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Abstract

With respect to the number of variables the border of decidability lies between 2 and 3:
the two-variable fragment of first-order logic, FO?, has an exponential model property and
hence NExpTiME-complete satisfiability problem, while for the three-variable fragment,
FO3?, satisfiability is undecidable. In this paper we propose a rich subfragment of FO?,
containing full FO? (without equality), and show that it retains the finite model property
and NEXpPTIME complexity. Our fragment is obtained as an extension of the uniform
one-dimensional variant of FO®.

1 Introduction

In the realm of the fragments of first-order logic, FO, with decidable satisfiability problem the
two-variable fragment, FO?, is one of the most prominent. Its importance can be justified
by at least two facts: (i) it is the maximal decidable fragment of FO with respect to the
number of variables, and (ii) it embeds many modal and description logics (via the so-called
standard translation), and hence it constitutes an elegant first-order framework for analysing
those formalisms.

The first decidability proof for FO?, working only in the absence of equality, was given
by Scott [12] via a reduction to Godel prefix class without equality, which in turn was shown
decidable in the classical paper by Godel [1]. The decidability of FO? with equality is due to
Mortimer [11] who showed that FO? has the finite model property (fmp), more precisely, that
every satisfiable FO? sentence has a model of size at most doubly exponential in its length.
This bound on the size of small models was later improved to single exponential by Gréadel,
Kolaitis and Vardi in [3], which led to their result that FO? is decidable in NExPTIME, and in
fact NExpTime-complete, with the lower bound coming from the earlier work by Lewis [10].

The contrasting undecidability of FO* was first shown by Kahr, Moore, Wang [6]. Con-
cretely, they showed that the prefix class V3V, that is the class of formulas Vz3yVzeé(z,y, 2),
with quantifier-free ¢, without equality, is undecidable. Worth mentioning here are two other
sources of undecidability of FO®. The first is that in FO® it is possible to specify that some
binary relations are transitive (by the obvious prefix formulas starting with the pattern VwV).
Indeed, already FO? (and even its guarded subfragment) with two transitive relations is un-
decidable (see Kazakov’s Phd thesis [7] or [8]). The second is allowing for the use of equality
in prefix formulas VV3, that is in a three-variable subfragment of the already mentioned Gédel
class, but this time with equality, known to be undecidable from the paper by Goldfard [2].

One of the aims of our work is to better understand the reasons behind the undecidability of
FO®. This aim is obtained by proposing its rich decidable subfragment FO? , fully containing
FO? and not subsumed by any known decidable fragment. On the one hand, FO? is a fragment
showing what we can afford for without losing the decidability, on the other hand, we believe
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that it may also serve as an interesting decidable specification language, orthogonal to the
existing ones, allowing one to express many new natural properties. Roughly speaking, FO?
will be defined by limiting (but not forbidding!) the use of the two “dangerous”’ quantifier
patterns V3V and VWV identified in the previous paragraph. We will concentrate here on the
case without equality (only briefly discussing the case with equality in the concluding section),
so the pattern VV3 does not lead directly to undecidability and hence we do not consider it as
“dangerous”.

A crucial role in our investigations will be played by the idea of the uniform one-dimensional
fragment, UF;, of Hella and Kuusisto [5]. In this fragment two restrictions are imposed on the
formulas: (i) one-dimensionality: quantifiers are used in blocks, a single block is built out
only of existential or only of universal quantifiers and leaves at most one variable free and (ii)
uniformity: roughly speaking, Boolean combinations of atoms are allowed only if the atoms use
precisely the same set of variables (more crudely: all the free variables of the subformula) or
use just one variable. UF; was introduced as a “canonical” extension of FO? to contexts with
relations of arity greater than two, like database theory. Indeed, UF; turned out to have the
ﬁni‘;e (exponential) model property and NEXpPTIME-complete satisfiability problem, exactly as
FO~.

An interesting open question concerning UF is if its extension AUF1, in which the existential
and universal quantifiers can be used in blocks in the alternating fashion, remains decidable. We
start this paper by showing the decidability of its three-variable version AUF:{,. AUF; and AUF‘;’
can express some interesting properties, which are typically not expressible in known decidable
logics, for example, assuming that PlayedIn is a ternary relation containing tuples (a,m, d),
where a is the name of an actor, who played in a movie m directed by a director d, we can write
that every director has an actor who played in its all famous movies: Vax3yVz(Director(z) A
FamousMovie(z) — Actor(y) A PlayedIn(y, z,)).

Our decidability proof for AUF? goes by a reduction of arbitrary formulas to their normal
forms (conjunctions of formulas QxQyQzd(x,y, z) with quantifier-free ¢), and then by a two-
level construction in which we build an exponentially bounded model for a given satisfiable
formula. This implies NEXPTIME-completeness of the satisfiability and finite satisfiability
problems. !

Next, we consider relaxing the uniformity condition in the normal form formulas. Namely,
we leave the uniformity restriction only in those normal form conjuncts which start with the
“dangerous” patterns V3V or WwV. This will lead us to a definition of a rich subfragment FO* of
FO?, in which in addition to what is expressible in AUF? we can specify some further properties,
e.g., that every married couple has a child: VaVy(Married(z,y) — 32Child(x, z) AChild(y, 2)).
For a precise definition of this fragment see Section 2.2. Clearly FO® is more expressive than
FO? even over signatures built out only of unary and binary relation symbols, as demonstrated
by the above formula (we remark that over such signatures AUF? syntactically collapses to FOQ).
We will show the decidability and NEXPTIME-completeness of the satisfiability problem for
FO? . We also show that it possesses the finite, exponential model property. This time however,
we will not construct models fully explicitly, as in the case of AUF‘;’, but, after preparing some
building blocks, we will adapt the beautiful probabilistic approach used by Gurevich and Shelah
in the case of Godel class without equality [4] . This approach allows us to demonstrate fmp
quite easily, while it seems to us that any explicit model construction, while possible, would
need to be distractingly complicated.

1In the upcoming paper we show decidability of another fragment of AUF1, orthogonal to AUF?, in which
the number of variables is not restricted, but the blocks of quantifiers (in negation normal form formulas) are
required to be purely universal or to end with the existential quantifier.
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The organization of the paper is as follows. In Section 2 we introduce our notation and
terminology and define the relevant classes of formulas. In Section 3 we work with AUF‘;’ and
in Section 4 with its extension FO? . The latter has two main technical parts: in Subsection 4.1
we establish the complexity of FO® by showing that for a given ¢ some kind of exponentially
bounded structures may serve as witnesses for satisfiability of satisfiable formulas and can be
unwound into their (infinite) models, and in Subsection 4.2 we prove the finite (exponential)
model property for FO? via the probabilistic method. We conclude the paper in Section 5.

With such an organization, some parts of the paper may seem redundant. Indeed, FO*
subsumes AUF?, and hence our NEXPTIME-upper bound for FO? implies the same bound for
AUF‘;’, and similarly, the exponential model property for FO? implies the exponential model
property for AUF?. We begin with analysing AUF? mostly to help the reader understand our
ideas in a simpler settings (not requiring us to control too many factors at once) first. Moreover,
this allows us to obtain some modularization of the paper, as the constructions for FO? employ
some crucial part of the construction for AUF‘;’ as a black box. Also, the probabilistic proof
of the exponential model property could be used to infer a NEXPTIME-upper bound on the
complexity of FO®. We decided to keep Subsection 4.1 with an alternative approach for this
bound, as the two approaches are quite different from each other, and together give a better
insight into the reasons for decidability of FO? .

