
An excursion to the border of decidability:
between two- and three-variable logic∗

Oskar Fiuk and Emanuel Kieroński

University of Wrocław, Poland

Abstract

With respect to the number of variables the border of decidability lies between 2 and 3:
the two-variable fragment of first-order logic, FO2, has an exponential model property and
hence NExpTime-complete satisfiability problem, while for the three-variable fragment,
FO3, satisfiability is undecidable. In this paper we propose a rich subfragment of FO3,
containing full FO2 (without equality), and show that it retains the finite model property
and NExpTime complexity. Our fragment is obtained as an extension of the uniform
one-dimensional variant of FO3.

1 Introduction
In the realm of the fragments of first-order logic, FO, with decidable satisfiability problem the
two-variable fragment, FO2, is one of the most prominent. Its importance can be justified
by at least two facts: (i) it is the maximal decidable fragment of FO with respect to the
number of variables, and (ii) it embeds many modal and description logics (via the so-called
standard translation), and hence it constitutes an elegant first-order framework for analysing
those formalisms.

The first decidability proof for FO2, working only in the absence of equality, was given
by Scott [12] via a reduction to Gödel prefix class without equality, which in turn was shown
decidable in the classical paper by Gödel [1]. The decidability of FO2 with equality is due to
Mortimer [11] who showed that FO2 has the finite model property (fmp), more precisely, that
every satisfiable FO2 sentence has a model of size at most doubly exponential in its length.
This bound on the size of small models was later improved to single exponential by Grädel,
Kolaitis and Vardi in [3], which led to their result that FO2 is decidable in NExpTime, and in
fact NExpTime-complete, with the lower bound coming from the earlier work by Lewis [10].

The contrasting undecidability of FO3 was first shown by Kahr, Moore, Wang [6]. Con-
cretely, they showed that the prefix class ∀∃∀, that is the class of formulas ∀x∃y∀zϕ(x, y, z),
with quantifier-free ϕ, without equality, is undecidable. Worth mentioning here are two other
sources of undecidability of FO3. The first is that in FO3 it is possible to specify that some
binary relations are transitive (by the obvious prefix formulas starting with the pattern ∀∀∀).
Indeed, already FO2 (and even its guarded subfragment) with two transitive relations is un-
decidable (see Kazakov’s Phd thesis [7] or [8]). The second is allowing for the use of equality
in prefix formulas ∀∀∃, that is in a three-variable subfragment of the already mentioned Gödel
class, but this time with equality, known to be undecidable from the paper by Goldfard [2].

One of the aims of our work is to better understand the reasons behind the undecidability of
FO3. This aim is obtained by proposing its rich decidable subfragment FO3

−, fully containing
FO2 and not subsumed by any known decidable fragment. On the one hand, FO3

− is a fragment
showing what we can afford for without losing the decidability, on the other hand, we believe

∗Supported by National Science Centre, Poland, grant 2021/41/B/ST6/00996.

Between two- and three-variable logic Fiuk and Kieroński

that it may also serve as an interesting decidable specification language, orthogonal to the
existing ones, allowing one to express many new natural properties. Roughly speaking, FO3

−
will be defined by limiting (but not forbidding!) the use of the two “dangerous” quantifier
patterns ∀∃∀ and ∀∀∀ identified in the previous paragraph. We will concentrate here on the
case without equality (only briefly discussing the case with equality in the concluding section),
so the pattern ∀∀∃ does not lead directly to undecidability and hence we do not consider it as
“dangerous”.

A crucial role in our investigations will be played by the idea of the uniform one-dimensional
fragment, UF1, of Hella and Kuusisto [5]. In this fragment two restrictions are imposed on the
formulas: (i) one-dimensionality : quantifiers are used in blocks, a single block is built out
only of existential or only of universal quantifiers and leaves at most one variable free and (ii)
uniformity : roughly speaking, Boolean combinations of atoms are allowed only if the atoms use
precisely the same set of variables (more crudely: all the free variables of the subformula) or
use just one variable. UF1 was introduced as a “canonical” extension of FO2 to contexts with
relations of arity greater than two, like database theory. Indeed, UF1 turned out to have the
finite (exponential) model property and NExpTime-complete satisfiability problem, exactly as
FO2.

An interesting open question concerning UF1 is if its extension AUF1, in which the existential
and universal quantifiers can be used in blocks in the alternating fashion, remains decidable. We
start this paper by showing the decidability of its three-variable version AUF3

1. AUF1 and AUF3
1

can express some interesting properties, which are typically not expressible in known decidable
logics, for example, assuming that PlayedIn is a ternary relation containing tuples (a,m, d),
where a is the name of an actor, who played in a movie m directed by a director d, we can write
that every director has an actor who played in its all famous movies: ∀x∃y∀z(Director(x) ∧
FamousMovie(z)→ Actor(y) ∧ PlayedIn(y, z, x)).

Our decidability proof for AUF3
1 goes by a reduction of arbitrary formulas to their normal

forms (conjunctions of formulas QxQyQzϕ(x, y, z) with quantifier-free ϕ), and then by a two-
level construction in which we build an exponentially bounded model for a given satisfiable
formula. This implies NExpTime-completeness of the satisfiability and finite satisfiability
problems. 1

Next, we consider relaxing the uniformity condition in the normal form formulas. Namely,
we leave the uniformity restriction only in those normal form conjuncts which start with the
“dangerous” patterns ∀∃∀ or ∀∀∀. This will lead us to a definition of a rich subfragment FO3

− of
FO3, in which in addition to what is expressible in AUF3

1 we can specify some further properties,
e.g., that every married couple has a child: ∀x∀y(Married(x, y)→ ∃zChild(x, z)∧Child(y, z)).
For a precise definition of this fragment see Section 2.2. Clearly FO3

− is more expressive than
FO2 even over signatures built out only of unary and binary relation symbols, as demonstrated
by the above formula (we remark that over such signatures AUF3

1 syntactically collapses to FO2).
We will show the decidability and NExpTime-completeness of the satisfiability problem for
FO3

−. We also show that it possesses the finite, exponential model property. This time however,
we will not construct models fully explicitly, as in the case of AUF3

1, but, after preparing some
building blocks, we will adapt the beautiful probabilistic approach used by Gurevich and Shelah
in the case of Gödel class without equality [4] . This approach allows us to demonstrate fmp
quite easily, while it seems to us that any explicit model construction, while possible, would
need to be distractingly complicated.

