenie 10.8 Jezeli M jest modulem nad pierscieniem R, to zbiér L(M, M) z doda-
waniem, mnozeniem przez elementy R oraz z mnozeniem zdefiniowanym jako zlozenie jest
R-algebrg. O

10.7 Macierze

Macierz o n kolumnach i m wierszach (albo o wymiarach nxm, albo tez o m wierszach dtugosci
n) mozemy zdefiniowaé jako funkcje okredlong w zbiorze {1,...,m} x {1,...,n}. Jezeli A jest
taka funkcja oraz A(1, j) = a;j, to A przedstawiamy jako tablice

a1 a2 ... Qip
a1 A2 ... d2g

Am1 Am2 .. Qmp
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Czasami wektory bedzie wygodnie uwazaé za specyficzne macierze. W takiej sytuacji wek-

tor (1,9, ..., x,) bedziemy uwazaé¢ za macierz jednokolumnowa zgodnie ze wzorem
€y
T2
('7:177:2:“”,47:"1)— .
Tn
W wielu ksigzkach — przeciwnie — wektor (21, o, . . . , x,,) utozsamia sie z macierza [z, T, . . ., Ty,).

10.8 Iloczyn skalarny

Przypu$émy, ze mamy wektory #,§ € R*, ¥ = (x1,...,2,) 1 ¥ = (y1,...,Yn). Hloczynem
skalarnym wektoréw Z i i nazywamy skalar £y € R zdefiniowany wzorem

n
Ty = Z ZiYi-
i=1

Tloczyn skalarny jest wazng funkcja. W szkole $redniej podawana jest interpretacja geome-
tryczna iloczynu skalarnego. Dla nas w tej chwili bedzie to tylko wygodne oznaczenie.
Jest to funkcja liniowa wzgledem kazdej zmiennej:

Z(ay + bZ) = aZy + bZZ oraz (aZ + by)Z = ayZz + byZ.

Funkcje o takich wtasnoéciach nazywamy dwuliniowymi. Ponadto, jezeli mnozymy wektory
o wspoélrzednych nalezacych do pierscienia przemiennego, jest to funkcja symetryczna, czyli
spelniajaca réwnosé¢ ¥y = y7.

10.9 Macierz przeksztalcenia liniowego

Do konica wykladu 10 bedziemy rozwaza¢ dwa moduty M; i M» nad pierscieniem R oraz bazy
@y, ... ,a, modutu M iby,..., b, modutu M.

Przypusémy, ze mamy przeksztalcenie liniowe f : My — Ms. Kazdy z wektoréw f(d@;) € Mo
przedstawiamy jako kombinacje liniowg wektoréw by, ..., by,. Jezeli

j=1
to macierz
i1 C2 ... Cin
c c NG
21 €22 2,n 3)
Cmi Cm2 -+ Cmn
nazywamy macierza przeksztalcenia f wyznaczona przez bazy d, ..., d, oraz 51, A Em
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Zauwazmy, ze i-ta kolumna macierzy funkcji f zawiera wspohrzedne w bazie bl. .. _ﬁm
wektora f(a@;), a wigc znajac ja potrafimy obliczy¢ f(a@;). Znajac cala macierz przeksztatcenia
f potrafi obliczy¢ wartosci f(d@;) dla wektoréw z bazy ay, .. ., d,.

Niech M, ,, oznacza zbiér macierzy o wyrazach z pierécienia R majacych n kolumn i m
wierszy. Dla f € L(My, My) przyjmijmy, ze pu(f) € M, oznacza macierz przeksztalcenia f
wyznaczong przez ustalone bazy.

Lemat 10.9 Funkcja p, ktére przeksztalceniu liniowemu f € L(My, Ms) przyporzedkowuje
macierz pi(f) tego przeksztalcenia, przeksztalca L(My, Ms) wzajemnie jednoznacznie na My, .

Dowdd. Znajac macierz przeksztalcenia znamy wartosci przeksztatcenia dla argumentéw na-
lezacych do pewnej bazy. Stad, na podstawie faktu 9.16 otrzymujemy, ze istnieje najwyzej
jedno przeksztalcenie o danej macierzy, a wiec p jest réznowartosciowa. Korzystajac z lema-
tu 9.17 potrafimy skonstruowaé przeksztalcenie, ktérego macierza jest dana macierz. W ten
sposob dowodzimy, ze u jest typu ,na”. O

10.10 Macierz sumy przeksztalcen

Przypusémy, ze mamy przeksztalcenia liniowe f,g € L(My, Ms). Niech

Qi1 Qi ... Qig ﬂl,l /51,2 S ﬁl,n
Qg1 Q22 ... Qg . 32,1 52‘2 cee ﬂzn

A= ) i B= ) (4)
A1 Op2 ... Qpgp ﬂm,l i/m,2 s ﬁm,n

beda odpowiednio macierzami przeksztatcen f i g (wzgledem ustalonych baz). Znajdziemy
macierz przeksztalcenia f+g. W tym celu musimy wyliczy¢ wspétrzedne wektoréw (f +¢)(a;).
Oczywiscie,
m
Z a, Lb oraz ¢(a, Z
J=1 Jj=1

Wobec tego,

m

Z Za31+5]l
j=1 j=1

Ms
c"1

(f +g)([i@) = f(dz) +g<dl> =

1

J

Wspéhrzednymi (f + ¢)(d@;) sa elementy aq; + B14, ..., Qi + Bm,i, & wiec przeksztalcenie
f + g ma macierz

agi+5i ap+bfie o arnt Bin

Qo1+ o1 oot Bap ... Qon At Bon
Ja o ,

Q1 + [ m,1  Qm,2 + dm,? ceo Ot Hm,n
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10.11 Macierz iloczynu przeksztalcenia i skalaru

