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1 Podstawowe pojęcia

1.1 Algebry i działania

Najkrócej mówiąc, algebra to zbiór z działaniami w tym zbiorze.
Każde działanie ma określoną liczbę argumentów. Dla liczby naturalnej n przyjmujemy, że

n-argumentowe działanie w zbiorze A to funkcja przekształcająca An w A.
0-argumentowe działanie zbiorze A to funkcja nie wymagająca podawania argumentów.

Takie działanie w zbiorze A utożsamiamy z elementem A będącym przyjmowaną przez to
działanie wartością. Zamiast o działaniach 0-argumentowych częściej mówi się o stałych lub
wyróżnionych elementach.

Przykładem algebry jest zbiór liczb rzeczywistych z dodawaniem, mnożeniem, zerem, je-
dynką i ewentualnie liczbą π, jeżeli jest nam do czegoś potrzebna. Inny przykład to zbiór P(A)
wszystkich podzbiorów A z przekrojem (iloczynem zbiorów), różnicą symetryczną i zbiorem
pustym.

Bardziej formalnie algebrę definiujemy jako układ (n-ka, n-krotka) postaci

A = 〈A, f1, f2, . . . , c1, c2, . . .〉.

Wtedy zbiór A nazywamy nośnikiem lub uniwersum algebry A, symbole f1, f2, . . . oznaczają
działania w zbiorze A (mające dodatnią liczbę argumentów), a symbole c1, c2, . . . – stałe, czyli
wyróżnione elementy zbioru A. Działania i stałe można wymieniać w dowolnej kolejności.

Najczęściej będziemy utożsamiać zbiór A z algebrą A. W takim przypadku trzeba będzie
domyślać się, z jakie są działania w algebrze A. Na przykład, będziemy mówić o algebrze liczb
rzeczywistych rozumiejąc przez to algebrę złożoną ze zbioru liczb rzeczywistych i zwykłych
działań: dodawania, mnożenia, operacji zmiany znaku, oraz z dwóch stałych: 0 i 1.

Działania, które wyżej zostały zdefiniowane nazywamy wewnętrznymi. Będziemy rozważać
także działania zewnętrzne. Działaniem zewnętrznym w zbiorze A będziemy nazywać funkcję
przekształcające X × A w A, gdzie X jest pewnym, ustalonym zbiorem.

Przykładem działania zewnętrznego może być podnoszenie do całkowitej potęgi w zbiorze
liczb wymiernych (jest to działanie przekształcające zbiór Z × Q w Q) oraz mnożenie wektora
przez skalar przekształcające zbiór R × R2 w zbiór R2 wektorów o dwóch współrzędnych.

1.2 Rodzaje działań

Działania wyjątkowo będą miały więcej niż dwa argumenty. Działania dwuargumentowe często
będą łączne. Działanie · w zbiorze A jest łączne, jeżeli równość

x · (y · z) = (x · y) · z

1
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zachodzi dla wszystkich x, y, z ∈ A. Dla działań łącznych wyrażenia postaci x1 · x2 · . . . ·
xn przyjmują tę samą wartość bez względu na rozstawienie nawiasów i dlatego zwykle są
zapisywane jak wyżej, bez podawania nawiasów.

Działanie · w zbiorze A jest przemienne, jeżeli dla wszystkich x, y ∈ A zachodzi równość

x · y = y · x.

Większość działań w matematyce szkolnej jest przemienna. Teraz będziemy często stykać się
także z działaniami nieprzemiennymi.

Przykładem działania nieprzemiennego jest składanie funkcji. Przypuśćmy, że mamy zbiór
A i a, b, c – trzy różne elementy zbioru A. Weźmy funkcje f : A → A i g : A → A takie, że
f(a) = b i f(b) = a oraz g(a) = b i g(b) = c. Dla takich funkcji zachodzą równości

f(g(a)) = a oraz g(f(a) = c,

a więc złożenia f ◦ g i g ◦ f są różne.
Jeżeli mamy dwa dwuargumentowe działania + i ·, oba w zbiorze A, to o działaniu ·

mówimy, że jest rozdzielne względem działania +, jeżeli dla wszystkich x, y, z ∈ A zachodzą
równości

x · (y + z) = (x · y) + (x · z) oraz (y + z) · x = (y · x) + (z · x).