1In the upcoming paper we show decidability of another fragment of AUF1, orthogonal to AUF3
1, in which

the number of variables is not restricted, but the blocks of quantifiers (in negation normal form formulas) are
required to be purely universal or to end with the existential quantifier.

2

Between two- and three-variable logic Fiuk and Kieroński

The organization of the paper is as follows. In Section 2 we introduce our notation and
terminology and define the relevant classes of formulas. In Section 3 we work with AUF3

1 and
in Section 4 with its extension FO3

−. The latter has two main technical parts: in Subsection 4.1
we establish the complexity of FO3

− by showing that for a given ϕ some kind of exponentially
bounded structures may serve as witnesses for satisfiability of satisfiable formulas and can be
unwound into their (infinite) models, and in Subsection 4.2 we prove the finite (exponential)
model property for FO3

− via the probabilistic method. We conclude the paper in Section 5.
With such an organization, some parts of the paper may seem redundant. Indeed, FO3

−
subsumes AUF3

1, and hence our NExpTime-upper bound for FO3
− implies the same bound for

AUF3
1, and similarly, the exponential model property for FO3

− implies the exponential model
property for AUF3

1. We begin with analysing AUF3
1 mostly to help the reader understand our

ideas in a simpler settings (not requiring us to control too many factors at once) first. Moreover,
this allows us to obtain some modularization of the paper, as the constructions for FO3

− employ
some crucial part of the construction for AUF3

1 as a black box. Also, the probabilistic proof
of the exponential model property could be used to infer a NExpTime-upper bound on the
complexity of FO3

−. We decided to keep Subsection 4.1 with an alternative approach for this
bound, as the two approaches are quite different from each other, and together give a better
insight into the reasons for decidability of FO3

−.

2 Preliminaries

2.1 Notation, structures and pre-structures, types and pre-types

We assume that the reader is familiar with first-order logic, FO. We work with purely relational
signatures with no constants and function symbols. We refer to structures using Fraktur capital
letters, and to their domains using the corresponding Roman capitals. Given a structure A and
some B ⊆ A we denote by A↾B the structure being the restriction of A to its subdomain B.

We usually use a, b, . . . to denote elements from the domains of structures, and x, y, . . . for
variables, all of these possibly with some decorations. For a tuple of variables x̄ we use ψ(x̄) to
denote that the free variables of ψ are in x̄.

In the context of uniform logics it is convenient to speak about some partially defined
(sub)structures which we will call pre-(sub)structures. A pre-structure over a signature σ con-
sists of its domain A and a function specifying the truth-value of every fact P (ā), for P ∈ σ and
a tuple ā of elements of A of length equal to the arity of P , such that ā contains all elements of
A or just one of them. The truth values of all the other facts remain unspecified. We will use
Fraktur letters decorated with ∗ to denote pre-structures: a pre-structure with domain A will
be denoted by A∗. If a structure A is fully defined we denote A∗ its induced pre-structure. If
B ⊆ A is a subdomain of A we denote (A↾B)∗ the induced pre-structure of the restriction A↾B.

For k ≥ 1, an (atomic) k-type over a signature σ is a maximal consistent set of atomic
or negated atomic formulas over σ using at most variables x1, . . . , xk, containing additionally
xi ̸= xj , for all i ̸= j. A k-pre-type over a signature σ is a maximal consistent set of those atomic
or negated atomic formulas over σ that use precisely all variables x1, . . . , xk or just one of them,
containing additionally xi ̸= xj , for all i ̸= j. We often identify a k-type or a k-pre-type with
the conjunction of its elements. Given a k-type γ we denote γ↾xi the restriction of γ to xi, that
is the 1-type obtained from γ by first removing all literals containing a variable different from
xi and then renaming the remaining occurrences of xi to x1.

Let A be a structure, and let a1, . . . , ak ∈ A be pairwise distinct elements. We denote by

3

Between two- and three-variable logic Fiuk and Kieroński

tpA(a1, . . . , ak) (resp. pretpA(a1, . . . , ak), the unique atomic k-type (resp. k-pre-type) realized
in A by the tuple a1, . . . , ak, i.e., the k-type (resp. k-pre-type) α(x1, . . . , xk) such that A |=
α(a1, . . . , ak).

In this paper we will be interested in k-types and k-pre-types for k = 1, 2, 3. Note that the
notions of k-types and k-pre-types coincide for k = 1, 2 and that to fully specify a structure
over a signature containing relation symbols of arity at most 3 it suffices to define its domain,
1-types of all elements, 2-types of all pairs of distinct elements, and 3-pre-types of all tuples
of pairwise distinct elements of length 3 (actually, information about the 1-types is stored also
in 2-types and 3-pre-types, but we will usually start our model constructions with defining the
1-types of its domain elements).

In our proofs we will need a bound on the number of all possible k-types over a given
signature. It is stated in the following Lemma, whose proof is obvious.

Lemma 1. Let σ be a purely relational finite signature with no constants and function symbols
and containing relation symbols of arity at most 3. Then the number of all possible k-types for
k = 1, 2, 3 is an exponential function of |σ|.