Przypusémy, ze mamy przeksztalcenie liniowe f € L(Mj, Ms) o macierzy A z wzoru (4). Dla
¢ € R znajdziemy macierz przeksztatcenia cf. Oczywiscie,

(ef)(@) = e((@) = Za - i caz)b,

Wobec tego, macierza przeksztalcenia cf jest

cyp Cgg ... CQg
Chg1  Clgp ... CQ2p
CQm,1 CQma ... COmp

10.12 Dodawanie macierzy i mnozenie ich przez skalary

W zbiorze M,, ,,, definiujemy dziatania tak, aby funkcja ;1 przyporzadkowujaca przeksztatceniu
f € L(M, Ms) macierz u(f) tego przeksztalcenia byta izomorfizmem. Suma A + B macierzy
A1 Bz wzoru (4) jest wigc macierz

a1+ Pig e+ fia oo antBia
a1+ P21 optfep oo Qont fon

. ;
A1+ By Oma2 + Bm2 oo Qi+ B

a iloczynem cA macierzy A i skalaru c jest macierz

CQy Cyg ... CQpp
Clig1  Clga ... CQgp
COm1 CQmy ... COmp

Zbiér M, ,, z tak zdefiniowanymi dziataniami jest izomorficzny z L(M;, M) 1 jest modutem.

10.13 Wspbirzedne wartosci przeksztalcenia
Znowu zaktadamy, ze mamy przeksztalcenia liniowe f, g € L(My, Ms). Niech A bedzie macie-
173 przeksztalcenia f (patrz wzor (4)). Wezmy wektor & € M. Bedziemy oblicza¢ wspotrzedne
wektora f(Z) w bazie bl, vy bme

Przypusémy, ze wektor £ ma w bazie ay, . .., d, przedstawienie dane wzorem

n
=" ad;. (5)
=1
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Wtedy
J@) = FQowid) = Y wif (@) = Y w3 azaby) = S (3 wic;)by.
i=1 i=1 =1 j=1 j=1 i=1
Tak wiee f(Z) jest wektorem, ktéry w bazie bi,..., by, ma wspohzedne

n n
DT, Y Tl
i=1 i=1

Dalsze rozwazania bedziemy prowadzi¢ przy dodatkowych zatozeniach, ze M; = R" oraz
M, = R™. Bedziemy tez zakladaé, ze bazy @y, . . ., @, oraz 51, A Em sg bazami standardowymi.
Zalozenia te nie sg istotne. Ich przyjecie jednak zdecydowanie uprosci dalszy tekst. Nie be-
dziemy musieli rozréznia¢ miedzy wektorem & € M i ciagiem-wektorem (zy,xa, ..., x,) € R"
jego wspoélrzednych. Z przyjetych zalozenn wynika, ze wzér (5) jest réwnowazny réwnosci
= (21,22, ...,2,).

Niech @; bedzie i-tym wierszem macierzy przeksztalcenia f, a wiec @; = (@1, @i2, ..., Qin)-
Z przeprowadzonych rachunkéw wynika, ze i-ta wspolrzedna wektora f(Z) jest rowna iloczy-
nowi skalarnemu @,;Z. Poniewaz zaltozylismy, ze rozwazamy wspéirzedne w bazie standardowej,
wiec

f(@) = (1@, Ao, . . ., AnT). (6)

7 przedstawionych rozwazan wynika, ze kazda funkcja liniowa przeksztalcajaca R™ w R™
daje si¢ zdefiniowaé¢ wzorem postaci (6). Liniowosé iloczynu skalarnego wzgledem drugiego
argumentu implikuje takze, ze kazda funkcja zdefiniowana wzorem (6) jest liniowa.

10.14 Tloczyn macierzy: przypadek szczegdlny

Przypusémy, ze mamy dwie macierze A i B. Tloczyn AB tych macierzy definiujemy tylko
wtedy, gdy liczba kolumn (dtugo$¢ wierszy) macierz A jest rowna liczbie wierszy (czyli dtugosci
kolumn) macierzy B. Teraz zajmiemy si¢ przypadkiem, gdy B ma jedna kolumne. Uméwilismy
sie weze$miej, ze wektor (x1, 2o, ..., x,) uwazamy za jednokolumnowsg macierz, ktérej kolejne
wyrazy od gory sa réwne xy, T, ..., Tp.

Niech A bedzie macierza z wzoru (4). Przyjmijmy, ze & = (1, 2, ..., ®p) jest i-tym
wierszem macierzy A. Wezmy tez wektor & = (z1, xa,...,x,) € R" Iloczyn AZ macierzy A i
jednokolumnowej macierzy 2 definiujemy wzorem

Q1 Qo ... Qg xy ar

R Qg1 Qg2 ... Qagn T QX
Ar = = .

Q1 Op2 - Qg Ty an

(postaé¢ wzoru sugeruje, ze A i & maje tyle samo wierszy, ale tak by¢ nie musi).
Oczywista konsekwencja przyjetej definicji jest wzor

[(@) = Az, (7
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gdzie f: R" — R™ jest funkcja liniowg i A jest macierza f wyznaczona przez bazy standar-
dowe. Latwo tez korzystajac z dwuliniowosci iloczynu skalarnego dowie$é nastepujace wzory:

(A+ B)T = a7 = BT oraz A(Z +y) = AT + Ay.