1.3 Elementy neutralne i odwrotne

Przypuśćmy, że mamy algebrę A z działaniem ·. Element e ∈ A nazywamy lewostronnym
elementem neutralnym, jeżeli dla wszystkich x ∈ A zachodzą równości

e · x = x.

Element e ∈ A nazywamy prawostronnym elementem neutralnym, jeżeli dla wszystkich x ∈ A

zachodzą równości
x · e = x.

Element e ∈ A będący jednocześnie lewo- i prawostronnym elementem neutralnym (a więc
spełniający wszystkie wyżej wskazane równości) nazywamy elementem neutralnym.

Na oznaczenie działań najczęściej używamy dwóch symboli: · oraz +. Dla algebr z jednym
działaniem mamy więc do wyboru dwa symbole oznaczające działanie. Zależnie od wyboru
symbolu mówimy o tzw. zapisie multiplikatywnym lub addytywnym. Jeżeli stosujemy zapis
multiplikatywny, to element neutralny nazywamy jednością lub jedynką i oznaczamy symbo-
lem 1. W przypadku zapisu addytywnego element neutralny nazywamy zerem i oznaczamy
symbolem 0. Oczywiście, liczby naturalne 1 i 0 są odpowiednio elementami neutralnymi dla
mnożenia i dodawania w algebrze liczb rzeczywistych.

Dla przykładu weźmy algebrę wszystkich funkcji AA przekształcających A w A ze złoże-
niem. Działanie w tej algebrze (złożenie) jest łączne, funkcja identycznościowa jest elementem
neutralnym.

Algebrą jest też zbiór {f ∈ NN : 0 6∈ f(N)} wszsytkich funkcji przekształcających N w
N , które nie przyjmują wartości 0, ze złożeniem. W tej algebrze nie ma elementu neutralnego.
Gdyby e było elementem neutralnym i e(0) = a 6= 0, to z jednej strony (f ◦ e)(0) = f(e(0)) =
f(a), z drugiej strony f ◦ e = f i stąd (f ◦ e)(0) = f(0). Oczywiście, te równości nie mogą
zachodzić dla dowolnych funkcji f z naszej algebry. Można sprawdzić, że każda funkcja e′ taka,
że e′(n) = n dla n 6= 0 jest lewostronnym elementem neutralnym w rozważanej algebrze.
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Lemat 1.1 Jeżeli w algebrze jest lewostronny element neutralny eL i jest prawostronny ele-
ment neutralny eR, to eL = eR. Wtedy każdy lewostronny i prawostronny element neutralny
jest elementem neutralnym. W dowolnej algebrze istnieje najwyżej jeden element neutralny.

Dowód. Oczywiście, zachodzą następujące równości:

eR = eL · eR = eL. 2

Dalej zakładamy, że w algebrze A mamy element neutralny e oraz x ∈ A. Element y ∈ A

nazywamy lewostronnym elementem odwrotnym do x, jeżeli

y · x = e.

Element y ∈ A nazywamy prawostronnym elementem odwrotnym do x, jeżeli

x · y = e.

Element y ∈ A nazywamy elementem odwrotnym do x, jeżeli jest jednocześnie elementem
lewo- i prawostronnie odwrotnym do x.

Jeżeli stosujemy zapis addytywny, to elementy odwrotne nazywamy przeciwnymi.

Lemat 1.2 Załóżmy, że rozważamy algebrę z łącznym działaniem i elementem neutralnym
e. Niech x będzie ustalonym elementem tej algebry. Jeżeli w tej algebrze dla elementu x jest
lewostronny element odwrotny yL i jest prawostronny element odwrotny yR, to yL = yR. Wtedy
każdy lewostronny i każdy prawostronny element odwrotny do X jest elementem odwrotnym x.
W takiej algebrze dla dowolnego x istnieje najwyżej jeden element odwrotny.

Dowód. Zauważmy, że

yL = yLe = yL(xyR) = (yLx)yR = eyR = yR. 2

2 Definicja i podstawowe własności grup

2.1 Definicje

Grupa to algebra z łącznym działaniem (mnożeniem) z elementem neutralnym i odwracaniem.
Ma więc trzy działania oznaczane najczęsćiej ·, 1 i −1. W grupie działania te spełniają równości

(x · y) · z = x · (y · z),

x · 1 = x = 1 · x,

x · x−1 = x−1 · x = 1.

dla wszystkich x, y, z należących do nośnika grupy.
Grupa może też zostać zdefiniowana jako algebra G z łącznym mnożeniem takim, że

∃e ∈ G ∀x ∈ G ((a · e = e · x = x) ∧ (∃y ∈ G (x · y = y · x = e))) .