2 Preliminaries

2.1 Notation, structures and pre-structures, types and pre-types

We assume that the reader is familiar with first-order logic, FO. We work with purely relational
signatures with no constants and function symbols. We refer to structures using Fraktur capital
letters, and to their domains using the corresponding Roman capitals. Given a structure 2 and
some B C A we denote by [B the structure being the restriction of 2 to its subdomain B.

We usually use a, b, ... to denote elements from the domains of structures, and z, y, ... for
variables, all of these possibly with some decorations. For a tuple of variables T we use ¥(Z) to
denote that the free variables of 1 are in Z.

In the context of uniform logics it is convenient to speak about some partially defined
(sub)structures which we will call pre-(sub)structures. A pre-structure over a signature o con-
sists of its domain A and a function specifying the truth-value of every fact P(a), for P € o and
a tuple a of elements of A of length equal to the arity of P, such that a contains all elements of
A or just one of them. The truth values of all the other facts remain unspecified. We will use
Fraktur letters decorated with * to denote pre-structures: a pre-structure with domain A will
be denoted by 2*. If a structure 2 is fully defined we denote 2A* its induced pre-structure. If
B C A is a subdomain of 2 we denote (A]B)* the induced pre-structure of the restriction 2[B.

For k > 1, an (atomic) k-type over a signature o is a maximal consistent set of atomic
or negated atomic formulas over ¢ using at most variables x1, ..., xx, containing additionally
x; # x4, for all i # j. A k-pre-type over a signature o is a maximal consistent set of those atomic
or negated atomic formulas over o that use precisely all variables x1, ...,z or just one of them,
containing additionally x; # x;, for all ¢ # j. We often identify a k-type or a k-pre-type with
the conjunction of its elements. Given a k-type v we denote ~y[z; the restriction of v to x;, that
is the 1-type obtained from ~ by first removing all literals containing a variable different from
z; and then renaming the remaining occurrences of z; to x;.

Let 2 be a structure, and let aq,...,ar € A be pairwise distinct elements. We denote by

3
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tp®(ay,...,ax) (resp. pretp®(ai,...,ax), the unique atomic k-type (resp. k-pre-type) realized
in 2 by the tuple ay,...,ax, i.e., the k-type (resp. k-pre-type) a(z1,...,xx) such that 2 =
alay,...,ax).

In this paper we will be interested in k-types and k-pre-types for k = 1,2,3. Note that the
notions of k-types and k-pre-types coincide for £k = 1,2 and that to fully specify a structure
over a signature containing relation symbols of arity at most 3 it suffices to define its domain,
1-types of all elements, 2-types of all pairs of distinct elements, and 3-pre-types of all tuples
of pairwise distinct elements of length 3 (actually, information about the 1-types is stored also
in 2-types and 3-pre-types, but we will usually start our model constructions with defining the
1-types of its domain elements).

In our proofs we will need a bound on the number of all possible k-types over a given
signature. It is stated in the following Lemma, whose proof is obvious.

Lemma 1. Let o be a purely relational finite signature with no constants and function symbols
and containing relation symbols of arity at most 3. Then the number of all possible k-types for
k=1,2,3 is an exponential function of |o|.

The pull operation. When defining logical structures we will use the following pull operation. Let
¢ be a partially defined structure over a domain C', let 2 be a fully defined structure, ¢y, ..., c be
a sequence of pairwise distinct elements from C, and aq, . .., a; a sequence of not necessarily
pairwise distinct elements of A. We will write €[{cy,...,cp} + pull(, 1  aq,...,cx + ag),
to specify that €[{cy, ..., c;} is copied from A{aq,...,ax}. Formally, for every relation symbol
R and a sequence of indices 41,...,4;, where [ is the arity of R we set € = R(ciy,...,¢;,)
iff A = R(ai,,...,a;). We also introduce a version of the pull operation for specifying pre-
substructures. Under the assumptions as above we write (€[{cq,...,cr})*  pull* (A, 1
ay,...,CL < a) to mean that only the pre-substructure on {ci,...,cx} is defined. We will
always use the pull operation in such contexts that no conflicts with previously defined parts of
¢ will arise; in particular the 1-types of the ¢; will be always defined before a use of pull in such
a way that for all 4, tp%(c;) = tp®(a;). The following fact easily follows from the definition.

Lemma 2. Let A, € be structures, ai,...,ar a sequence of elements of A and cq,...,cg
a sequence of distinct elements of C. If the substructure € | {c1,...,cr} was defined by
Ci{ecr, .., et  pull,c1 < ar,...,cp + ag) (resp. (€] {c1,...,ck})*  pull*(™A,c1 «
ai,...,cx < ag)) then for any first-order quantifier free formula without equality ¥ (x1,...,x;)
(resp. build out of atoms which use all the variables x1,...,x; or just one of them) and any se-
quence iy, . ..,1; of elements from {1,...,k} we have A = ¥(a;,,...,a;) iff €= (ciy,. .. ¢,).

2.2 Fragments of logic

For a natural number k > 0, we denote by FO* the fragment of FO consisting of those formulas
that use at most k variables. As typical when working with bounded variable logics we assume
that signatures for FO* contain relation symbols of arity at most k. Given a class £ of formulas
in FO we denote £F := FO¥ N £. If not otherwise stated we assume that the considered
fragments do not admit equality.

sUF;. We now define the logic, sUF; (without equality), called in [9] the strongly restricted
uniform-one dimensional fragment. Formally, for a relational signature o, the set of o-formulas
of sUF is the smallest set F such that:

(i) every c-atom using at most one variable is in F,
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(ii) F is closed under Boolean connectives,

(iii) if ¢(xo,...,zx) is a Boolean combination of formulas in F with free variables in
{zg,...,zr} and atoms built out of precisely all of the variables zg,...,z; (in an ar-
bitrary order, possibly with repetitions) then 3z, ...,zx¢ and Jzq,...,zr¢ are in F.

We will be mostly interested in the three-variable version of this logic, sUF:f. Example
formulas in sUF? are:

Vayz(P(x) A P(y) A P(2) = R(x,y,2) V —S(z,2,y)),

VLL'(P(!E) - Hyz(ﬁR(:% Z,.’E) A (ﬁR(xvy’ Z) v P(y))))

For interested readers we explain that the original uniform one-dimensional fragment, UFq,
is defined as above but in point (iii) of the definition the non-unary atoms must not necessarily
use the whole set {zg,...,zx} of variables but rather all those atoms use the same subset of
this set (see [9] for some discussion on the variations of UF).

AUF,;. By AUF; we denote a new logic being the extension of sUF; with alternation of
quantifiers in blocks. It is defined almost exactly as sUF;. The only difference is that in point
(iii) of the definition instead of Iz, ..., zx¢ and Jz1, ..., P we write Q21 . .. Qpxrd, where
the Q, represent arbitrary quantifiers; this way we allow for arbitrary patterns of quantifiers in
blocks. We will be mostly interested in the three-variable version of this logic, AUF:{’. Example
formulas are:

VaIyvz(P(z) A —P(y) = —R(z,y,2z) V ~P(z) V ~R(y, 2, 2)),
Va(P(x) = JyVz—R(z,y,2) AVyS(y,x) AVzVyR(z,y,x)).

FO3 . Now we introduce the subfragment FO? of FO?, containing full FO? (without equality)
and reaching into the area of FO® even further than AUF}. Its definition may seem a bit
unnatural, but our motivations should become clearer in Section 4. To avoid some distracting
circumlocutions we allow to use negation only in literals. Formally, for a relational signature o,
the set of o-formulas of FO? is the smallest set F of formulas over variables z,y, z, such that:

(i) Every o-literal using at most one variable is in F.
(ii) F is closed under V and A.

(iii) If ¢ is a positive Boolean combination of formulas in F and o-literals then Jv¢ is in F,
for any variable v.