10.15 ,,Laczenie” macierzy

Operacja ,laczenia” jest uogélnieniem konkatenacji (laczenia) ciagoéw. Przypusémy, ze mamy
dwie macierze

a1l Q12 ... Qg Bia Bz oo Pk

Qa1 Q2 ... Qgg . Ba1 52,2 cee ﬁz,k
A= . i B=

QU1 Qma - OQgp Gia Bz - Bk

Jezeli macierze A 1 B maja tyle samo wierszy (jezeli m = 1), to mozemy je potaczy¢ i utworzy¢
macierz

Q. Qr2 ... Qg 51‘1 391.2 ﬁl,k

Qg1 Qg ... Qg Ba1 ﬂz,z oo Pog
[A B] _ \n 5

Qm1 Qm2 ... Qpmp sgm‘l ﬁm,z ce ﬁm,k

W przypadku, gdy macierze A i B maja tyle samo kolumn (gdy n = k), to tez mozemy je
potaczyé tworzac macierz

Q11 Q2 ... Qg
Qg1 Qo2 ... Qgp
Al | Gmi Q2 o Qg
B Brr Pz ... ﬁl,n
Boq P2z oo Pon

L Gii B2 o Bin ]

tLatwy do sprawdzenia jest wzor

10.16 Mnozenie macierzy

Zdefiniujemy teraz iloczyn AB dowolnych macierzy
Q1 Q2 ... Qg 61,1 51,2 oo Pk
Qg1 Qa2 ... Qap . _ Bo1 Bop oo Pog

A= ) i B=

Um1 Om2 ... Qmap 6n.1 ﬂn.Z ﬁn,k
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takich, ze dlugo$¢ wierszy macierzy A jest rowna diugosci kolumn macierzy B (wiersze macie-

rzy A ikolumny macierzy B mozna mnozy¢ skalarnie). Przyjmijmy, ze @; = (o1, i, ..., ®in)
jest i-tym wierszem macierzy A, a 3; = (B1,i, (2,0 - - -, Fnsi) — i-ta kolumng macierzy B. lloczyn

macierzy zdefiniujemy na trzy sposoby.
Po pierwsze chcemy, aby iloczyn macierzy mial wlasnosé

A[B, By) = [AB, AB)]

dla dowolnych macierzy A, By i Bs, gwarantujacych wykonalno$é wystepujacych w tym wzo-
rze operacji. Wzér ten pozwala sprowadzi¢ mnozenie macierzy do mnozenia macierzy przez
macierz jednokolumnows i razem z definicja mnozenia przez pojedyncza kolumne mozna go
uznaé za definicje mnozenia dowolnych macierzy (patrz rozdziat 10.14).

Postugujac sie ,taczeniem” definicje iloczynu macierzy mozemy wyrazi¢ wzorem

AB=Alf\ By ... B = [AB ABy ... AL (8)
Najczesciej iloczyn AB macierzy A o wymiarach n x m i macierzy B o wymiarach k x n

definiujemy jako macierz o wymiarach k x m, ktorej wyraz -, ; znajdujacy si¢ na przecieciu
i-tego wiersza i j-tej kolumny jest dany wzorem

n
Vig = Gl =D @il
=1

Zaktadajac wykonalnosé odpowiednich operacji mozna dowies¢ nastepujace wzory:

[8)e-[].

2. A(B+C)=AB+ AC oraz (A+ B)C = AC + BC.
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11.1 Macierz zlozenia przeksztalcen

Przypuéémy, ze mamy przeksztatcenia f € L(R™, RF) i g € L(R", R™). Przyjmijmy, ze A jest
macierza przeksztalcenia f, a B — macierza przeksztalcenia ¢ (dla uproszezenia zalézmy, ze A
i B sa wyznaczone przez bazy standardowe). Znajdziemy macierz C' zlozenia fg.

Macierz przeksztalcenia g otrzymujemy obliczajac wektory ¢(é1),g(€s),...,g(€,), prze-
ksztalcajac te wektory w jednokolumnowe macierze i taczac te macierze. Tak wiec

B =[g(e1) g(éa) ... g(&)].
Podobnie
C=[(fg)@) (f9)(&) ... (fg)(€n)]-

Zauwazmy, ze zgodnie z definicja ztozenia oraz wzorami (7) i (8)

C=1f(g(&)) fg(&z)) ... flg((en))] = [Ag(ér) Ag(é2) ... Ag((én)] =

= Alg(é1) g(&) ... g((¢n)] = AB.
Lemat 11.1 Macierzq zlozenia przeksztalceri liniowych jest iloczyn macierzy tych przeksztal-
cen. O

‘Whniosek 11.2 Zbidr macierzy kwadratowych M, ,, o wyrazach z pierscienia R z dodawaniem,
mnozeniem i mnozeniem przez skalary nalezgce do R jest R-algebrg izomorficzng z L(R™, R™).
O

11.2 Macierze odwrotne
Zbiér macierzy kwadratowych M, , o wyrazach z pierdcienia R tez jest pierécieniem z jednoscig.
Jednoscia w tym pierscieniu jest macierz I, ktéra na przekatnej ma wyrazy réwne 1 (wyrazy
postaci a;; = 1), a pozostale wyrazy s réwne 0. Latwo sprawdza si¢, ze Al = A = A dla
dowolnej macierzy A.