Obie definicje grupy są w zasadzie równoważne. Jeżeli algebra G jest grupą w sensie drugiej
definicji, to można ją jednoznacznie rozszerzyć o element neutralny i operację odwracania.
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Grupami są liczby całkowite z dodawaniem oraz liczby wymierne bez zera z mnożeniem.
Grupą jest także zbiór podzbiorów P(X) zbioru X z różnicą symetryczną. Ważnym przykła-
dem grupy jest zbiór SX = {f ∈ XX : f jest bijekcją} bijekcji przekształcających X ma X

ze złożeniem. Takie bijekcje nazywamy też permutacjami zbioru X , a SX– grupą permutacji.
Przyjmujemy też oznaczenie Sn = S{1,...,n}.

Permutacje należące do Sn możemy definiować podając tabelkę funkcji. Zwykle tabelka ma
postać

(

1 2 . . . n

a1 a2 . . . an

)

.

Taka tabelka oznacza funkcję f : {1, 2, . . . , n} → {1, 2, . . . , n} zdefiniowaną wzorami f(i) = ai

dla wszystkich i = 1, . . . , n.
Grupy możemy też definiować podając tabelki mnożenia takie, jak np.

· a b

a a b

b b a

oraz

· a b c

a a b c

b b c a

c c a b

Podane tabelki definiują działania grupowe, ale przekonanie się o tym może sprawić trochę
kłopotów.

2.2 Potęgowanie

W grupach możemy zdefiniować potęgowanie przyjmując, że dla dowolnej liczby naturalnej
zachodzą równości

g0 = 1, gn+1 = gn · g oraz g−n = (g−1)n.

Jeżeli stosujemy zapis addytywny, to podane równości przyjmą postać

0 · g = 0, (n + 1) · g = n · g + g oraz (−n) · g = n · (−g).

Potęgowanie w grupie ma następujące własności słuszne dla wszystkich liczb całkowitych
n i m oraz dowolnych elementów grupy g i h:

1. 1−1 = 1

2. (g−1)−1 = g

3. (g · h)−1 = h−1 · g−1

4. (gn)m = gnm

5. gn · gm = gn+m

Znany ze szkoły wzór (g · h)n = gn · hn jest na ogół fałszywy. W szczególności, nie można w
tym wzorze podstawić n = −1. Jest natomiast prawdziwy podany wyżej wzór na odwrotność
iloczynu.
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2.3 Rząd grupy i rząd elementu grupy

Jeżeli grupa jest skończona i ma n elementów, to mówimy o niej, że jest rzędu n. O grupach
nieskończonych mówimy też, że mają rząd nieskończony. Oczywiście, rzędem grupy Sn jest n!.

Dla niektórych elementów g grupy G istnieje dodatnia liczba naturalna n taka, że gn =
1. Wtedy najmniejszą liczbę spośród liczb n o podanych własnościach nazywamy rzędem
elementu g. O pozostałych elementach mówimy, że nie mają określonego rzędu. W grupach
skończonych każdy element ma określony rząd.

2.4 Prawo skracania

Lemat 2.1 (lewostronne prawo skracania) Jeżeli w grupie zachodzi równość g·h1 = g·h2,
to h1 = h2.

Dowód. Aby dowieść lemat wystarczy podaną równość pomnożyć przez z lewej strony przez
element odwrotny do g i skorzystać z prawa łączności. 2

W dowolnej grupie jest prawdziwe także prawostronne prawo skracania.
Prawa skracania zachodzą także w algebrach, które nie są grupami. Na przykład, dodatnie

liczby naturalne z mnożeniem tworzą półgrupę z jednością, która nie jest grupą, ale zachodzą
w niej oba prawa skracania.

Zdefiniujmy funkcje fg : G → G takie, że

fg(h) = g · h.

Prawo skracania implikuje, że są to funkcje różnowartościowe. Są to także funkcje typu
„na”. Nietrudno zauważyć, że funkcja fg przyjmuje wartość h dla argumentu x = g−1 · h. Tak
więc funkcje fg są permutacjami zbioru G, czyli fg ∈ SG.