(iv) Let v,v" be distinct variables. If ¢ is a positive Boolean combination of formulas in F
with free variables in the set {v,v'}, and literals using at most variables v and v’ then
Yo is in F.

(v) If ¢ is a positive Boolean combination of formulas in F with at most one free variable and
literals using precisely all of z,y, 2z then JvVv'¢ and VoVv'¢ are in F, for any variables

/

v, v

Note that in the above definition v, v’ always represent some variables from {x,y, z}. The
main restriction on FO?® formulas we impose is limiting the use of quantifier patterns ending
with V followed by a three-variable subformula in (v). Existential quantification in (iii) and
universal quantification for subformulas with two free variables in (iv) can be used quite freely.
Unfortunately, this non-symmetric treatment of universal and existential quantifiers causes that
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FO? is not closed under negation. This is in contrast to, e.g., FO?, UFy, AUF‘;’ but similar to
some other known decidable classes of first-order formulas, like the prefix classes or the unary
negation fragment, UNFO, [13].

It is readily verified that (the class of negation normal form of formulas in) FO? and AUF‘I5
are indeed fragments of FO? . For example, to show that VaVy—R(z,y) is in FO? | we first use
rule (iv) (with v = y and v = z) to generate Vy—R(x,y) and then again use rule (iv) (with
v =z and v/ = y). To show that Yz3yVzP(z,y, z) is in FO® we first generate IyVzP(z,y, 2)
using rule (v) (with v = y, v = 2) and then use rule (iv) (with v = z, and arbitrary v'). A
more complicated example of a formula in FO? is given below:

Vay(=R(z,y) vV 32(S(x, 2) A S(y, 2) A (=T (z, 2,9) V VS (x, 2) V 3avy(T (2, y, 2) A P(y))))-

2.3 The satisfiability problems and the finite model property

Given a class of formulas (a fragment) of first-order logic £, the (finite) satisfiability problem for
L is defined as follows: given a sentence ¢ from £ verify if ¢ has a (finite) model. We say that a
fragment £ has the finite model property (fmp) if every satisfiable sentence has a finite model.
For a fragment with fmp the satisfiability and finite satisfiability problems coincide. Further,
we say that £ has the exponential model property if there is a fixed exponential function f, that
is a function of the form f(z) = 2P(*) for some polynomial p, such that every satisfiable sentence
¢ in £ has a finite model over a domain whose size if bounded by f(|¢|) (where |¢| is the length
of, measured in any reasonable fashion). When speaking about the size of a structure we mean
the size of its domain. We note that under our assumption that signatures contain relation
symbols of arity at most 3, the size of a full description of a structure (a list of all tuples in all
relations) is polynomial in the size of its domain.

3 Decidability of AUF?

The aim of this section is to show the following result for AUF;.

Theorem 3. AUF? (without equality) has the exponentially model property. Hence the satisfi-
ability problem (=finite satisfiability problem) for AUF? is NExpTime-complete.

Clearly, the upper bound in the second part of this theorem above is implied by the first
part: to verify that a given AUF? sentence is satisfiable we just guess a description of its
appropriately bounded model and verify it (in a straightforward manner). We recall that the
corresponding lower bound is retained from FO? without equality [10].

We begin with introducing a normal form, bounding the quantifier-depth of formulas. We
say that an AUF‘;’ sentence ¢ is in normal form if ¢ = ¢1 A ¢9 for

/\ VaVyo;(x,y) /\ VaVyVzo(x, y, 2 /\ VaIyVzoi(x,y, z), and

i€y i€Zo 1€L3
= N\ Vadysi(z.y) A\ VaVyIegi(z,y,2) A N\ VaTyTzi(z,y, 2),
1€Ty 1€T5 i€lg

where the Z; are pairwise disjoint sets of indices, and all the ¢; are uniform Boolean combi-
nations of atoms over the appropriate sets of variables ({z,y,z} or {z,y}), that is of atoms
containing either all of the free variables of ¢; or just one of them. Conjuncts indexed by Z;,
1 < i <6, will be sometimes called the Z;-conjuncts. The following lemma shows that for our
purposes we can restrict attention to normal form sentences.

6
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Lemma 4. (i) The satisfiability problem for AUF? can be reduced in nondeterministic polyno-
mial time to the satisfiability problem for normal form AUF‘;’ sentences. (i) If the class of all
normal form AUF:I’ sentences has the finite (exponential) model property then also the whole
AUF? has the finite (exponential) model property.

Proof. (Sketch). Take an AUF‘;’ sentence 1, assuming wlog. that it is in negation normal
form. Take its innermost subformula 3y starting with a maximal block of quantifiers. If it
has a free variable, that is, is of the form, e.g., Q,xQ.yn(x,y, z) replace it by P(z), for a fresh
unary symbol P, and add the following normal form conjunct ¢, (partially) axiomatising P:
V2Q2Qey(P(y) — n(z,y, 2)). In other words, ¢ is replaced by ¢(P(z)/0) A ¢y,. We proceed
similarly with other possible cases of ¥y with a free variable—when its quantifier block has length
1 or quantifies different variables. If ¢ is a proper subsentence, that is, it is of the form, e.g.,
Q12QoyQ32n(x,y, z), then we replace it by E, for a fresh 0-ary symbol E and add the conjunct
E— Q1$Q2yQ32’77(3?a Y, Z)

Repeat this process as long as possible, obtaining eventually a formula of the shape 7y A
A; Qni A N\; Ei — Qn;, where 1o is a (positive) Boolean combination of 0-are predicates. The
described process is similar to the one used, e.g., in the case of FO? [3]. It should be clear that
the obtained formula is satisfiable over the same domains as the initial formula 1.

We further nondeterministically eliminate the 0-are predicates by guessing their truth-values
so that 7 is true, obtaining a formula of the shape A, Qn;. Finally, the conjuncts starting with
the existential quantifier, like 3zQyQzn; are replaced by VaIyP(y) A VaQyQz(P(x) — n;), for
a fresh symbol P. O

For the rest of this section we fix an AUF‘;’ normal form sentence ¢ = ¢ Ao without equality
and its model 2. We show how to construct a small model of ¢. Compared to small model
constructions for other fragments of first-order logic, one non-typical problem we need to deal
with here is respecting Zs3-conjuncts, that is conjuncts starting with the quantifier patter V3Vv.
To help the reader understand what happens, we split our construction into two parts. We first
build (Subsection 3.1) a small model B = ¢;; here we indeed need to concentrate mostly on
the Zs-conjuncts. Then (Subsection 3.2) we will use B as a building block in the construction
of a finite, exponentially bounded, model for the whole ¢. By Lemma 4, this suffices to prove
Theorem 3.

3.1 Dealing with V3V-conjuncts.

Here, we give a construction of a model 9B satisfying all the (Z; U Zy U Z3)-conjuncts (i.e.
B = ¢1). To properly handle the Zs-conjuncts, we pick for every j € 73 a witness function
fi + A — A such that for every a € A we have 2 |= Vz¢;(a,f;(a),2). An element f;(a) will be
sometimes called a witness for a and ¢; (or for a and the appropriate Zs-conjunct). Similar
terminology will be also used later for conjuncts from ¢o. Here and in the rest of this paper
we will use the convention that when referring to the indexes of Zs-conjuncts, we will use the
letter j, while for the other groups of conjuncts (or in situations where it is not relevant which
group of conjuncts is considered) we will usually use the letter 7.