Jezeli macierz A ma w tym pierécieniu element odwrotny, to nazywamy go macierza od-
wrotng i oznaczamy symbolem A~

Lemat 11.3 Przypusémy, ze M jest modulem z n elementowq bazq i A jest macierzq homo-
morfizmu f : M — M. Macierz A jest odwracalna wtedy i tylko wtedy, gdy f jest izomorfi-
zmem. O

Lemat 11.4 Jezeli A i B sq macierzami o wyrazach nalezacych do ciala K, to nastepujgce
warunki sq réwnowazne:

1. B jest macierzq odwrotna do A,
2. AB=1,
3. BA=1.

Dowéd. Lemat ten wynika z zadania 6 z listy 10. O

Najprostsza metoda znajdowanie macierzy odwrotnej polega na rozwigzywaniu rownania

AX =1.
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11.3 Réwnania liniowe

Niech K bedzie ciatem. Réwnaniem liniowym nazywamy réwno$é postaci
a1y + asTs + ...+ apx, = b,

gdzie ay,ag, ..., an,b € K, a xy,x9,...,T, sa zmiennymi o wartoéciach ze zbioru K.
Ukladem réwnaii liniowych nazywamy kilka takich réwnosci. Tak wiec réwnosci

1121 + a1 T2 + ...+ 1Ty = by,
2121 + A20%2 + ...+ 2 Xy = Do,

1T+ G oTy + .o+ G Ty = by,

tworza uktad m réwnan liniowych z n niewiadomymi.
Zbior
{(z1,29,...,2,) € K" 1 @111 + a12%2 + ... + @10T0 = b1 A
A G121 + Qp0Ty + ...+ A2y = ba A

A Am1Z1 + A aTe + ..+ @y = by }

nazywamy zbiorem rozwigzan uktadu (9), a jego elementy — rozwigzaniami tego ukltadu. Beda
nas interesowaé rézne wlasnosci zbioru rozwiazan uktadu réwnan liniowych, a wiec, czy jest
niepusty (czy réwnanie ma chociaz jedno rozwigzanie, czyli problem niesprzecznosci), jego
struktura lub precyzyjny opis.

Macierz
apr Q2 ... Qi
gy Q22 ... Qd2n
Am1 Am2 .- OAmpn

nazywamy macierzg ukladu (9), a macierz

aig A ... ain b
G21 Q22 ... Q2p by
Am1 Qm2 .. Gmpmp bm

jego macierzg rozszerzong (o wektor wyrazoéw wolnych).
Przyjmijmy, ze &; = (a;1,...,a;,) (tak wiec &; jest i-tym wierszem macierzy uktadu (9)),
@; = (aij, ..., amy;) (@ to j-ta kolumna) oraz b= (byy. .. bm) (l; jest kolumna wyrazéw wol-
nych). Postugujac si¢ tymi oznaczeniami ukladowi réwnai (9) mozemy nadaé postaé réwnania
wektorowego
(_1:1[E1 +C_L‘2CL’2 +... Jr(EnCCn = 5
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Mozna tez uktadowi (9) nadaé postaé¢ o skréconym zapisie

T = by,
@ = by,
JE—

AT = by,

Zdefiniujmy jeszcze funkcje F' : K™ — K™ przyjmujac, ze

an a2 ... Q1p €

. az1 Q22 ... Q2p T
F(@) = .

Um1 Am2 .. Gmp L

Oczywiscie, F' jest funkcja liniowa i macierza F wyznaczong przez bazy standardowe jest
macierz ukladu (9).
Nietrudno zauwazy¢, ze

1171 + a1 222 + ...+ A1 T,
N 2,171 + Ag2T2 + ... + G2 Ty
F(z) = .

Am1 %1 + Ay pT2 + .+ Gy

Lemat 11.5 Wektor & spelnia uklad (9) wtedy i tylko wtedy, gdy F(Z) = b. Wobec tego
zbiorem rozwigzari ukladu (9) jest {¥ € K™ : F(Z) =10} . O

11.4 Najprostsze wlasnosci

Lemat 11.6 Jezeli uklad (9) ma dokladnie jedno rozwigzanie, to wektory d,as,...,d, sq
lintowo niezaleine. Jezeli wektory @y, s, . . ., @, sq liniowo niezalezne, to uktad (9) ma najwyzej
jedno rozwigzanie.

Dowdd. Teze dowodzonego lematu mozemy wyprowadzi¢ z lematu 9.1 postugujac sie postacia
wektorowa uktadu réwnan. O

11.5 Uklady jednorodne

Uktad (9) nazywamy jednorodnym, jezeli b=0.

Lemat 11.7 Przypusémy, ze F(¢) = b. Wtedy funkcja p(Z) = &+ ¢ przeksztalca zbior {7 €

7
K™ : F(£) = 0} wzajemnie jednoznacznie na zbior {f € K™ : F(&) = g} rozwigzan uktadu (9).
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Dowdd. Funkeja p jest réznowartosciowa na mocy prawa skracania. Przypusémy, ze F(Z) = 0.
Wtedy Lo
Fp@)=F@Z+d)=F@)+F@&=0+b=b.

Jezeli natomiast F(¥) = b, to oczywiscie T jest wartoscia p(Z — ¢) oraz
FF-d=F@)-F@=b-()=0 0O

7 powyzszego lematu wynika, ze aby rozwiazaé¢ uklad F(Z) = l;, trzeba znalez¢ jedno
rozwiazanie ¢ tego uktadu i rozwiaza¢ uktad F(Z) = 0. Majac rozwigzanie uktadu F(&) = 0,
trzeba do kazdego elementu tego rozwiazania dodaé¢ wektor ¢ i w ten sposéb otrzymamy
rozwiazanie wyjéciowego uktadu.

7 udowodnionego lematu wynika, ze rozwiazywanie dowolnego ukltadu rownan liniowych
sprowadza si¢ do rozwiazywania uktadu jednorodnego. Zbiér rozwiazan jednorodnego ukladu
F(Z) = 0 jest jadrem przeksztalcenia F.