2.5 Homomorfizmy grup

Zdefiniujemy jeszcze funkcję

ϕ : G → GG taką, że ϕ(g) = fg.

Funkcja ta ma dwie własności: spełnia równość

ϕ(g1 · g2) = ϕ(g1) ◦ ϕ(g2), (1)

oraz jest różnowartościowa, a więc spełnia warunek jeżeli g1 6= g2, to ϕ(g1) 6= ϕ(g2).
Funkcję ϕ przekształcającą grupę G w inną algebrę (w tym przypadku GG lub SG ze złoże-

niem ◦) mającą własność (1) nazywamy homomorfizmem grupy G. Jeżeli dodatkowo jest ona
różnowartościowa, to nazywamy ją monomorfizmem, a jeżeli jest bijekcją, to – izomorfizmem.
Homomorfizm typu „na” nazywamy epimorfizmem.

Lemat 2.2 Niech ϕ(G) oznacza zbiór wartości przyjmowanych przez funkcję ϕ na zbiorze G.
Jeżeli G jest grupą i ϕ jest homomorfizmem grupy G, to

1. ϕ(G) z działaniem ◦ jest algebrą,

2. ϕ(1) jest elementem neutralnym w algebrze ϕ(G) z działaniem ◦,

3. elementem odwrotnym do ϕ(g) jest ϕ(g−1),
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4. ϕ(G) z działaniem ◦ jest grupą (nawet, gdy ◦ jest jakimkolwiek działaniem binarnym). 2

Algebrę ϕ(G) z działaniem ◦ nazywamy obrazem homomorficznym G (wyznaczonym przez
homomorfizm ϕ).

Wniosek 2.3 Obraz homomorficzny grupy jest grupą. Homomorfizm grupy przekształca ele-
ment netralny na element neutralny, a element odwrotny – na odwrotny.

2.6 Badanie tabelek

Przypuśćmy, że mamy tabelkę
· a b c

a a b c

b b c a

c c a b

.

pewnego dwurgumentowego działania ·. Analizując ją łatwo sprawdzić, czy dla działania ·
istnieje element neutralny, czy są elementy odwrotne, czy działanie jest przemienne. Dość
trudno sprawdzić, czy to działanie jest łączne.

Zauważmy, że jeżeli mamy tabelkę działania ·, to znamy funkcje fg i ϕ zdefiniowane w
rozdziałach 2.4 i 2.5. Wiemy z tych rozdziałow, że jeżeli tabelka przedstawia działanie grupowe,
to ϕ jest izomorfizmem. Stąd wynika, że w poszczególnych wierszach tabelki znajdują się
przepermutowane elementy grupy, a także każde dwa wiersze (z wyjątkiem wiersza z nagłówka)
są różne. Analogiczne warunki spełniają kolumny tabelki.

Dla algebr skończonych prawdziwe jest także twierdzenie odwrotne.

Twierdzenie 2.4 Jeżeli G jest skończoną algebrą z działaniem · i ϕ jest monomorfizmem, to
G jest grupą. 2

Twierdzenie to pozwala opracować algorytm sprawdzający łączność działania, mniej żmud-
ny od naturalnego.

2.7 Podgrupy

Przypuśćmy, że G jest grupą z mnożeniem ·, elementem neutralnym 1 i odwracaniem −1, a
H jest podzbiorem G. Zbiór H może być zamknięty ze względu na działania w grupie G.
Dokładniej, może spełniać następujące warunki:

1. 1 ∈ G,

2. jeżeli g, h ∈ H , to także g · h ∈ H

3. oraz jeżeli g ∈ H , to także g−1 ∈ H .

Jeżeli te warunki są spełnione, to H z działaniami z grupy G (a właściwie z ich obcięciami)
jest pewną algebrą. Tę algebrę nazywamy podgrupą grupy G.