The pull operation. When defining logical structures we will use the following pull operation. Let
C be a partially defined structure over a domain C, let A be a fully defined structure, c1, . . . , ck be
a sequence of pairwise distinct elements from C, and a1, . . . , ak a sequence of not necessarily
pairwise distinct elements of A. We will write C↾{c1, . . . , ck} ← pull(A, c1 ← a1, . . . , ck ← ak),
to specify that C↾{c1, . . . , ck} is copied from A↾{a1, . . . , ak}. Formally, for every relation symbol
R and a sequence of indices i1, . . . , il, where l is the arity of R we set C |= R(ci1 , . . . , cil)
iff A |= R(ai1 , . . . , ail). We also introduce a version of the pull operation for specifying pre-
substructures. Under the assumptions as above we write (C↾{c1, . . . , ck})∗ ← pull∗(A, c1 ←
a1, . . . , ck ← ak) to mean that only the pre-substructure on {c1, . . . , ck} is defined. We will
always use the pull operation in such contexts that no conflicts with previously defined parts of
C will arise; in particular the 1-types of the ci will be always defined before a use of pull in such
a way that for all i, tpC(ci) = tpA(ai). The following fact easily follows from the definition.

Lemma 2. Let A, C be structures, a1, . . . , ak a sequence of elements of A and c1, . . . , ck
a sequence of distinct elements of C. If the substructure C ↾ {c1, . . . , ck} was defined by
C ↾ {c1, . . . , ck} ← pull(A, c1 ← a1, . . . , ck ← ak) (resp. (C ↾ {c1, . . . , ck})∗ ← pull∗(A, c1 ←
a1, . . . , ck ← ak)) then for any first-order quantifier free formula without equality ψ(x1, . . . , xl)
(resp. build out of atoms which use all the variables x1, . . . , xl or just one of them) and any se-
quence i1, . . . , il of elements from {1, . . . , k} we have A |= ψ(ai1 , . . . , ail) iff C |= ψ(ci1 , . . . , cil).

2.2 Fragments of logic

For a natural number k > 0, we denote by FOk the fragment of FO consisting of those formulas
that use at most k variables. As typical when working with bounded variable logics we assume
that signatures for FOk contain relation symbols of arity at most k. Given a class L of formulas
in FO we denote Lk := FOk ∩ L. If not otherwise stated we assume that the considered
fragments do not admit equality.

sUF1. We now define the logic, sUF1 (without equality), called in [9] the strongly restricted
uniform-one dimensional fragment. Formally, for a relational signature σ, the set of σ-formulas
of sUF1 is the smallest set F such that:

(i) every σ-atom using at most one variable is in F ,

4

Between two- and three-variable logic Fiuk and Kieroński

(ii) F is closed under Boolean connectives,

(iii) if ϕ(x0, . . . , xk) is a Boolean combination of formulas in F with free variables in
{x0, . . . , xk} and atoms built out of precisely all of the variables x0, . . . , xk (in an ar-
bitrary order, possibly with repetitions) then ∃x0, . . . , xkϕ and ∃x1, . . . , xkϕ are in F .

We will be mostly interested in the three-variable version of this logic, sUF3
1. Example

formulas in sUF3
1 are:

∀xyz(P (x) ∧ P (y) ∧ P (z)→ R(x, y, z) ∨ ¬S(z, x, y)),

∀x(P (x)→ ∃yz(¬R(y, z, x) ∧ (¬R(x, y, z) ∨ P (y)))).

For interested readers we explain that the original uniform one-dimensional fragment, UF1,
is defined as above but in point (iii) of the definition the non-unary atoms must not necessarily
use the whole set {x0, . . . , xk} of variables but rather all those atoms use the same subset of
this set (see [9] for some discussion on the variations of UF1).

AUF1. By AUF1 we denote a new logic being the extension of sUF1 with alternation of
quantifiers in blocks. It is defined almost exactly as sUF1. The only difference is that in point
(iii) of the definition instead of ∃x0, . . . , xkϕ and ∃x1, . . . , xkϕ we write Q1x1 . . .Qkxkϕ, where
the Qi represent arbitrary quantifiers; this way we allow for arbitrary patterns of quantifiers in
blocks. We will be mostly interested in the three-variable version of this logic, AUF3

1. Example
formulas are:

∀x∃y∀z(P (x) ∧ ¬P (y)→ ¬R(x, y, z) ∨ ¬P (z) ∨ ¬R(y, z, x)),

∀x(P (x)→ ∃y∀z¬R(x, y, z) ∧ ∀yS(y, x) ∧ ∀x∀yR(z, y, x)).

FO3
−. Now we introduce the subfragment FO3

− of FO3, containing full FO2 (without equality)
and reaching into the area of FO3 even further than AUF3

1. Its definition may seem a bit
unnatural, but our motivations should become clearer in Section 4. To avoid some distracting
circumlocutions we allow to use negation only in literals. Formally, for a relational signature σ,
the set of σ-formulas of FO3

− is the smallest set F of formulas over variables x, y, z, such that:

(i) Every σ-literal using at most one variable is in F .

(ii) F is closed under ∨ and ∧.

(iii) If ϕ is a positive Boolean combination of formulas in F and σ-literals then ∃vϕ is in F ,
for any variable v.

(iv) Let v, v′ be distinct variables. If ϕ is a positive Boolean combination of formulas in F
with free variables in the set {v, v′}, and literals using at most variables v and v′ then
∀vϕ is in F .

(v) If ϕ is a positive Boolean combination of formulas in F with at most one free variable and
literals using precisely all of x, y, z then ∃v∀v′ϕ and ∀v∀v′ϕ are in F , for any variables
v, v′.

Note that in the above definition v, v′ always represent some variables from {x, y, z}. The
main restriction on FO3 formulas we impose is limiting the use of quantifier patterns ending
with ∀ followed by a three-variable subformula in (v). Existential quantification in (iii) and
universal quantification for subformulas with two free variables in (iv) can be used quite freely.
Unfortunately, this non-symmetric treatment of universal and existential quantifiers causes that

5

Between two- and three-variable logic Fiuk and Kieroński

FO3
− is not closed under negation. This is in contrast to, e.g., FO2, UF1, AUF3

1 but similar to
some other known decidable classes of first-order formulas, like the prefix classes or the unary
negation fragment, UNFO, [13].