Lemat 11.8 Zbior rozwigzar jednorodnego ukladu réwnan liniowych o n niewiadomych jest
podprzestrzenig liniowq przestrzeni K™. W szczegolnosci, wektor zerowy jest rozwigzaniem
jednorodnego ukladu réwnar liniowych. O

11.6 Interpretacja geometryczna

Zbiory rozwigzan ukladu réwnain liniowych mozna opisa¢ w jezyku geometrycznym. Jeze-
li ptaszczyzne utozsamimy z przestrzeniag R?, to podprzestrzeniami R? beda: zbior, ktérego
jedynym elementem jest poczatek uktadu wspotrzednych (6), proste przechodzace przez po-
czatek uktadu wspotrzednych oraz cala ptaszezyzna R2. Tylko takie moga byé rozwiazania
uktadu jednorodnego. Rozwigzaniami dowolnego uktadu sg przesuniecia rozwigzan odpowied-
niego uktadu jednorodnego, a wiec dowolne punkty, dowolne proste oraz cala plaszczyzna.
Rozwigzaniem moze tez by¢ zbiér pusty. W przypadku uktadéw réwnai z trzema zmiennymi,
rozwigzaniami moga by¢ takze dowolne plaszczyzny potozone w przestrzeni (dla uktadéw jed-
norodnych — zawierajace (_f) oraz cala przestrzen R®. Dla réwnan z wieksza liczba niewiadomych
sytuacja jest analogiczna.

11.7 Dopelnienie ortogonalne

Dla X C K™ przyjmijmy, ze

i=1
Zbioér Vy jest wige podprzestrzenia K™ generowana przez X.
Przyjmijmy tez, ze
Xt ={#e K":Vdae X ax=0}.
Zbiér X+ nazywamy dopelnieniem ortogonalnym X . Zauwazmy, ze jezeli X = {a1, @a, ..., @}
ib=0,to Xt jest zbiorem rozwigzan uktadu (9).
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Wektory @ i & nazywamy ortogonalnymi wtedy i tylko wtedy, gdy @ = 0. Te definicje wigza
si¢ ze znang ze szkoly charakteryzacja iloczynu skalarnego: iloczyn skalarny dwoch wektoréw
jest iloczynem dlugosci tych wektoréw i cosinusa kata miedzy wektorami. Stad oczywiscie
wynika, ze iloczyn skalarny dwdch niezerowych wektoréw jest réwny 0 wtedy i tylko wtedy,
gdy cosinus kata miedzy wektorami jest réwny 0, a wiec, gdy wektory te sa prostopadle
(ortogonalne).

Lemat 11.9 Dopelnienie ortogonalne X+ ma dla dowolnych X,Y C K™ nastepujgce wlasno-
sci:

1. jezeli X CY, to Y+ C X+,

2. X+ C V¢, a wige takie X+ = Vi,

3. X* jest podprzestrzeniq liniowg,

4 Vy C (XL

Dowdéd. Punkt 1) jest oczywisty. Jezeli wektory & 1 ¢ sa ortogonalne do @, to oczywiscie
(wystarczy policzy¢ odpowiedni iloczyn) dowolna ich kombinacja liniowa tez jest ortogonalna
do a. Stad wynika punkt 3), a takze pierwsza cze$¢ punktu 2). Cze$¢ druga punktu 2) wynika
z czeScl plerwszej 1 punktu 1).

Aby dowies¢ punkt 4) wezmy dowolny wektor v € Vy. Jezeli i jest dowolnym wektorem ze
zbioru X+, to — na podstawie punktu 2) — § € Vi, a wigc ¢ = 0. Tak wigc zachodzi wlasnosé
vy € Xt ¢ = 0. Whasnosé ta oznacza, ze o € (X+)+. O

11.8 Wpymiar dopelnienia ortogonalnego

Niech L(V, K) oznacza zbi6r funkcjonatéw (funkeji) liniowych okreslonych w zbiorze V' i prayj-
mujacych wartosci w zbiorze K. Zbiér L(V, K) z dodawaniem funkeji i mnozeniem funkeji przez
skalar z ciata K, zdefiniowanymi w zwykty sposob jest przestrzenig liniows. Zauwazmy, ze

Lemat 11.10 Jezeli V' jest przestrzenig wymiaru n, to przestrzeri L(V, K) jest izomorficzna
z przestrzeniq K™.

Dowdéd. Wezmy baze @, . . ., @, przestzreni V' i zdefiniujmy funkcje ¢ : L(V, K) — K™ przyj-
mujac, ze
o(f) = (f(@), ..., f(@)).

Latwo dowiesé, ze ¢ jest funkcja liniowa. Z lematu 9.16 i twierdzenia 9.17 wynika, ze ¢ jest
izomorfizmem. O

Lemat 11.11 Jezeli V jest przestrzeniq wymiaru n, to przestrzen L(V, K) tez jest wymiaru n.

Dowéd. Jest to oczywisty wniosek z poprzedniego lematu. O
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Lemat 11.12 JeZeli V' jest podprzestrzeniq K™, to n jest sumgq wymiaréw przestrzeni V i
dopetnienia ortogonalnego V*.

Dowéd. Wezmy funkeje ¢ : K" — L(V, K) taka, ze

P (@)(@) =

(dla ¥ € Vid € K"). Z dwuliniowosci iloczynu skalarnego wynika, ze funkcja ¢ przyjmuje
warto$ci w zbiorze funkcjonatéw L(V, K'), a takze, ze jest to funkcja liniowa.

Funkcja ¢ jest tez typu ,na”, a wiec jest epimorfizmem. Tak jest, poniewaz baze przestrzeni
V mozna rozszerzy¢ do bazy przestrzeni K™ (patrz lemat 9.7 o wymianie) i — w konsekwencji
— kazdy funkcjonal f € L(V,K) mozna rozszerzy¢ do funkcjonalu f' : K" — K (patrz
twierdzenie 9.17). Z wzoru (6) otrzymujemy, ze f'(Z) = az dla pewnego @ € K". Tym bardziej
f(@) = az.

Zauwazmy, ze zerem w przestrzeni L(V, K) jest funkcja stale réwna 0 i implikuje to, ze
dopelnienie ortogonalne przestrzeni V jest jadrem epimorfizmu ¢.