Let us introduce the following definition of a generalized type of an element a € A. Formally,
denoting & the set of 1-types realized in 2, a generalized type is the following tuple:

7= (a(r), (), (), 5(r) € @ x (@U{L}) x ({L,... |5} U{L}) x &l

We say that an element a € A realizes a generalized type T if:
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e «(7) is the 1-type of a;

o if B(7) # L then there exists an element b € A such that 5(7) is the 1-type of b and «a is
the witness for b and the Zz-conjunct with index j(7), i.e. fj-)(b) = a; and if B(7) = L
then we do not impose any requirements, except that j(7) = L;

o 5(1) = (s(7)1,...,5(7)|zy)) is the sequence of 1-types of witnesses for a for all the Zs-
conjuncts, i.e., s(a); = tp™(f;(a)) for all 1 < j < |Z3].

Intuitively, if a realizes 7, then 7 captures the information about the 1-types of a itself and all
the witnesses of a, from the perspective of an element b witnessed by a (if such an element b
exists). We want to stress that one element might realize potentially many generalized types,
since the choices of B(7) and j(7) might not be unique. The set of generalized types realized
by a in 2l is denoted gtp(a).

Let gtp(™A) := U,ca8tp(a) be the set of all generalized types realized in 2. For each
7 € gtp(RA) pick a single representative paty,(7) = a, such that 7 € gtp(a) (we do not require
paty, to be 1-1).
Stage 0: The domain. Let the domain of B be the set

B = gtp() x {0,1,2,3}.

We will sometimes call the sets B, = {(r,m) : 7 € gtp(A)} layers. We can naturally lift the
function paty, to the function pat: B — A: pat((7,m)) = paty, (7).

Before proceeding to the construction, we need one more definition, namely the definition
of witnessing graph which will contain a declaration about who is a witness for whom for Z3-
conjuncts in the final structure 2. More precisely, a pre-witnessing graph is a directed graph
G: = (B,FE’) and an edge-labelling function ¢ : E' — {1,...,|Z3|} such that by = (71,m1)
is connected to by = (72,Mm2) by an arc e with label ¢(e) = j(m) if m; + 1 = ma(mod 4),
B(12) = a(71), and 8(71);(r,) = @(72). As the reader may notice the pre-witnessing graph
connects only elements which are in consecutive layers (modulo 4), for every vertex there is at
least one outgoing arc in every color, and there are no multiple arcs between the same pair of
elements. Finally, we “functionalize” the graph by restricting the arc-set E’ to contain exactly
one outgoing arc in each color for every vertex. Let this new arc-set be E. Thus, we obtain a
witnessing graph G, = (B, E) and write by ~; by if by is connected to by with an arc colored
by j.

The construction itself will be given by the following iterative algorithm. The role of the
generalized types and the witnessing graph is to guide the algorithm in selecting patterns from
2 to be pulled into B, avoiding potential conflicts between different conjuncts (especially) of
type Zs. For the clarity of the presentation, all the conditions present in the algorithm need to
be taken modulo permutation of the considered elements in each step, and by fj_l(a) we mean
to take any b € A satisfying f;(b) = a. The algorithm:

Stage 1: 1-types. We set the 1-types of elements b in B, as given by «(b).

Stage 2: 2-types. For all pairs {b1 = (71, m1),ba = (72, ma)} of elements from B, b; # by do:
o if tpT (b, by) is already defined then continue.
o if by ~»; by for some j then set (BI{b1,b2}) < pull(A, b1 < ar,, b2 < fj(ar)).
e otherwise, set (B[{b1,b2}) + pull(A, b1 < ar,, b2 < ar,).

Stage 3: 3-pre-types. For all triples {by = (71,m1),b2 = (72, m2),bs = (73, m3)} of pairwise
distinct elements from B do:
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o if pretp® (by, by, bs) is already defined then continue.

o if by ~»; by and by ~», b3, for some j, k then set

(%r{bh b, bB})* — pull™ (A, by f;l(a72)> b < Qry, b3 < fk(a‘rz>)-

e if by ~; by and by ~+, bz for some j, k then set

(%[{bl, bg, bg})* < pull*(%l, b1 {— (7 bg < fj(aﬁ), bg <— fk(an)).

o if by ~»; by and b3 ~»1, by then set

(BI{b1, b2, b3})* = pull*(A, by < ar,, by < §; ' (ar,),bs + f;, ' (ar,)).

o if by ~»; by for some j and b3 is connected to neither b; nor by in the witnessing graph
then set
(%F{bl,bg, bg})* < pull*(%l, bl < (LTl,bg < fj(an), bg — 07—3).

e otherwise, set (B[{b1,b2,b3})* < pull*(A, by + ar,, b2 + ar,,b3 + ar,).
Claim 5. B | ¢;.

Proof. Most of the proof follows from the same case analysis as in the algorithm itself. Hence,
we give just a sketch and leave some details for the reader.

First notice that in the final structure B all the Z;- and Zs-conjuncts are satisfied, since
we have defined all the 2-types and 3-pre-types in 8 by copying (pulling) them from 2. More
precisely, let VaVyVze,(z,y, z) be one of the Zo-conjuncts (for Z;-conjucts the situation is anal-
ogous). Thanks to the uniformity of our logic, all the atoms in ¢; either use all the variables
x,y, z or just one of them. Hence, if we evaluate ¢;(a, b, ¢) on any three (not necessary distinct)
elements a,b,c € B, the value of ¢;(a,b,c) depends only on: the 1-types of a,b, ¢, and the
connections joining all the three elements a, b, ¢ simultaneously. Since, the 1-types are fixed
beforehand, and the connections joining all the elements a, b, c are pulled as a pre-structure
from a valid model 2, then B = ¢;(a, b, ¢) must hold by Lemma 2. One can also notice, that
no conflicts were introduced when copying different pre-structures. Indeed, in the algorithm
we defined pre-structure on every at most three-element subset of B exactly once, and the pre-
structures cannot speak about any proper subset of elements of its domain, except the 1-types
which where fixed already in Step 1.

Let us now explain that the Zs-conjucts are satisfied. Let Vx3yVze;(z,y,z) be any Zs-
conjuct. Fix an element an assume that b € B,,. We need to see that in the next layer, i.e.
B(m+1)mod 4, there exists an element that can serve as a witness for b. It is equivalent to having
an outgoing edge from b colored by j. Indeed, if there exists such an edge then the witnessing
graph forces us to pick an appropriate pattern from a model 2. Recall that each layer B,,
consists of pairs (7,m), where 7 ranges over all generalized types realized in 2. Therefore,
there must be a representative a realizing 7 in 2. Hence, we have an element f;(a), such that
A = Vz;(a, fj(a), z), which itself realizes some other generalized type 7'. Thus, in By 41)mod 4
we have an element b’ = (7, (m + 1)mod 4) satisfying b ~»; b’. The fact that B = Vz¢; (b, V', 2)
comes from the same line of arguments as in the previous paragraph. O

In the resulting structure 8, similarly as for the structure 2, we define witness functions
f; © B — B for each Zz-conjuct. More precisely, we can set f;(b) = b' if b ~»; I'; from the

9
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construction it follows that B = Vz¢;(b,§i(b),z). Note that the new functions §; are not
necessarily 1-1, but they are without fixpoints and have disjoint images.

Finally, we give a bound on the size of the produced structure . The number of generalized
types can be trivially bounded by #(t + 1)(|Zs| 4 1)t/%3l, where t = |a|. As mentioned in the
Preliminaries (Lemma 1) ¢ can be bounded by a function exponential in |¢|, and |Zs] is clearly
polynomial in |¢|. Hence:

Claim 6. The domain of B is bounded exponentially in |@|.

3.2 FMP for AUF?

Now we build a model € = ¢1 A ¢3. It will be composed out of some number of copies of the
structure B | ¢ from the previous subsection, carefully connected to provide witnesses for
conjuncts from ¢s.

Stage 0: The domain. Denote T = T, UZ; UZg. Let us form € over the following finite domain.
C=BxZIx{0,1} x{0,...,4}.