It is readily verified that (the class of negation normal form of formulas in) FO2 and AUF3
1

are indeed fragments of FO3
−. For example, to show that ∀x∀y¬R(x, y) is in FO3

−, we first use
rule (iv) (with v = y and v′ = x) to generate ∀y¬R(x, y) and then again use rule (iv) (with
v = x and v′ = y). To show that ∀x∃y∀zP (x, y, z) is in FO3

− we first generate ∃y∀zP (x, y, z)
using rule (v) (with v = y, v′ = z) and then use rule (iv) (with v = x, and arbitrary v′). A
more complicated example of a formula in FO3

− is given below:

∀x∀y(¬R(x, y) ∨ ∃z(S(x, z) ∧ S(y, z) ∧ (¬T (x, z, y) ∨ ∀xS(x, z) ∨ ∃x∀y(T (z, y, x) ∧ P (y)))).

2.3 The satisfiability problems and the finite model property
Given a class of formulas (a fragment) of first-order logic L, the (finite) satisfiability problem for
L is defined as follows: given a sentence ϕ from L verify if ϕ has a (finite) model. We say that a
fragment L has the finite model property (fmp) if every satisfiable sentence has a finite model.
For a fragment with fmp the satisfiability and finite satisfiability problems coincide. Further,
we say that L has the exponential model property if there is a fixed exponential function f , that
is a function of the form f(x) = 2p(x) for some polynomial p, such that every satisfiable sentence
φ in L has a finite model over a domain whose size if bounded by f(|φ|) (where |φ| is the length
of, measured in any reasonable fashion). When speaking about the size of a structure we mean
the size of its domain. We note that under our assumption that signatures contain relation
symbols of arity at most 3, the size of a full description of a structure (a list of all tuples in all
relations) is polynomial in the size of its domain.

3 Decidability of AUF3
1

The aim of this section is to show the following result for AUF3
1.

Theorem 3. AUF3
1 (without equality) has the exponentially model property. Hence the satisfi-

ability problem (=finite satisfiability problem) for AUF3
1 is NExpTime-complete.

Clearly, the upper bound in the second part of this theorem above is implied by the first
part: to verify that a given AUF3

1 sentence is satisfiable we just guess a description of its
appropriately bounded model and verify it (in a straightforward manner). We recall that the
corresponding lower bound is retained from FO2 without equality [10].

We begin with introducing a normal form, bounding the quantifier-depth of formulas. We
say that an AUF3

1 sentence ϕ is in normal form if ϕ = ϕ1 ∧ ϕ2 for

ϕ1 =
∧
i∈I1

∀x∀yϕi(x, y) ∧
∧
i∈I2

∀x∀y∀zϕi(x, y, z) ∧
∧
i∈I3

∀x∃y∀zϕi(x, y, z), and

ϕ2 =
∧
i∈I4

∀x∃yϕi(x, y) ∧
∧
i∈I5

∀x∀y∃zϕi(x, y, z) ∧
∧
i∈I6

∀x∃y∃zϕi(x, y, z),

where the Ii are pairwise disjoint sets of indices, and all the ϕi are uniform Boolean combi-
nations of atoms over the appropriate sets of variables ({x, y, z} or {x, y}), that is of atoms
containing either all of the free variables of ϕi or just one of them. Conjuncts indexed by Ii,
1 ≤ i ≤ 6, will be sometimes called the Ii-conjuncts. The following lemma shows that for our
purposes we can restrict attention to normal form sentences.

6

Between two- and three-variable logic Fiuk and Kieroński

Lemma 4. (i) The satisfiability problem for AUF3
1 can be reduced in nondeterministic polyno-

mial time to the satisfiability problem for normal form AUF3
1 sentences. (ii) If the class of all

normal form AUF3
1 sentences has the finite (exponential) model property then also the whole

AUF3
1 has the finite (exponential) model property.

Proof. (Sketch). Take an AUF3
1 sentence ψ, assuming wlog. that it is in negation normal

form. Take its innermost subformula ψ0 starting with a maximal block of quantifiers. If it
has a free variable, that is, is of the form, e.g., Q1xQ2yη(x, y, z) replace it by P (z), for a fresh
unary symbol P , and add the following normal form conjunct ϕψ0

(partially) axiomatising P :
∀zQ1xQ2y(P (y)→ η(x, y, z)). In other words, ϕ is replaced by ϕ(P (z)/ψ0) ∧ ϕψ0

. We proceed
similarly with other possible cases of ψ0 with a free variable–when its quantifier block has length
1 or quantifies different variables. If ψ0 is a proper subsentence, that is, it is of the form, e.g.,
Q1xQ2yQ3zη(x, y, z), then we replace it by E, for a fresh 0-ary symbol E and add the conjunct
E → Q1xQ2yQ3zη(x, y, z).

Repeat this process as long as possible, obtaining eventually a formula of the shape η0 ∧∧
i Q̄ηi ∧

∧
iEi → Q̄ηi, where η0 is a (positive) Boolean combination of 0-are predicates. The

described process is similar to the one used, e.g., in the case of FO2 [3]. It should be clear that
the obtained formula is satisfiable over the same domains as the initial formula ψ.

We further nondeterministically eliminate the 0-are predicates by guessing their truth-values
so that η0 is true, obtaining a formula of the shape

∧
i Q̄ηi. Finally, the conjuncts starting with

the existential quantifier, like ∃xQyQzηi are replaced by ∀x∃yP (y) ∧ ∀xQyQz(P (x)→ ηi), for
a fresh symbol P .

For the rest of this section we fix an AUF3
1 normal form sentence ϕ = ϕ1∧ϕ2 without equality

and its model A. We show how to construct a small model of ϕ. Compared to small model
constructions for other fragments of first-order logic, one non-typical problem we need to deal
with here is respecting I3-conjuncts, that is conjuncts starting with the quantifier patter ∀∃∀.
To help the reader understand what happens, we split our construction into two parts. We first
build (Subsection 3.1) a small model B |= ϕ1; here we indeed need to concentrate mostly on
the I3-conjuncts. Then (Subsection 3.2) we will use B as a building block in the construction
of a finite, exponentially bounded, model for the whole ϕ. By Lemma 4, this suffices to prove
Theorem 3.