Teraz wystarczy skorzystaé¢ z twierdzenia 10.6 i lematu 11.11. O

Whiosek 11.13 Jezeli V jest podprzestrzeniq K™, to (V4)* = V.

Dowdéd. Tak jest, poniewaz przestrzenie V i (V1) sa tego samego wymiaru i zachodzi za-
wieranie V C (V1)1 O

‘Whiosek 11.14 Kazda podprzestrzen K™ jest zbiorem rozwigzan pewnego jednorodnego ukia-
du réwnan liniowych. O
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12.1 Suma prosta

Przestrzen liniowa V' nazywamy suma prosta podprzestrzeni Vi, Vo C V| jezeli kazdy wektor
a € V ma jednoznaczne przedstawienie w postaci sumy @ = 7 + ¢ wektoréw £ € Vi i § € Va.
Lemat 12.1 Przypusémy, ze Vi i Vo sq podprzestrzeniami przestrzeni liniowej V. Dowolny
wektor @ € V. ma najwyzej jedno przedstawienie w postaci sumy T—+¢ wektoréw & € V1 iy € Va
wtedy i tylko wtedy, gdy Vi N Vy = {0}.

Dowdd. Oczywiscie, {0} v ﬁVz Jezeli d € V1 NV, to @ mozna przedstawi¢ w odpowiedniej
postaci na dwa Sposoby @=0+4+a=a+ 0. Jednoznacznoé¢ przedstawienia w tej postaci
implikuje, ze veca = 0.

Zalézmy, ze pewien wektor @ ma przedstawienia

Ti+i=d=0+1

takie, ze 71, Ty € V; oraz i1, s € Va. Wtedy &) — 7o = fh—iji € ViNVa oraz & — s = fo—1i = 0.
Wobec tego, te przedstawienia @ sa identyczne. O

Lemat 12.2 Jezeli V jest podprzestrzenig R", to V N VL = {0}.

Dowéd. Jezeli # € VNV, to iloczyn #7 wektorow & € V i & € V* jest réwny 0. Mamy wiec
=TT Z z;

Poniewaz wspolrzedne z; wektora & sa liczbami rzeczywistymi, wiec wszystkie sa rowne 0, a &
jest wektorem zerowym. W ten sposéb dowiedlismy, ze V N V4 C {0}. Drugie zawieranie jest
oczywiste. O

Lemat 12.3 Jezeli V' jest podprzestrzeniq R™, to kazdy wektor @ € R™ mozina przedstawic w
postaci sumy @ = & + § wektoréw £ € V i € V*.

Dowdd. Bierzemy bazy d, . . ., @, przestrzeni V oraz 51, R l;n,,n przestrzeni V+. To, ze baza
V+ ma n —m elementéw wynika z lematu 11.12.

Uktad @y, ..., dm, b1, - - ., by jest liniowo niezalezny. Aby sie o tym przekonaé zat6ézmy, ze
n—m

Za7a1 + Z ﬁ757 =

Wtedy
SNadi=—Y g evnvi
i=1 j=1

7 lematu 12.2 wynika, ze obie strony réwnosci sa réwne 0,a poniewaz sa to kombinacje liniowe
wektoréw bazowych, wiec ich wspétezynniki oy = ... = oy, = 51 = ... = B, = 0. Liniowa
niezalezno$¢ tego ukltadu implikuje tez, ze sktada si¢ on z n elementéw (w ukladzie liniowo
niezaleznym wektory nie moga si¢ powtarzad).

Teza lematu wynika stad, ze w przestrzeni n wymiarowej kazdy n elementowy uktad liniowo
niezalezny jest zbiorem generatoréw. O
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Twierdzenie 12.4 Jezeli V jest podprzestrzenig R", to R™ jest sumg prostq V i V*.

Dowdd. Jest to wniosek z lematéw 12.1, 12.2 1 12.3. O

12.2 Operacje elementarne i r6wnowaznos¢ wierszowa

Przypusémy, ze mamy macierz A, ktorej wierszami sa wektory ay, . . ., @p,. Bedziemy rozwazaé
nastepujace operacje na macierzy A, zwane elementarnymi:

1. zamiana dwo6ch wierszy macierzy A miejscami,
2. zastapienia wiersza @ wektorem cd dla ¢ # 0,
3. dodanie do wiersza innego wiersza, a wigc zastgpienie wiersza d; wektorem &; + d;.

Zauwazmy, ze jezeli macierz B otrzymujemy z macierzy A wykonujac operacje elementarna,
to takze A mozna otrzymaé z B wykonujac najwyzej trzy operacje elemetarne. Jezeli macierz
B otrzymujemy zastepujac wiersz a; wektorem @; + @;, to macierz A otrzymujemy mnozac
j-ty wiersz macierzy B przez -1, dodajac go do i-tego wiersza, a nastepnie ponownie mnozac
j-ty wiersz przez -1. Dla pozostalych operacji jest oczywiste, ze sa odwracalne.

Macierze A i B sa réwnowazne wierszowo, jezeli jedna z nich mozna otrzymaé z drugiej
wykonujac operacje elementarne.

Whiosek 12.5 Relacja wierszowej réwnowaznosci macierzy jest relacjg réwnowaznosci. O
Lemat 12.6 Wiersze macierzy réwnowaznych wierszowo generujq te samaq podprzestrzern. O

Lemat 12.7 Jezeli macierze rozszerzone dwdch ukladéw réwnan liniowych sq wierszowo réw-
nowazne, to uklady te sq réwnowazne (a wigc majg ten sam zbidr rozwigzan). O

Zauwazmy, ze funkcje fi, fo i f3 definiowane wzorami

o filwy, .. @i T, ) = (T, Ty T, T,
o fol@r,.o @iy Ty) = (@1, ... Ty, ..., yy,) (dla (¢ # 0) oraz
o fa(Tr,. . Ty Ty ) = (T, T F T T, D)

przeksztatcaja K™ wzajemnie jednoznacznie na K™ i sg liniowe. Zauwazmy, ze jezeli macierz
B otrzymujemy przez zamiang i-tego wiersza macierzy A z j-tym, to macierz B mozemy tez
otrzymaé zastepujac kazda jej kolumne  kolumna f;(Z). Analogiczne wlasnosé ma miejsce dla
pozostatych operacji elementarnych, a wigc dla mnozenia wiersza i funkcji fo oraz dodawania
wiersza i funkeji fs.