For every i € Z,u = 0,1, and 0 < m < 4 make the substructure €[(B x {i} x {u} x {m})
isomorphic to 9B, via the natural isomorphism sending each (b,i,u,m) to b. We also naturally
transfer the functions f; and pat from B to €, setting f;((b,i,u,m)) = (§;(b),4,u,m) and
pat((b,i,u,m)) = pat(b), for all b,7,u, m. For convenience we split C' into five subsets C,, =
BxZIx{0,1} x {m}, for m=0,...,4.

In the next stages we will successively take care of the all types of conjuncts of ¢. We
will provide witnesses for Zy-, Zs—, and Zg-conjuncts, using a strategy, which guarantees no
conflicts, e.g., if a 3-pre-type is defined on a tuple c1, co, c3 to make c3 a witness for ¢y, ¢o for
an Zs-conjunct, then this tuple will not be used any more for a similar task (e.g., to make ¢; a
witness for ¢z, ¢3). To design such a strategy we fix an auxiliary 1—1 function che taking a subset
of {0,...,4} of size two and extending it by 1 element from {0,...,4}.? Having provided the
witnesses we will carefully complete the structure ensuring that for every ¢ € C, f;(c) remains
a witness for ¢ and the Zs-conjunct indexed by j.

Stage 1: Witnesses for Ty-conjuncts. For every ¢ € C' and every i € Z, repeat the following.
Let m be the index such that ¢ € Cy,. Let a = pat(c). Let a’ € A be such that A = ¢;(a,d’).
It may happen that o’ = a. Take as ¢ any element from B x {i} x {0} x {m + 1(mod 5)} with
the same 1-type as a’. Set (€[{c,'}) + pull(A, ¢ + a,d + d’).

Stage 2: Witnesses for Is-conjuncts. For every unordered pair of elements c1,co € C, ¢1 # 2
and every ¢ € Iy repeat the following. Let mj,mg be the indices such that ¢; € Cy,, and
c2 € Cp,. We choose two pattern elements a1, a2 € A with the same 1-types as ¢; and, resp.,
¢2, and an index m’ as follows.

(a) If co = f;(c1) for some j (in this case m; = my), then let a; = pat(ci) and let as = f;(a1);
set m’ = m + 1(mod 5).

(b) If c1 = f;(c2) for some j (m1 = m2), then let as = pat(cz) and let a1 = f;(az); set
m’ = mq + 1(mod 5).

(¢) If none of the above holds then let a1 = pat(ci), az = pat(ce) (it may happen that

a1 = ag); if my; = my then set m’ = my + 1(mod 5), otherwise set m’ to be the only
element of che({m1,ma}) \ {m1, ma}.

2Example of che: 01—012, 02—023,03—034, 04—024, 12—123, 13—013, 14014, 23234, 24—124, 34—134.

10
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Let @’ € A be such that 2 = ¢;(a1,a2,a’) and let @’ be such that A = ¢;(az,a1,a”). Take
as ¢ any element from B x {i} x {0} x {m'} with the same 1-type as o/, and as ¢”” any element
from B x {i} x {1} x {m'} with the same 1-type as a”. Set (€[{c1,c2,'})* + pull* (A, c1 +
a1,co < az,c < a')) and set (€{ca, c1,"})* + pull* (A, co + az,c1 a1, «+ a”).

Additionally, for any ¢ € C and any i € Z5 repeat the following. Let m be the index such

that ¢ € Cy,. Let a = pat(c). Let o’ € A be such that 2 | ¢;(a,a,a’). Take as ¢’ any element
from B x {i} x {0} x {m+ 1(mod 5)} with the same 1-type as a’. Set (€[{c,'}) + pull(2A,c +
a,c +a’).
Stage 3: Witnesses for Lg-conjuncts. For every ¢ € C', and every i € Zg repeat the following. Let
m be the index such that ¢ € C,,. Let a = pat(c). Let a’,a” € A be such that A = ¢;(a, d’, a”).
Take as ¢ any element in C,,, in a different copy of B than ¢, with the same 1-type as a’.
Take as ¢’ any element in B x {i} x {0} x {m + 1(mod 5)} with the same 1-type as @’ and set
(€H{e, "1« pull* (A, ¢« a,d < d, " +a”’).

Stage 4: Taking care of the Iz-conjuncts in €. For every ¢ € C, for every ¢ € C and every
J € I3 such that the pre-substructure on {c,f;(c), ¢’} has not yet been defined (note that the
elements ¢, f;(c), ¢’ must be pairwise distinct in this case) find any o’ € A with the same 1-type
as ¢, take a = pat(c) and set (€{c,f;(c),'})*  pull(, c < a,f;(c)  f;i(a),c + a’).

Stage 5: Completing €. For any tuple of pairwise distinct elements ¢y, co,c3 € C for which
the pre-substructure of € on has not yet been defined set (€[ {c1,co,c3})* «+ pull(A,c1
pat(c1), c2 < pat(cz), c3 < pat(cz)). Similarly, for any pair of distinct elements c1,co € C for
which the substructure of € has not yet been defined, set €[{cy1, ca} + pull(A, c1 + pat(cy), ca +
pat(ca)).

Claim 7. ¢ = ¢.

Proof. The purely universal conjuncts of ¢ (Z3— and Zs-conjuncts) are satisfied since every
1-type, 2-type and 3-pre-type defined in € is copied (pulled) from 2 (either in this subsection
or in the previous one where B was constructed), which is a model of ¢. All elements have
witnesses for Zy- 75-, and Zg-conjuncts, as this is guaranteed in Stages 1, 2, and 3, respectively.
Finally, for every c and every j € Z3, §,(c) is a witness for ¢ and VYa3yVz¢;(z, y, z) in its copy of
B. In Stage 4 we carefully define 3-pre-types on tuples consisting of ¢, f;(c) and elements from
the other copies of B, so that f;(c) remains a witness for ¢ in the whole structure €.

The only point which remains to be explained is that there are no conflicts in assigning
types to tuples of elements. First note that there are no conflicts when assigning 2-types. They
are defined in Stage 1 and in the last paragraph of Stage 2 (and completed in Stage 5-but
this Stage may not be a source of conflicts as it sets only the types which have not been set
before). The strategy is that the elements from C,, look for witnesses in Cy,41 mod 5 and if an
element ¢ looks for witnesses for conjuncts indexed by different 71,45 then it always looks for
them in different copies of B. (A reader familiar with [3] may note that the way we deal with
2-types is similar to the one used in that paper, where three sets of elements are used and the
witnessing scheme is modulo 3.) Considering 3-pre-types, they are set in Stages 2, and 3 (plus
the completion in Stage 4 and Stage 5). No pre-type definition from Stage 2 can conflict with a
pre-type definition from Stage 3: in Stage 2 we define pre-types on tuples consisting of elements
either belonging two three different C,,, or two of them belongs to the same C},, and the third
one to Cy,41, to a copy of B indexed by Zs; in Stage 3 we set pre-types on tuples consisting
of two elements from the same C,, and an element from C,, 1, but from a copy of 8 indexed
by Zg. Definitions from the same stage, involving two different C,,, do not conflict with each
other due to our circular witnessing scheme requiring elements from C, to look for witnesses

11
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in C,+1. The most interesting case is setting 3-pre-types for elements from 3-different C,,-s
(Stage 2). This is done without conflict since the function che is 1 — 1. O

Since |C| = 8|B||Z|, |Z] is linear in |¢| and | B| is exponential in ¢ we see that |C| is bounded
exponentially in |@|, which completes the proof of Thm. 3.