3.1 Dealing with ∀∃∀-conjuncts.

Here, we give a construction of a model B satisfying all the (I1 ∪ I2 ∪ I3)-conjuncts (i.e.
B |= ϕ1). To properly handle the I3-conjuncts, we pick for every j ∈ I3 a witness function
fj : A → A such that for every a ∈ A we have A |= ∀zϕj(a, fj(a), z). An element fj(a) will be
sometimes called a witness for a and ϕj (or for a and the appropriate I3-conjunct). Similar
terminology will be also used later for conjuncts from ϕ2. Here and in the rest of this paper
we will use the convention that when referring to the indexes of I3-conjuncts, we will use the
letter j, while for the other groups of conjuncts (or in situations where it is not relevant which
group of conjuncts is considered) we will usually use the letter i.

Let us introduce the following definition of a generalized type of an element a ∈ A. Formally,
denoting α the set of 1-types realized in A, a generalized type is the following tuple:

τ = (α(τ), β(τ), j(τ), s(τ)) ∈ α× (α ∪ {⊥})× ({1, . . . |I3|} ∪ {⊥})×α|I3|.

We say that an element a ∈ A realizes a generalized type τ if:

7

Between two- and three-variable logic Fiuk and Kieroński

• α(τ) is the 1-type of a;

• if β(τ) ̸= ⊥ then there exists an element b ∈ A such that β(τ) is the 1-type of b and a is
the witness for b and the I3-conjunct with index j(τ), i.e. fj(τ)(b) = a; and if β(τ) = ⊥
then we do not impose any requirements, except that j(τ) = ⊥;

• s(τ) = (s(τ)1, . . . , s(τ)|I3|) is the sequence of 1-types of witnesses for a for all the I3-
conjuncts, i.e., s(a)j = tpA(fj(a)) for all 1 ≤ j ≤ |I3|.

Intuitively, if a realizes τ , then τ captures the information about the 1-types of a itself and all
the witnesses of a, from the perspective of an element b witnessed by a (if such an element b
exists). We want to stress that one element might realize potentially many generalized types,
since the choices of β(τ) and j(τ) might not be unique. The set of generalized types realized
by a in A is denoted gtp(a).

Let gtp(A) :=
⋃
a∈A gtp(a) be the set of all generalized types realized in A. For each

τ ∈ gtp(A) pick a single representative patgtp(τ) = aτ such that τ ∈ gtp(a) (we do not require
patgtp to be 1-1).
Stage 0: The domain. Let the domain of B be the set

B = gtp(A)× {0, 1, 2, 3}.

We will sometimes call the sets Bm = {(τ,m) : τ ∈ gtp(A)} layers. We can naturally lift the
function patgtp to the function pat : B → A: pat((τ,m)) = patgtp(τ).

Before proceeding to the construction, we need one more definition, namely the definition
of witnessing graph which will contain a declaration about who is a witness for whom for I3-
conjuncts in the final structure B. More precisely, a pre-witnessing graph is a directed graph
G′w = (B,E′) and an edge-labelling function ℓ : E′ → {1, . . . , |I3|} such that b1 = (τ1,m1)
is connected to b2 = (τ2,m2) by an arc e with label ℓ(e) = j(τ2) if m1 + 1 = m2(mod 4),
β(τ2) = α(τ1), and s(τ1)j(τ2) = α(τ2). As the reader may notice the pre-witnessing graph
connects only elements which are in consecutive layers (modulo 4), for every vertex there is at
least one outgoing arc in every color, and there are no multiple arcs between the same pair of
elements. Finally, we “functionalize” the graph by restricting the arc-set E′ to contain exactly
one outgoing arc in each color for every vertex. Let this new arc-set be E. Thus, we obtain a
witnessing graph Gw = (B,E) and write b1 ;j b2 if b1 is connected to b2 with an arc colored
by j.

The construction itself will be given by the following iterative algorithm. The role of the
generalized types and the witnessing graph is to guide the algorithm in selecting patterns from
A to be pulled into B, avoiding potential conflicts between different conjuncts (especially) of
type I3. For the clarity of the presentation, all the conditions present in the algorithm need to
be taken modulo permutation of the considered elements in each step, and by f−1

j (a) we mean
to take any b ∈ A satisfying fj(b) = a. The algorithm:
Stage 1: 1-types. We set the 1-types of elements b in B, as given by α(b).
Stage 2: 2-types. For all pairs {b1 = (τ1,m1), b2 = (τ2,m2)} of elements from B, b1 ̸= b2 do:

• if tpB(b1, b2) is already defined then continue.

• if b1 ;j b2 for some j then set (B↾{b1, b2})← pull(A, b1 ← aτ1 , b2 ← fj(aτ1)).

• otherwise, set (B↾{b1, b2})← pull(A, b1 ← aτ1 , b2 ← aτ2).

Stage 3: 3-pre-types. For all triples {b1 = (τ1,m1), b2 = (τ2,m2), b3 = (τ3,m3)} of pairwise
distinct elements from B do:

8

Between two- and three-variable logic Fiuk and Kieroński

• if pretpB(b1, b2, b3) is already defined then continue.

• if b1 ;j b2 and b2 ;k b3, for some j, k then set

(B↾{b1, b2, b3})∗ ← pull∗(A, b1 ← f−1
j (aτ2), b2 ← aτ2 , b3 ← fk(aτ2)).

• if b1 ;j b2 and b1 ;k b3 for some j, k then set

(B↾{b1, b2, b3})∗ ← pull∗(A, b1 ← aτ1 , b2 ← fj(aτ1), b3 ← fk(aτ1)).

• if b2 ;j b1 and b3 ;k b1 then set

(B↾{b1, b2, b3})∗ ← pull∗(A, b1 ← aτ1 , b2 ← f−1
j (aτ1), b3 ← f−1

k (aτ1)).