Lemat 12.8 Jezeli macierze A i B sq wierszowo réwnowazne, to istnieje réznowartosciowe
przeksztalcenie liniowe f przeksztalcajgce zbior kolumn macierzy A na zbidr kolumn macie-
rzy B. Wobec tego przestrzenie generowane przez kolumny macierzy réwnowaznych wierszowo
majg ten sam wymiar. O

ot
ot
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12.3 Macierze zredukowane

Wyrazem kierunkowym wiersza macierzy nazywamy pierwszy niezerowy element tego wiersza.
Oczywiscie, wiersz zerowy nie ma wyrazu kierunkowego.

Macierz A o wyrazach a;; (i to numer wiersza, a j to numer kolumny, w ktérej znajduje
sie wyraz a; ;) nazywamy zredukowang, jezeli

1. wyrazy kierunkowe wszystkich wierszy (o ile istnieja) sa réwne 1,
2. jezeli a;; jest wyrazem kierunkowym i-tego wiersza, to ay; = 0 dla k <1,

3. wyrazy kierunkowe sg coraz dalej: jezeli a;; jest wyrazem kierunkowym i-tego wiersza,
to ay; =0dla k>iorazl <j,

4. wiersze zerowe znajduja si¢ na korficu macierzy (maja numery wigksze od numerdéw wier-
szy niezerowych).

Lemat 12.9 Niezerowe wiersze macierzy zredukowanej sq liniowo niezalezne. Wymiar prze-
strzeni generowanej przez kolumny macierzy zredukowanej jest rowny liczbie niezerowych wier-
szy tej macierzy. O

Twierdzenie 12.10 Kazde dwie réwnowaine wierszowo macierze zredukowane (o okreslo-
nych wymiarach) sq identyczne.

Dowdd. Przypusémy, ze mamy zredukowane, réwnowazne wierszowo macierze M; i M,. Na
mocy lematu 12.6, przestrzenie generowane przez wiersze tych macierzy sa rowne. W tej sy-
tuacji z lematu 12.9 otrzymujemy, ze macierzy M; i My maja tyle samo wierszy niezerowych
i tyle samo zerowych. Dalej bedziemy zakladaé, ze nie maja wierszy zerowych.

Niech ; i Wy beda ostatnimi wierszami macierzy M; i M, a t; 1 ty — indeksami wyrazéw
kierunkowych tych wierszy. Z wyboru wierszy i definicji macierzy zredukowanej wynika, ze
wyrazy kierunkowe pozostatych wierszy macierzy M; maja indeksy < ¢;. Analogiczna wlasnosé
jest prawdziwa dla M.

Zakbzmy, ze t; < ty. R6wnosé przestrzeni wierszy macierzy M; i M, implikuje, ze @, daje

sie przedstawi¢ w postaci kombinacji liniowej wierszy vy, . . ., Uy, macierzy M, np.
m
Wy =Y a;l;. (10)
i=1

Wezmy wiersz ¥; 1 przyjmijmy, Ze jego wyraz kierunkowy znajduje sie na pozycji t. Oczywiscie
t <ty < ty. Implikuje to, ze wspolrzedna o numerze ¢ wektora wy jest réwna 0. Z definicji
macierzy zredukowanej wynika, ze takze wspoirzedne o numerze ¢ pozostatych (o numerach
# 1) wierszy macierzy M; sa réwne 0. Oznacza to, ze wspélrzedna o numerze ¢ sumy

a;V;

-

i=1

jest réwna ;. Otrzymujemy wiec, ze a; = 0, a poniewaz rozumowanie to mozemy powtorzy¢
dla kazdego wiersza macierzy My, wiec Wy = 0. W ten sposob otrzymalidmy sprzecznosé.
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‘W podobny sposdb sprowadzamy do sprzecznosci zalozenie, ze ty < t;. Tak wiec dowiedli-
$my, ze t; = to.

Jeszeze raz skorzystamy z réwnosci (10), ale dodatkowo przyjmijmy, ze wiersz v, jest
ostatnim, a wiec ¥, = w;. Podane rozumowanie pozwala teraz uzasadnié¢, ze dla i < m
zachodzi réwnosé a; = 0. Poréwnujac wspéirzedne obu stron wzoru (10) o numerach ¢; i
korzystajac dodatkowo z warunku, ze wyrazy kierunkowe wierszy macierzy zredukowanej sa
réwne jeden otrzymujemy, ze a,, = 1. Oznacza to, ze réwnosé¢ (10) redukuje sie do réwnosci
Wy = Uy, = w;. Ostatnie wierszy macierzy M; i M3 sa wiec identyczne.

Korzystajac po raz trzeci z podobnego rozumowania pokazujemy, ze wiersze macierzy M
rozne od W) i wiersze macierzy My rdzne od Wy generuja te sama przestrzen. Wezmy kombi-
nacje X wierszy M réznych od wh. Wspolrzedna o numerze ¢; tej kombinacji jest réwna 0.
Kombinacja X daje si¢ przedstawi¢ jako kombinacja wierszy macierzy M. Na pozycji ty w
tej kombinacji jest wspotezynnik przy wektorze s, a wiec wspolezynnik przy s jest réwny
0. Oznacza to, ze X jest kombinacja wierszy macierzy My réznych od ws.