4 Reaching beyond AUF?{

The main technical advance in this Section will be showing that the decidability is retained if
we relax the uniformity conditions in normal form for AUF:I’, by allowing the formulas ¢; in Z5-
and Zg-conjuncts to be arbitrary (not necessarily uniform) Boolean combinations of atoms. We
believe that this result is interesting in itself, but additionally it allows us to define a pretty
rich decidable class of FO? formulas with nested quantification, which we call FO? . Recall that
FO? is defined in Preliminaries, where we also observed that it contains both FO? and AUF?.

Let us see that we are indeed able to reduce FO? sentences to normal form resembling that
of AUF?. We say that an FO® sentence is in normal form if ¢ = ¢ A ¢ for

1= N\ VaVy¥edi(e,y,2) A N\ Vadyzei(a,y,2), and ¢o = J\ VaVy3z(a #y — dilw,y,2),

i€Lo i€l3 i€Ls

where the ¢; for ¢ € Z, U Z3 are positive Boolean combinations of literals using either one
variable or all variables from {z,y,z} (uniform combinations), and the ¢; for i € Zs are of
the form ¢(x,y, z) A ¢i(x,x, z), for some positive Boolean combination of arbitrary literals ¢}
(without equality). We note that even though we generally do not admit equality we allow
ourselves to use x # y as a premise in Zs-conjuncts; as we will see this use of equality simplifies
model constructions. Those conjuncts are actually equivalent to some equality-free conjuncts
VaVy3z¢l(x,y, z), and hence Lemma 2, concerning the pull operation, holds for normal form
FO? formulas.

Lemma 8. (i) The satisfiability problem for FO? can be reduced in nondeterministic polynomial
time to the satisfiability problem for normal form FO® sentences. (i) If the class of all normal
form FO? sentences has the finite (exponential) model property then also the whole FO? has
the finite (exponential) model property.

Proof. (Sketch) We proceed as in the case of AUF?7 introducing new relation symbols to rep-
resent subformulas starting with a block of quantifiers. This time we need symbols of ar-
ity 0, 1 and 2. In particular, subformulas of the form JvVv'n (VoVo'n) with a free variable
v” are replaced by P(v”) for a fresh symbol P and axiomatized by Yo" Jovv'(P(v") — )
(Vo"vovo' (P(v") — 1)), and subformulas Jun(v,v’,v"”") are replaced by R(v',v”) which is ax-
iomatized by Yovo'3v”(R(v',v”) — n)). This way, possibly by renaming the variables, we get
a formula of the shape as in AUF;-normal form but allowing the formulas ¢; for i € Zs U Zg
to be arbitrary (not necessarily uniform) Boolean combinations of atoms. We can now elim-
inate Z;-, Z4- and Zg-conjuncts. We first proceed with Zg-conjuncts VaIyIz¢;(z,y, z), re-
placing them with the conjunctions of Vz3IyR(z,y) and VaVy3z(R(z,y) — ¢i(z,y,2)), for
a fresh binary symbol R. Then for Z;-conjuncts VaVyeo,(z,y), we just equip them with a
dummy existential quantifier: VaVy3ze;(z,y), and for Zy-conjuncts VaIyd;(z,y) we add a
dummy universal quantifier and rename variables: VaVy3z¢;(x,z). We end up with only Z5-
conjuncts in the ¢ part of ¢. Finally, any conjunct of the form VaVy3z¢;(x,y, z) is replaced by
VaVy3Iz(z £y — ¢i(x,y,2) Adi(x, x, 2)). It should be clear that our transformations are sound
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over the domains consisting of at least two elements. (Singleton models can be enumerated and
checked separately.) O

4.1 The complexity of FO?

In this Section we show that FO? is decidable, moreover its satisfiability problem is still in
NExPTIME. Concerning the obtained results, this subsection is a bit redundant, as in the
next subsection, applying an alternative, probabilistic approach, we demonstrate the exponen-
tial model property for FO? | which immediately gives the same NEXPTIME-upper bound on
the complexity of the satisfiability problem, and additionally proves the same bound on the
complexity of the finite satisfiability problem.

We decided to keep this subsection (although presenting some constructions and proofs in a
slightly more sketchy way), since it gives some additional insight in the nature of the considered
problems. We proceed here in a rather classical way: we show that a normal form FO? sentence
¢ is satisfiable iff it has a certain witness for satisfiability, of exponentially bounded size, as
stated in the following lemma. Such a witness of satisfiability is a structure which is “almost” a
model of ¢. It will turn out that one can quite easily (i) extract a witness from a given model
of ¢ and (ii) unwind a witness into a proper infinite model of ¢. In both directions we use a
chase-like procedure.

Lemma 9. A normal form FO? sentence ¢ = ¢ A ¢o is satisfiable iff there exists a structure
D of size bounded by h(|p|) for some fixed exponential function h, and functions without fixed
points f; : D — D for j € I3, such that:

(¢) D=
(b) for every d,d’ € D and every j € I3 we have ® = ¢;(d,f;(d),d).

(c) for every i € Iy, for every 2-type B realized in D, there is a realization (d,d') of B and an
element d” such that d’ # d, d' # d' and D = ¢;(d,d’,d").

(c’) for every i € Iy, for every 2-type [ realized in ® by a pair (do,;(do)) for some dy and j,
there is d € D such that for d' = §;(d) the pair (d,d’) has type  and there is an element
d" such that d" #d, d’" # d and © = ¢;(d,d’,d").

A structure ®, together with the functions §; meeting the conditions of the above lemma
will be called a witness of satisfiability for ¢. As we see D satisfies the Zo- and Z3-conjuncts of
¢ (Conditions (a), (b)), but need not to satisfy the Zs-conjuncts. However, if a pair do, df, does
not have a witness for an Zs-conjunct, then there is an appropriate “similar” pair d,d having
such a witness (Conditions (c), (¢”)).

Let us first prove the left-to-right direction of Lemma 9.

Left-to-right: extracting a witness of satisfiability from a model.

Stage 1: The building block 9B. Let 2 be a model of a normal form FO? formula ¢ = ¢ A¢s. Let
a and 3 be the sets of all 1-types and all 2-types realized in 2, respectively. Since our logic does
not support equality, wlog. we assume that for each 1-type a € o, there exists a pair a,b € 2
realizing the 2-type 8 € (3 which “unwinds” «, which means that: tp®(a) = tp*(b) = «a, and for
each relation symbol R in the signature it holds: A |= R(a,b) iff A = R(a,a), and 2 = R(b,a)
iff 2 = R(a,a).

Let 2 be the finite structure constructed for ¢; and 2 as in Section 3.1. It will serve
as a building block in the construction of a witness of satisfiability © for ¢. Inspecting the
construction of B we note that the set of 1-types realized in B is precisely & and the set of
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2-types is contained in (3; and regarding the size of B, it is exponentially bounded in |¢|. Let
fj + B — B for j € I3 be the witness functions defined as in Section 3.1.

Stage 2: The domain of ©s. The witness of satisfiability ® will consists of some number of
copies of the structure B, say k (will be clarified later). More precisely, we will construct a
sequence of structures g, D1, ..., D1, where D is isomorphic to B and D1 = ©. Each
D441 will be created from ©, by attaching a fresh disjoint copy of 9B, providing an Zs-witness
for some pair of elements of (D;11[D;), and then completing the structure.

Formally, the domain of ® is the set

D, =B xA{0,...,s}.

We make the structure D[ (B x {s}) isomorphic to B and for s > 0 we make the structure
D,[(B x {0,...,s—1}) isomorphic to D4_1. We should think that B x {0} is the “main” copy
of B and B x {m} for m > 0 are auxiliary copies that will help us to satisfy the conditions
(c) and (c’). We can adopt the functions f; : B — B to the functions f; : Dy — D, by letting
55 ((b,m)) = (5;(6), m).