• if b1 ;j b2 for some j and b3 is connected to neither b1 nor b2 in the witnessing graph
then set

(B↾{b1, b2, b3})∗ ← pull∗(A, b1 ← aτ1 , b2 ← fj(aτ1), b3 ← aτ3).

• otherwise, set (B↾{b1, b2, b3})∗ ← pull∗(A, b1 ← aτ1 , b2 ← aτ2 , b3 ← aτ3).

Claim 5. B |= ϕ1.

Proof. Most of the proof follows from the same case analysis as in the algorithm itself. Hence,
we give just a sketch and leave some details for the reader.

First notice that in the final structure B all the I1- and I2-conjuncts are satisfied, since
we have defined all the 2-types and 3-pre-types in B by copying (pulling) them from A. More
precisely, let ∀x∀y∀zϕi(x, y, z) be one of the I2-conjuncts (for I1-conjucts the situation is anal-
ogous). Thanks to the uniformity of our logic, all the atoms in ϕi either use all the variables
x, y, z or just one of them. Hence, if we evaluate ϕi(a, b, c) on any three (not necessary distinct)
elements a, b, c ∈ B, the value of ϕi(a, b, c) depends only on: the 1-types of a, b, c, and the
connections joining all the three elements a, b, c simultaneously. Since, the 1-types are fixed
beforehand, and the connections joining all the elements a, b, c are pulled as a pre-structure
from a valid model A, then B |= ϕi(a, b, c) must hold by Lemma 2. One can also notice, that
no conflicts were introduced when copying different pre-structures. Indeed, in the algorithm
we defined pre-structure on every at most three-element subset of B exactly once, and the pre-
structures cannot speak about any proper subset of elements of its domain, except the 1-types
which where fixed already in Step 1.

Let us now explain that the I3-conjucts are satisfied. Let ∀x∃y∀zϕj(x, y, z) be any I3-
conjuct. Fix an element an assume that b ∈ Bm. We need to see that in the next layer, i.e.
B(m+1)mod 4, there exists an element that can serve as a witness for b. It is equivalent to having
an outgoing edge from b colored by j. Indeed, if there exists such an edge then the witnessing
graph forces us to pick an appropriate pattern from a model A. Recall that each layer Bm
consists of pairs (τ,m), where τ ranges over all generalized types realized in A. Therefore,
there must be a representative a realizing τ in A. Hence, we have an element fj(a), such that
A |= ∀zϕj(a, fj(a), z), which itself realizes some other generalized type τ ′. Thus, in B(m+1)mod 4

we have an element b′ = (τ ′, (m+1)mod 4) satisfying b;j b
′. The fact that B |= ∀zϕj(b, b′, z)

comes from the same line of arguments as in the previous paragraph.

In the resulting structure B, similarly as for the structure A, we define witness functions
fj : B → B for each I3-conjuct. More precisely, we can set fj(b) = b′ if b ;j b

′; from the

9

Between two- and three-variable logic Fiuk and Kieroński

construction it follows that B |= ∀zϕj(b, fi(b), z). Note that the new functions fj are not
necessarily 1-1, but they are without fixpoints and have disjoint images.

Finally, we give a bound on the size of the produced structure B. The number of generalized
types can be trivially bounded by t(t + 1)(|I3| + 1)t|I3|, where t = |α|. As mentioned in the
Preliminaries (Lemma 1) t can be bounded by a function exponential in |ϕ|, and |I3| is clearly
polynomial in |ϕ|. Hence:

Claim 6. The domain of B is bounded exponentially in |ϕ|.

3.2 FMP for AUF3
1

Now we build a model C |= ϕ1 ∧ ϕ2. It will be composed out of some number of copies of the
structure B |= ϕ1 from the previous subsection, carefully connected to provide witnesses for
conjuncts from ϕ2.
Stage 0: The domain. Denote I = I4 ∪I5 ∪I6. Let us form C over the following finite domain.

C = B × I × {0, 1} × {0, . . . , 4}.

For every i ∈ I, u = 0, 1, and 0 ≤ m ≤ 4 make the substructure C↾(B × {i} × {u} × {m})
isomorphic to B, via the natural isomorphism sending each (b, i, u,m) to b. We also naturally
transfer the functions fj and pat from B to C, setting fj((b, i, u,m)) = (fj(b), i, u,m) and
pat((b, i, u,m)) = pat(b), for all b, i, u,m. For convenience we split C into five subsets Cm =
B × I × {0, 1} × {m}, for m = 0, . . . , 4.

In the next stages we will successively take care of the all types of conjuncts of ϕ. We
will provide witnesses for I4-, I5−, and I6-conjuncts, using a strategy, which guarantees no
conflicts, e.g., if a 3-pre-type is defined on a tuple c1, c2, c3 to make c3 a witness for c1, c2 for
an I5-conjunct, then this tuple will not be used any more for a similar task (e.g., to make c1 a
witness for c2, c3). To design such a strategy we fix an auxiliary 1−1 function chc taking a subset
of {0, . . . , 4} of size two and extending it by 1 element from {0, . . . , 4}.2 Having provided the
witnesses we will carefully complete the structure ensuring that for every c ∈ C, fj(c) remains
a witness for c and the I3-conjunct indexed by j.
Stage 1: Witnesses for I4-conjuncts. For every c ∈ C and every i ∈ I4 repeat the following.
Let m be the index such that c ∈ Cm. Let a = pat(c). Let a′ ∈ A be such that A |= ϕi(a, a

′).
It may happen that a′ = a. Take as c′ any element from B ×{i}× {0}× {m+1(mod 5)} with
the same 1-type as a′. Set (C↾{c, c′})← pull(A, c← a, c′ ← a′).
Stage 2: Witnesses for I5-conjuncts. For every unordered pair of elements c1, c2 ∈ C, c1 ̸= c2
and every i ∈ I5 repeat the following. Let m1,m2 be the indices such that c1 ∈ Cm1 and
c2 ∈ Cm2

. We choose two pattern elements a1, a2 ∈ A with the same 1-types as c1 and, resp.,
c2, and an index m′ as follows.