Nietrudno zauważyć, że zdefiniowany wyżej obraz homomorficzny ϕ(G) jest podgrupą gru-
py SG. Podgrupy mają następujące, oczywiste własności:

Lemat 2.5 Podgrupa jest grupą. 2

Lemat 2.6 Dowolny przekrój podgrup grupy G jest podgrupą grupy G. 2
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Z przeprowadzonych już rozumowań wynika

Twierdzenie 2.7 (tw. Cayley) Każda grupa G jest izomorficzna z podgrupą grupy SG. 2

Prawdziwe są też lematy:

Lemat 2.8 Jeżeli zbiory X i Y są równoliczne, to grupy permutacji SX i SY są izomorficz-
ne. 2

oraz

Lemat 2.9 Jeżeli algebry A i B oraz algebry B i C są izomorficzne, to algebry A i C też są
izomorficzne. 2

Z twierdzenia Cayley i podanych lematów wynika

Wniosek 2.10 Każda grupa rzędu n jest izomorficzna z podgrupą grupy Sn. 2

Wniosek 2.11 Dla każdej liczby naturalnej n istnieje (z dokładnością do izomorfizmu) skoń-
czenie wiele grup n elementowych. Jest więc przeliczalnie wiele grup skończonych. 2

2.8 Generatory i generowanie

Przypuśćmy, że mamy grupę G z działaniem ·, podgrupę H grupy G i podzbiór X zbioru H .
Następujące stwierdzenia są równoważne

1. H jest przekrojem rodziny podgrup grupy G złożonej z podgrup zawierających X ,

2. H jest najmniejszą podgrupą G zawierającą X ,

Jeżeli stwierdzenia te są prawdziwe, to H określamy jako podgrupę grupy G generowaną
przez X , a X nazywamy zbiorem generatorów podgrupy H .

Zbiór X generuje grupę G (albo: grupa G jest generowana przez X), jeżeli G jest najmniej-
szą podgrupą G generowaną przez X . Nietrudno zauważyć, że X generuje G wtedy i tylko
wtedy G jest jedyną podgrupą grupy G zawierającą X .

Czasem będziemy też mówić, że elementy g1, g2, . . . , gn generują grupę G. Zwrot ten i
podobne oznaczają, że zbiór {g1, g2, . . . , gn} generuje grupę G.

3 Grupy permutacji

3.1 Rozkład na cykle

Niech f : A → A będzie bijekcją, a X – podzbiorem A, dowolnym i niepustym, takim, że

f(x) = y ⇒ (x ∈ X ⇐⇒ y ∈ X). (2)

Zauważmy, że wtedy

1. f : X → X (dokładniej: obcięcie f do zbioru X , a nie samo f),

2. f jest permutacją zbioru X ,

3. f : A \ X → A \ X oraz jest permutacją zbioru A \ X .
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Mając zbiór X o własności (2) możemy zdefiniować dwie funkcje f0 i f1 takie, że

f0(x) =

{

f(x) jeżeli x ∈ X,

x jeżeli x 6∈ X,
oraz f1(x) =

{

f(x) jeżeli x 6∈ X,

x jeżeli x ∈ X.

Lemat 3.1 Dla dowolnej permutacji f zbioru A zdefiniowane wyżej funkcje f0 i f1 są permu-
tacjami zbioru A oraz spełniają równości f = f0f1 = f1f0. 2

Przedstawione fakty pozwalają rozłożyć dowolną permutację na iloczyn tzw. permutacji
cykliczych, choć w przypadku zbiorów nieskończonych pojawiają się kłopoty formalne. Naj-
pierw nauczymy znajdować zbiory X o własności (2).

Takim jest dla dowolnego x ∈ A zbiór

X = {fn(x) : n ∈ Z}. (3)

Co więcej, tak definiujemy minimalne zbiory o własności (2), które nie dają się rozłożyć na
mniejsze zbiory o tej własności. Te zbiory mogą być skończone, w tym jednoelementowe, lub
nieskończone.

Lemat 3.2 Zbiór X zdefiniowany wzorem (3) jest nieskończony wtedy i tylko wtedy, gdy funk-
cja przyporządkowująca liczbie całkowitej n wartość fn(x) jest różnowartościowa. 2

Permutacje f0 dla zbiorów X zdefiniowanych wzorem (3) nazywamy cyklicznymi.
Permutacje cykliczne dla nieskończonych X możemy definiować wskazując ciąg elementów

zbioru A indeksowany liczbami całkowitymi, np. przedstawiamy je jako

(. . . , a−2, a−1, a0, a1, a2, . . .).

Zapis (. . . , a−2, a−1, a0, a1, a2, . . .) oznacza funkcję g : A → A taką, że

g(ai) = ai+1 dla i ∈ Z oraz g(x) = x dla x ∈ A \ {ak : k ∈ Z}.