We introduce a notion of an extended 2-type (8,j) € B x (Zz3 U {L}) which except the
information about the 2-type contains an information about whether one of the element (of a
pair realizing this 2-type) is an Zz-witness for the other. We say that a1, as € 2 (a1,a2 € D)
realize an extended 2-type (8,7) in 2 (resp. ;) if (1) a1, aq realize 2-type 5, and (2) either
i =1, or §j(a1) = ag, or fj(az) = a1. Denote by ﬁ+ the set of all extended 2-types realized in
2l. For each i € T5 select a pattern function pat? : B+ — A3 such that pat?(3,7) = (a1, a2, as3)
if {a1, a2} realizes (B, 7) in A, and A = ¢;(aq, az, as).

Stage 3: Constructing ®s1 from Ds. Let by, by € D, be a pair of distinct elements realizing an
extended 2-type (3,7) for which (c) or (c¢’) fails for some i € Zs. Let (a1, az,as3) = pat? (3, 5).
Set (Dgq1[{b1,b2,b3}) + pull(A, by < a1,ba + aa,bs < as), where b3 € B x {s + 1} is any
element of the freshly added copy of 8 with the same 1-type as as. After providing a witness
for by, bo this way, we need to complete D, i.e., we need to specify the relations between all
pairs and triples of elements for which we have not done it yet. Take any subset S C Dg4q of
size 2 or 3, and search for an appropriate pattern in 2, then pull it into ®411[S. We will omit
the details here. Consult the Section 3.1 and the algorithm defined there for the very similar
line of the reasoning. Therefore, D,.1 = ¢1 (Condition (a)), and D41 = ¢i(d, f;(d),d") for
each j € Z3 (Condition (b)).

Stage 4: Finalization. Conditions (a) and (b) are satisfied after every step, and after at most

| ,3+| many steps (the number k), which is polynomial in |3| and |¢|, all the 2-types will satisfy
(c) and (¢’). Thus, all the conditions are met for ®j. The size of the domain of Dy, is at most

exponential in ||, since Dy, consists in fact of 37| copies of B, and both B and |37 are
exponentially bounded in ¢.

Let us now turn to the right-to-left direction of Lemma 9.
Right-to-left: building a model from a witness of satisfiability

Let ® be a witnesses of satisfiability. If ¢ does not have any Zs-conjucts then ® is already
a model of ¢. In the other case, we will show how to construct a new witness of satisfiability
D', but bigger. Iterating this construction indefinitely, and taking the limit structure, we will
obtain an infinite model of 2.
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The construction of a new witnesses of satisfiability is very similar to the process of extracting
a witnesses of satisfiability from a model. Hence, we will just sketch the construction, and stress
the differences. The domain of ®’ is the set®

D' =D x {(L,0)}UD x Ts x (?)

and let the structure on @' D x {s} be isomorphic to ® for each s € {(L,0)} U (Z5 x (?))
Then we take care of witnesses for all Zs-conjuncts for all the pairs of elements in ©, y. The
witness for a conjunct ¢; and a pair {dy,ds} is provided in D; t4,,doy- The major difference is
that this time we pull pre-substructures not from an existing model of ¢, but rather from ©
itself; this is always possible due to Conditions (c¢) and (c¢’). Then we complete the structure,
similarly as in our previous constructions, by setting the relations between all the pairs and the
triples of elements for which we have not done it yet. Again, in this completion process the
pre-substructures are pulled from ©, and not from an external structure. So after that all the
T>- and Z3-conjuncts are satisfied, and all the pairs of elements from D have witnesses for all
Is-conjuncts. We claim that the newly obtained structure is again a witness of satisfiability,
with all elements from D having the required witnesses, but with a strictly larger domain. This
allows us to continue the process ad infinitum, with the natural limit structure being a model

of ¢.

Having shown Lemma 9, and noting that checking if a given structure ® is a witness of
satisfiability for ¢ can be easily done in time polynomial in |D| and |¢|, we get:

Theorem 10. The satisfiability problem for FO® is NEXPTIME-complete.

4.2 Finite model property via probabilistic method

The probabilistic model generation we present in this subsection is inspired by Gurevich and
Shelah’s fmp proof for Godel class without equality [4]. The main differences are that we
will use finite building blocks B |= ¢1 constructed deterministically and generate whole 3-
pre-substructures at once rather than sample individual 3-ary atoms. We will also present an
analysis of the size of a minimal model guaranteed by our reasoning.

Let ¢ = ¢ A ¢2 be a normal form FO? -sentence and 2 its model. Wlog. we assume that
any l-type realized in 2l is realized by at least three distinct elements. If it is not the case, we
replace A by 32(-the structure with universe A x {0, 1,2} such that (i) tp>*((a,m)) = tp*(a)
(ii) 3A [ {(a1,m1), (az, ma)} is obtained as pull(A, (a1, m1) + a1, (a2, m2) + az) and (3A]
{(a1,m1), (az,m2), (a3, m3)})* is obtained by pull*(A, (a1, m1) < a1, (a2, mz2) + az, (a3, m3) +
a3). As previously, we pick for every j € Z3 a witness function §; : A — A such that for every
a € A we have A = Vz¢;(a,fj(a), 2). Let o, 3 and * be the set of 1-types realized in 2, the
set of 2-types realized in 2(, and, resp., the set of 3-pre-types realized in 2.

Let us construct a model B = ¢, together with functions pat: B — A and §,; : B — B, for
j=1,...,|Zs], the latter without fixed points, as in Section 3.1. We may assume that the set
of 1-types realized in % is & (cf. Section 4.1, Left-to-right, Stage 1).

We now define a sequence of (partly) random structures €, for n =1,2,....

Stage 0: The domain. C,, = Bx{1,...,n}. We make the substructures €,[B x {m} isomorphic
to B, for all m = 1,2,...,n, and set no other connections in this stage. We naturally lift
functions pat and the §; to &,.

3By (‘24), where A is a set, we mean the set of all 2-element subsets of A.
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Stage 1: 2-types. For every pair c1,cy € C,, of distinct elements for which tp%=(cy, cz) has not
yet been defined (note that ¢; and ¢y belong then to different copies of B in this case) proceed
as follows. Let ay = tp%(c1), az = tp® (c2) and let (3, be the set of 2-types 3 realized in A
such that 8lz; = a; and SBlxe = as. Clearly ﬁo is non-empty, since even if a; = as we will
have two distinct realizations of this 1-type by our assumption about 2(. Choose tp%"(ci,cy) at
random from 507 with uniform probability.

Stage 2a: 3-pre-types. For every tuple ci,ca,c3 € C, such that ca = fj(c1) for some j, and
pretp%” (cy, 2, c3) has not yet been defined proceed as follows. Recall that by the construction
of B, ¢y may not be in the image of any f; for j # k in this case. Let a1 = pat(c;) and
az = fj(a1), and az = tp®(c3). Let 7} be the set of 3-pre-types realized in 2 by tuples
a1, a2, a3, for all as € A having 1-type as. Note that 7y is non-empty—even if a; and as have
type ag then at least one appropriate agz, different from a1, ao exists since we assumed that
every 1-type realized in 2 is realized at least three times. Choose pretp®" (cy, ¢z, c3) at random
from 7y, with uniform probability.

Stage 2b: 3-pre-types contd. For every tuple ci,co,c3 € C, for which pretp® (e, co,c3) has
not yet been defined proceed as follows. Let oy = tp®*(ay), as = tp®*(a2), as = tp%" (a3) and
let 7y§ be the set of 3-pre-types v* realized in 2 such that v*[21 = a1 and v"[z2 = o and
v*lr3 = as. Again, using the assumption about 2 we note that <y is non-empty. Choose
pretp®” (c1, c2, ¢3) at random from 7y, with uniform probability.