Aby dokonczyé dowdd wystarczy powolaé sie na zasade indukeji matematycznej. O

12.4 Macierze zredukowane a uklady réwnan liniowych

Uktad réwnan liniowych czesto ma nieskonczenie wiele rozwigzan. Polecenie rozwiazania takie-
go ukladu nie moze wiec by¢ rozumiane jako polecenie wymienienia wszystkich jego rozwigzan
(ciagéw liczb spelniajacych uklad). Jest rozumiane jako polecenie pewnego opisania zbioru
wszystkich rozwiazan.

Zgodnie z lematem 11.7, zbior rozwiazan uktadu réwnan liniowych mozna opisaé¢ podajac
jedno rozwiazanie i opisujac zbiér rozwigzan odpowiadajacego mu uktadu jednorodnego. Zbior
rozwigzan uktadu jenorodnego jest podprzestrzenia i moze zostaé¢ opisany (niejednoznacznie)
przez podanie zbioru generatoréw lub bazy.

Polecenie rozwiazanie uktadu réwnan liniowych moze tez by¢ rozumiane jako polecenia
znalezienia tzw. rozwiazania parametrycznego, a wigce uktadu réwnan liniowych szczegdlnej
postaci, réwnowaznego danemu. Ten szczegélny uklad ma postaé & = Cy + CZ: gdzie T1 7 sa
zmiennymi danego uktadu podzielonymi w pewien sposéb na dwie czesci. Zauwazmy, ze majac
dane parametryczne rozwigzanie fatwo podaé jedno z rozwiazan uktadu (np. 7 = di 7= 6)
oraz bazg zbioru rozwiazan odpowiedniego uktadu jednorodnego (bierzemy ciagi liczb ztozone
z T = C¢€; 1y = é; dla wszystkich mozliwych 7).

Jezeli macierz ukladu réownan liniowych ma postaé¢ zredukowana, to bez trudu mozna z
niej odezytaé parametryczne rozwiazanie ukltadu.

Zauwazmy jeszcze, ze

ra| 7=

Wzér ten pozwala znajdowaé baze dopelienia ortogonalnego podprzestrzeni generowanej
przez wiersze macierzy [I A] (symbole I w tym wzorze oznaczaja macierze jednostkowe, ale
moga to by¢ macierze o réznych wymiarach). Moze tez by¢ wykorzystany przy szukaniu bazy
zbioru rozwigzan jednorodnego uktadu réwnan liniowych.
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12.5 Algorytm eliminacji Gaussa

Przypusémy, ze mamy dang macierz A o wyrazach a;; i wierszach @;. Podany nizej algorytm
nazywamy algorytmem eliminacji Gaussa.

1. Dla kazdego k takiego, ze @ 5 0:

(a) znajdujemy numer ! wyrazu kierunkowego wiersza dy,
(b) mnozymy wiersz d przez a;} {wyraz kierunkowy wiersza a staje si¢ réwny 1},
(c) dla dowolnego i # k
wiersz @; zastepujemy przez roznice &@; — a; & {powodujemy, ze l-tej kolumnie
poza wierszem o numerze k sa same zera},

2. przestawiamy wiersze zerowe za wiersze rézne od zera,
3. porzadkujemy wiersze ustawiajac je wedtug rosnacych numeréw wyrazéw kierunkowych.

Lemat 12.11 Algorytm eliminacji Gaussa przeksztalca dowolng macierz w réwnowazng jej
wierszowo macierz zredukowang. O

Za pomocy tego algorytmu mozna rozwigzywaé uklady réownan liniowych, przeksztatcad
zbiér generator6w w baze, badaé liniowa niezalezno$¢é wektoréw, oblicza¢ wymiar przestrzeni
majac zbiér jej generatoréw, szukaé¢ bazy dopeienia ortogonalnego, itp. Wiele zastosowan
algorytmu eliminacji Gaussa jest zasygnalizowane na 12. liScie zadan.

Zauwazmy jeszcze, ze z lematéw 12.6, 12.8, 12.9 i 12.11 wynika

Lemat 12.12 Dla dowolnej macierzy A, przestrzenie generowane przez wiersze macierzy A i
przez jej kolumny majq ten sam wymiar.

Dowdd. Tak jest, poniewaz przeksztalcenia elementarne zachowuja interesujace nas wymiary i
pozwalaja sprowadzi¢ macierz do postaci zredukowanej, a dla macierzy zredukowanej wymiary
te sa identyczne. O

12.6 Twierdzenie Kroneckera-Capelliego

Rzedem macierzy nazywamy wymiar podprzestrzeni generowanej przez wiersze tej macierzy.
Z lematu 12.12 wynika, ze rzad macierzy mozemy zdefiniowaé¢ réwnowaznie jako wymiar prze-
strzeni generowanej przez kolumny.

Twierdzenie 12.13 (Kroneckera-Capelliego) Uklad réwnari liniowych ma rozwigzanie wte-
dy i tylko wtedy, gdy rzad macierzy tego ukladu jest rowny rzedowi jego macierzy rozszerzonej.

Dowdéd. Aby dowiesé to twierdzenie, wystarczy uktadowi réwnan nadaé postaé wektorowa
i zauwazy¢, ze uklad réwnan liniowych ma rozwiazanie wtedy i tylko wtedy, gdy kolumna
wyrazow wolnych jest kombinacja liniowa kolumn macierzy badanego uktadu. O

Twierdzenie 12.14 Uklad réwnari lintowych z n niewiadomymi ma dokladnie jedno rozwig-
zanie wtedy i tylko wtedy, gdy rzqd macierzy tego ukladu jest réwny n. O