W szczególności, dla nieskończonego zbioru X definiowanego wzorem (3) funkcję f0 można
zdefiniować jako

(. . . , f−2(x), f−1(x), x, f(x), f 2(x), . . .).

Przykładem permutacji cyklicznej zbioru nieskończonego może być funkcja g : R → R
taka, że

g(x) =

{

x + 1 jeżeli x jest liczbą całkowitą,
x w przeciwnym razie.

Permutację g możemy zapisać jako (. . . , −2, −1, 0, 1, 2, . . .).
Jeżeli zbiór X definiowany wzorem (3) jest skończony, to jest on równy

X = {x, f(x), f 2(x), . . . , fk−1(x)}

dla pewnej dodatniej liczby naturalnej k. Wtedy dla pewnych liczb n ∈ Z i k ∈ N zachodzi
równość fn(x) = fn+k(x). Zachodzi także równość fk(x) = x. Stąd łatwo wywnioskować
równość fn(x) = f r(x), gdzie r jest resztą z dzielenia n przez k.

Dla opisania funkcji f0 w takiej sytuacji stosujemy zapis (a1, a2, . . . , ak). Oznacza on funkcję
g definiowana wzorami

g(ai) = ai+1 dla i < k, g(ak) = a1 oraz g(x) = x dla x ∈ A \ {a1, . . . , ak}.
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Samą funkcję f0 możemy określić jako (x, f(x), f 2(x), . . . , fk−1(x)).
Analizując permutacje zbiorów skończonych wystarczy rozważać tylko permutacje cyklicz-

ne postaci (a1, a2, . . . , ak).
Dowolną permutację możemy przedstawić w postaci złożenia permutacji cyklicznych sto-

sując następującą procedurę.

1. Sprawdzamy, czy istnieje x ∈ A taki, że f(x) 6= x. Jeżeli nie istnieje, to permutacja f

jest funkcją identycznościową (jest więc złożeniem zera permutacji cyklicznych).

2. Jeżeli mamy x ∈ A taki, że f(x) 6= x, to znajdujemy zbiór X = {fn(x) : n ∈ Z}. Jeżeli
A jest skończony, to możemy to zrobić obliczając kolejne wartości x, f(x), f 2(x), . . . tak
długo, aż obliczymy fk(x), które okaże się równe x.

3. Przedstawiamy f w postaci f0f1. Permutacja f0 jest cykliczna.

4. Następnie, rekurencyjnie znajdujemy rozkład permutacji f1.

Permutacje σ, τ ∈ SX są rozłączne, jeżeli nie istnieje taki element x ∈ X , że σ(x) 6= x i
jednocześnie τ(x) 6= x. Nietrudno zauwazyć, że jeżeli σ i τ są permutacjami rozłaczymi, to
σ ◦ τ = τ ◦ σ.

Twierdzenie 3.3 Każdą permutację zbioru skończonego można przedstawić w postaci złoże-
nia rozłącznych permutacji cyklicznych. 2

Wniosek 3.4 Jeżeli A jest zbiorem skończonym, to zbiór permutacji cyklicznych generuje
grupę wszystkich permutacji zbioru A. 2

Twierdzenie 3.5 Przedstawienie permutacji w postaci iloczynu (złożenia) rozłącznych per-
mutacji cyklicznych jest jednoznaczne z dokładnością do kolejności, w jakiej poszczególne czyn-
niki zostały wymienione. 2

Permutacje cykliczne postaci (a1, a2) nazywamy transpozycjami. W grupach Sn transpo-
zycje postaci (i, i + 1) nazywamy transpozycjami elementów sąsiednich.

Twierdzenie 3.6 Zbiór transpozycji generuje grupę wszystkich permutacji zbioru skończone-
go. 2

Powyższe twierdzenie może być wnioskiem z następującego.

Twierdzenie 3.7 Zbiór transpozycji elementów sąsiednich generuje grupę permutacji Sn.

Dowód. Każdą permutację należącą do Sn można przedstawić w postaci iloczynu transpozycji
elementów sąsiednich. Przedstawienie to można znależź śledząc działanie algorytmu sortowania
bąbelkowego. Weryfikację szczegółów pozostawiam jako ćwiczenie. 2

3.2 Permutacje parzyste i nieparzyste

Permutację zbioru skończonego nazywamy parzystą wtedy i tylko wtedy, gdy jest złożeniem
parzystej liczby transpozycji. Permutację zbioru skończonego nazywamy nieparzystą wtedy i
tylko wtedy, gdy jest złożeniem nieparzystej liczby transpozycji.