(a) If c2 = fj(c1) for some j (in this case m1 = m2), then let a1 = pat(c1) and let a2 = fj(a1);
set m′ = m1 + 1(mod 5).

(b) If c1 = fj(c2) for some j (m1 = m2), then let a2 = pat(c2) and let a1 = fj(a2); set
m′ = m1 + 1(mod 5).

(c) If none of the above holds then let a1 = pat(c1), a2 = pat(c2) (it may happen that
a1 = a2); if m1 = m2 then set m′ = m1 + 1(mod 5), otherwise set m′ to be the only
element of chc({m1,m2}) \ {m1,m2}.

2Example of chc: 01→012, 02→023, 03→034, 04→024, 12→123, 13→013, 14→014, 23→234, 24→124, 34→134.

10

Between two- and three-variable logic Fiuk and Kieroński

Let a′ ∈ A be such that A |= ϕi(a1, a2, a
′) and let a′′ be such that A |= ϕi(a2, a1, a

′′). Take
as c′ any element from B×{i}× {0}× {m′} with the same 1-type as a′, and as c′′ any element
from B × {i} × {1} × {m′} with the same 1-type as a′′. Set (C↾{c1, c2, c′})∗ ← pull∗(A, c1 ←
a1, c2 ← a2, c

′ ← a′)) and set (C↾{c2, c1, c′′})∗ ← pull∗(A, c2 ← a2, c1 ← a1, c
′′ ← a′′).

Additionally, for any c ∈ C and any i ∈ I5 repeat the following. Let m be the index such
that c ∈ Cm. Let a = pat(c). Let a′ ∈ A be such that A |= ϕi(a, a, a

′). Take as c′ any element
from B×{i}×{0}×{m+1(mod 5)} with the same 1-type as a′. Set (C↾{c, c′})← pull(A, c←
a, c′ ← a′).

Stage 3: Witnesses for I6-conjuncts. For every c ∈ C, and every i ∈ I6 repeat the following. Let
m be the index such that c ∈ Cm. Let a = pat(c). Let a′, a′′ ∈ A be such that A |= ϕi(a, a

′, a′′).
Take as c′ any element in Cm, in a different copy of B than c, with the same 1-type as a′.
Take as c′′ any element in B ×{i}× {0}× {m+1(mod 5)} with the same 1-type as a′′ and set
(C↾{c, c′, c′′})∗ ← pull∗(A, c← a, c′ ← a′, c′′ ← a′′).

Stage 4: Taking care of the I3-conjuncts in C. For every c ∈ C, for every c′ ∈ C and every
j ∈ I3 such that the pre-substructure on {c, fj(c), c′} has not yet been defined (note that the
elements c, fj(c), c′ must be pairwise distinct in this case) find any a′ ∈ A with the same 1-type
as c′, take a = pat(c) and set (C↾{c, fj(c), c′})∗ ← pull(A, c← a, fj(c)← fj(a), c

′ ← a′).

Stage 5: Completing C. For any tuple of pairwise distinct elements c1, c2, c3 ∈ C for which
the pre-substructure of C on has not yet been defined set (C ↾{c1, c2, c3})∗ ← pull(A, c1 ←
pat(c1), c2 ← pat(c2), c3 ← pat(c3)). Similarly, for any pair of distinct elements c1, c2 ∈ C for
which the substructure of C has not yet been defined, set C↾{c1, c2} ← pull(A, c1 ← pat(c1), c2 ←
pat(c2)).

Claim 7. C |= ϕ.

Proof. The purely universal conjuncts of ϕ (I1− and I2-conjuncts) are satisfied since every
1-type, 2-type and 3-pre-type defined in C is copied (pulled) from A (either in this subsection
or in the previous one where B was constructed), which is a model of ϕ. All elements have
witnesses for I4- I5-, and I6-conjuncts, as this is guaranteed in Stages 1, 2, and 3, respectively.
Finally, for every c and every j ∈ I3, fj(c) is a witness for c and ∀x∃y∀zϕj(x, y, z) in its copy of
B. In Stage 4 we carefully define 3-pre-types on tuples consisting of c, fj(c) and elements from
the other copies of B, so that fj(c) remains a witness for c in the whole structure C.

The only point which remains to be explained is that there are no conflicts in assigning
types to tuples of elements. First note that there are no conflicts when assigning 2-types. They
are defined in Stage 1 and in the last paragraph of Stage 2 (and completed in Stage 5–but
this Stage may not be a source of conflicts as it sets only the types which have not been set
before). The strategy is that the elements from Cm look for witnesses in Cm+1 mod 5 and if an
element c looks for witnesses for conjuncts indexed by different i1, i2 then it always looks for
them in different copies of B. (A reader familiar with [3] may note that the way we deal with
2-types is similar to the one used in that paper, where three sets of elements are used and the
witnessing scheme is modulo 3.) Considering 3-pre-types, they are set in Stages 2, and 3 (plus
the completion in Stage 4 and Stage 5). No pre-type definition from Stage 2 can conflict with a
pre-type definition from Stage 3: in Stage 2 we define pre-types on tuples consisting of elements
either belonging two three different Cm, or two of them belongs to the same Cm and the third
one to Cm+1, to a copy of B indexed by I5; in Stage 3 we set pre-types on tuples consisting
of two elements from the same Cm and an element from Cm+1, but from a copy of B indexed
by I6. Definitions from the same stage, involving two different Cm do not conflict with each
other due to our circular witnessing scheme requiring elements from Cm to look for witnesses

11

Between two- and three-variable logic Fiuk and Kieroński

in Cm+1. The most interesting case is setting 3-pre-types for elements from 3-different Cm-s
(Stage 2). This is done without conflict since the function chc is 1− 1.