Let us now estimate the probability that €,, /= ¢. It is not difficult to observe that, regardless
of our random choices, €, &= ¢;. Indeed, the conjuncts indexed by Z3 are respected since they
are respected in B and we ensure that f;(c) remains an appropriate witness for ¢ in &,, for
every c in Stage 2a; the conjuncts indexed by Z, are respected since they are respected in B
and all pre-types defined in € are copied from 2 (Stages 2a, 2b). Hence, we need to take into
consideration only the satisfaction of ¢o. Let Fcilm, for a pair of distinct elements ¢y, co € Cp,
and i € 75, denotes the event “€,, F= 3z¢;(c1, 2, 2)”. We first estimate its probability.

Take a pair of distinct elements ¢;, co € C,, and ¢ € Z5. There are three cases: (a) ca = f;(c1)
for some j, (b) ¢1 = fj(c2) for some j, and (c) none of the above holds. Let us go in details
through case (a). Let a; = pat(c1), az = §j(a1). In this case ¢; and ¢y belong to the same
copy of B, say to B x {k}, and tp%"(c1,co) was set in Stage 0 to be equal to tp* (a1, as). If
A = ¢i(ar,a2,a1) then €, |= ¢i(c1,c2,¢1), and if A |= ¢i(a1,az,a2) then €, |= ¢i(ci, ez, c2),
so the pair aj,as has a witness for the ¢;. Otherwise, there is an element as, as & {a1,a2}
such that 2 = ¢;(a1,as,a3). Let az = tp*(as). Consider now any element c3 of type as in
B x ({1,...k—1,k+1,...n). During the construction of ¢, we randomly chose tp®"(cy, c3)
and tp%" (ca,c3) (Stage 1) and pretp®=(ci,co,c3) (Stage 2a). We had at most |3| choices for
tp®(c1,c3) and at least one of them was tp®(ay,as). Analogously, for tp%(cz,c3). We had
at most |Y*| choices for pretp®(cy,c,c3) and at least one of them was pretp™(ai, az,as).
Hence the probability that {¢; — a1,c2 — a2,¢3 — as} is a partial isomorphism and hence
¢, = di(ci,ca,c3) is at least € = 1/(|3|? - |7v*|). As there are at least n — 1 elements of type
ag in B x ({1,...k—1,k+1,...n) (at least one in each copy of B), and the structures on
1, ¢, c3 and ¢y, ¢, ¢4 for different such elements cs, ¢ are chosen independently, it follows that
Prob(F? ) < (1—e" L.

Note that the event “C, }~ ¢” is equal to U, 4., U F! Hence

1€ZL5 ~ C1,C2°

Prob(€, £ ¢) = Prob( | | |J F.,) < > > Prob(F. ) =n|B|(n|B|-1)|Zs|(1—€¢)"".

c17#c2 1€T5 ci17#c2 €Ly

The limit of the above estimation when n approaches infinity is 0 (note that ¢, |B| and |Z5| do
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not depend on n). In particular for some n € N we have that Prob(¢,, = ¢) < 1 and thus one
of the possible (finite number) of choices of €, is indeed a finite model of ¢.

We can refine this reasoning and achieve an exponential bound on the size of a minimal
finite model by applying the following Lemma:

Lemma 11. There exists an exponential function f such that Prob(€,, (= ¢) <1 forn > f(|4]).

Proof. Denote by |¢| the size of ¢ in any reasonable encoding. In Section 3.1 we estimated the
size of the domain of B to be exponential in |¢|. Hence, there exist a polynomial p; (z) such that
|B| < 2p1(9D) . Similarly, from Lemma 1 we get that there exists polynomials ¢;(z) and gz ()
such that | 3] < 291U¢D and |y*| < 222(¢]), Wlog. we can assume that p; (), ¢1 (), ga(x) > 10z.

Let us state the bound on the probability of the event “€,, 1 = ¢” in terms of p(z) := 2p1 (z),
and ¢(z) := 2q1(2) + g2():

Prob(€,41 = ¢) = (n+ 1) B|((n+ 1)| B = DIZ5|(1 — )" < 1002270V ||(1 — e(|¢])", (1)

where () is defined as e(z) := 1/29®) and therefore £(|¢]) < 1/(|B]% - |7*]) = .

We need to show that taking n = f(|¢|) for some exponential function f makes the right-
hand side of (1) strictly less than one.* Let f(z) = 101n(2) - 229 p(x). Then taking log on
both sides of:

10f(2)22P@ (1 — e(z))T™® <1

gives us:
log(10) + 2log(f(z)) + p(z) + log(x) + f(x)log(l — e(x)) < 0.

Recall that the Mercator Series states that In(1 —z) = — > 2%/i for all z € (—1,1). Hence
we want to see that:

log(10) + 2log(f(z)) + p(z) + log(x) <

x x)°
12 > 264
Since f(z) and e(z) are always positive, the above inequality is implied by:
log(10) + 2log(f(x)) + p(x) + log(z) < f(z)e(z)/1In(2).
Expanding the definition of £(z) and f(z):
log(10) 421og(101n(2)) +4q(z) +2log(p(z)) +p(x) +log(x) < 101In(2)- 2% p(z)-279) /In(2).
Finally we get:

log(10) + 21og(101n(2)) + 4q(z) + 2log(p(z)) + p(x) + log(z) < 10 - 29 p(z),

and it is easy to see that each term on the left-hand side is bounded by 2‘1(’”)p(m) (possibly for
a large enough x), so the inequality holds. O

Recalling Lemma 8 we conclude.

Theorem 12. FO? has the finite (exponential) model property. The finite satisfiability problem
(=satisfiability problem) for FO* is NEXPTIME-complete.

4We did not tried to optimize this bound for the sake of simplicity.
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5 Concluding remarks

5.1 Notes on equality

It is clear that allowing equality in FO? spoils the decidability, as FO? contains formulas of the
form VaVy3dz¢, for quantifier-free ¢, which form an undecidable subclass of Gédel class with
equality [2].

Turning to AUF‘I’, we have two options of adding equality: first, we can treat the equality
symbol as the relation symbols from the signature and allow only its uniform use; second: we
can allow for free use of equality, as e.g. in the formula Vayz(R(z,y,2) — x # y). As for the
former, note that the syntactic restrictions allow the equality to be used only in Z;-conjuncts and
(less importantly) Z4-conjuncts. Z;-conjuncts allow one to say that some 1-types are realized
at most once. We believe that treating the realizations of such types with appropriate care and
respect (extending the approach with kings and court from [3]) one can show the finite model
property for the obtained variant and its decidability in NEXPTIME. We leave the details to
be worked out. Regarding the free use of equality, we observe that the finite model property is
lost. Consider the following formula:

xS (x) AVzIYyWz(-S(y) A R(z,y,2) A (x = 2V = R(z,y,x))

It is satisfied in the model whose universe is the set of natural numbers, S is true only at 0 and
R(z,y,z) is true iff y = x4+ 1. It is readily verified that there are no finite models (every x needs
to take a fresh y as a witness since otherwise R(z,y,z) would not hold for one of the earlier
z, z # x). The above example shows that satisfiability and finite satisfiability are different
problems in this case. We do not know if they are decidable, however. This issue is left for
further investigations.

5.2 Future work

Except the potential addition of equality, the main question which remains open is if full AUF;
has decidable satisfiability and the finite model property. We partially answer this question in
the already mentioned upcoming paper, in which we show decidability for a subvariant of AUF;
in which every block of quantifiers is purely universal or ends with the existential quantifier.
The general case is left open.
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