Zauważmy, że permutacja nie jest parzysta, jeżeli żadne jej przedstawienie w postaci iloczy-
nu transpozycji nie zawiera parzystej liczby czynników. Interesuje nas, czy istnieją permutacje,
które są jednocześnie parzyste i nieparzyste, albo, czy istnieje permutacja, która nie jest pa-
rzysta.
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3.3 Znak permutacji

Przyjmijmy, że σ ∈ Sn oraz

sgn(σ) =
∏

i<j

σ(j) − σ(i)

j − i
.

Liczbę sgn(σ) nazywamy znakiem permutacji σ.

Lemat 3.8 Funkcja sgn ma następujące własności:

1. sgn(σ) ∈ {−1, 1} dla dowolnej permutacji σ,

2. sgn jest homomorfizmem przekształcającym grupę Sn w zbiór liczb wymiernych (lub cał-
kowitych) z mnożeniem, w szczególności dla dowolnych permutacji σ, τ ∈ Sn zachodzi
równość sgn(σ ◦ τ) = sgn(σ) · sgn(τ),

3. sgn((a, b)) = −1.

Dowód. Zauważmy, że jeżeli σ ∈ Sn, to

{{i, j} : 1 ¬ i, j ¬ n ∧ i 6= j} = {{σ(i), σ(j)} : 1 ¬ i, j ¬ n ∧ i 6= j}.

Oznaczmy te zbiory przez X i weźmy funkcję f , która parze {i, j} liczb przyporządkowuje
wartość f({i, j}) = | i − j |. Nietrudno sprawdzić, że jest to poprawnie zdefiniowana funkcja i

| sgn(σ) | =

∏

i<j | σ(j) − σ(i) |
∏

i<j | j − i |
.

Z tego wzoru wynika, że | sgn(σ) | = 1, gdyż jest to iloraz dwóch iloczynów wartości funkcji f

dla argumentów przebiegających ten sam zbiór X . W ten sposób dowiedliśmy część pierwszą
lematu.

Aby dowieść część drugą, wystarczy w podobny sposób dowieść, że

∏

i<j

σ(j) − σ(i)

j − i
=
∏

i<j

σ(τ(j)) − σ(τ(i))

τ(j) − τ(i)

dla dowolnych permutacji σ i τ . Dalsze rachunki są oczywiste.

sgn(σ ◦ τ) =
∏

i<j

σ(τ(j)) − σ(τ(i))

j − i
=
∏

i<j

σ(τ(j)) − σ(τ(i))

τ(j) − τ(i)

∏

i<j

τ(j) − τ(i)

j − i
=

=
∏

i<j

σ(j) − σ(i)

j − i

∏

i<j

τ(j) − τ(i)

j − i
= sgn(σ) · sgn(τ).

Część trzecią tezy lematu pozostawiam jako ćwiczenie. 2

Wniosek 3.9 Następujące warunki są równoważne:

1. σ jest permutacją parzystą,

2. sgn(σ) = 1

3. w każdym przedstawieniu σ w postaci iloczynu transpozycji mamy parzystą liczbę czyn-
ników. 2
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Obliczanie znaku permutacji jest bardzo proste. Wymaga np. ustalenia liczby tzw. inwersji.
Inwersją permutacji

σ =

(

1 2 3 4 5 6 7 8
5 7 1 6 3 8 2 4

)

nazywamy parę pozycji w dolnej linijce tabelki σ, w której znajdujące się liczby są podane w
innej kolejności, niż w górnej linijce. Na przykład, inwersję tworzą pozycje druga i czwarta.
znajdujące się na tych pozycjach liczby 7 i 6 są podane w innej kolejności niż w górnej linijce
tabelki. Jeżeli permutacja ma n inwersji, to jej znak jest równy (−1)n. Wynika to z definicji
znaku permutacji i przedstawionej analizy wzoru z definicji. Są też inne metody. Na przykład,
znak permutacji można ustalić łatwo znajdując przedstawienie permutacji w postaci iloczynu
permutacji cyklicznych.