Since |C| = 8|B||I|, |I| is linear in |ϕ| and |B| is exponential in ϕ we see that |C| is bounded
exponentially in |ϕ|, which completes the proof of Thm. 3.

4 Reaching beyond AUF3
1

The main technical advance in this Section will be showing that the decidability is retained if
we relax the uniformity conditions in normal form for AUF3

1, by allowing the formulas ϕi in I5-
and I6-conjuncts to be arbitrary (not necessarily uniform) Boolean combinations of atoms. We
believe that this result is interesting in itself, but additionally it allows us to define a pretty
rich decidable class of FO3 formulas with nested quantification, which we call FO3

−. Recall that
FO3

− is defined in Preliminaries, where we also observed that it contains both FO2 and AUF3
1.

Let us see that we are indeed able to reduce FO3
− sentences to normal form resembling that

of AUF3
1. We say that an FO3

− sentence is in normal form if ϕ = ϕ1 ∧ ϕ2 for

ϕ1 =
∧
i∈I2

∀x∀y∀zϕi(x, y, z) ∧
∧
i∈I3

∀x∃y∀zϕi(x, y, z), and ϕ2 =
∧
i∈I5

∀x∀y∃z(x ̸= y → ϕi(x, y, z)),

where the ϕi for i ∈ I2 ∪ I3 are positive Boolean combinations of literals using either one
variable or all variables from {x, y, z} (uniform combinations), and the ϕi for i ∈ I5 are of
the form ϕ′i(x, y, z) ∧ ϕ′i(x, x, z), for some positive Boolean combination of arbitrary literals ϕ′i
(without equality). We note that even though we generally do not admit equality we allow
ourselves to use x ̸= y as a premise in I5-conjuncts; as we will see this use of equality simplifies
model constructions. Those conjuncts are actually equivalent to some equality-free conjuncts
∀x∀y∃zϕ′i(x, y, z), and hence Lemma 2, concerning the pull operation, holds for normal form
FO3

− formulas.

Lemma 8. (i) The satisfiability problem for FO3
− can be reduced in nondeterministic polynomial

time to the satisfiability problem for normal form FO3
− sentences. (ii) If the class of all normal

form FO3
− sentences has the finite (exponential) model property then also the whole FO3

− has
the finite (exponential) model property.

Proof. (Sketch) We proceed as in the case of AUF3
1, introducing new relation symbols to rep-

resent subformulas starting with a block of quantifiers. This time we need symbols of ar-
ity 0, 1 and 2. In particular, subformulas of the form ∃v∀v′η (∀v∀v′η) with a free variable
v′′ are replaced by P (v′′) for a fresh symbol P and axiomatized by ∀v′′∃v∀v′(P (v′′) → η)
(∀v′′∀v∀v′(P (v′′) → η)), and subformulas ∃vη(v, v′, v′′) are replaced by R(v′, v′′) which is ax-
iomatized by ∀v∀v′∃v′′(R(v′, v′′) → η)). This way, possibly by renaming the variables, we get
a formula of the shape as in AUF1-normal form but allowing the formulas ϕi for i ∈ I5 ∪ I6
to be arbitrary (not necessarily uniform) Boolean combinations of atoms. We can now elim-
inate I1-, I4- and I6-conjuncts. We first proceed with I6-conjuncts ∀x∃y∃zϕi(x, y, z), re-
placing them with the conjunctions of ∀x∃yR(x, y) and ∀x∀y∃z(R(x, y) → ϕi(x, y, z)), for
a fresh binary symbol R. Then for I1-conjuncts ∀x∀yϕi(x, y), we just equip them with a
dummy existential quantifier: ∀x∀y∃zϕi(x, y), and for I4-conjuncts ∀x∃yϕi(x, y) we add a
dummy universal quantifier and rename variables: ∀x∀y∃zϕi(x, z). We end up with only I5-
conjuncts in the ϕ2 part of ϕ. Finally, any conjunct of the form ∀x∀y∃zϕi(x, y, z) is replaced by
∀x∀y∃z(x ̸= y → ϕi(x, y, z)∧ϕi(x, x, z)). It should be clear that our transformations are sound

12

Between two- and three-variable logic Fiuk and Kieroński

over the domains consisting of at least two elements. (Singleton models can be enumerated and
checked separately.)

4.1 The complexity of FO3
−

In this Section we show that FO3
− is decidable, moreover its satisfiability problem is still in

NExpTime. Concerning the obtained results, this subsection is a bit redundant, as in the
next subsection, applying an alternative, probabilistic approach, we demonstrate the exponen-
tial model property for FO3

−, which immediately gives the same NExpTime-upper bound on
the complexity of the satisfiability problem, and additionally proves the same bound on the
complexity of the finite satisfiability problem.

We decided to keep this subsection (although presenting some constructions and proofs in a
slightly more sketchy way), since it gives some additional insight in the nature of the considered
problems. We proceed here in a rather classical way: we show that a normal form FO3

− sentence
ϕ is satisfiable iff it has a certain witness for satisfiability, of exponentially bounded size, as
stated in the following lemma. Such a witness of satisfiability is a structure which is “almost” a
model of ϕ. It will turn out that one can quite easily (i) extract a witness from a given model
of ϕ and (ii) unwind a witness into a proper infinite model of ϕ. In both directions we use a
chase-like procedure.

Lemma 9. A normal form FO3
− sentence ϕ = ϕ1 ∧ ϕ2 is satisfiable iff there exists a structure

D of size bounded by h(|ϕ|) for some fixed exponential function h, and functions without fixed
points fj : D → D for j ∈ I3, such that:

(a) D |= ϕ1

(b) for every d, d′ ∈ D and every j ∈ I3 we have D |= ϕj(d, fj(d), d
′).

(c) for every i ∈ I5, for every 2-type β realized in D, there is a realization (d, d′) of β and an
element d′′ such that d′′ ̸= d, d′′ ̸= d′ and D |= ϕi(d, d

′, d′′).

(c’) for every i ∈ I5, for every 2-type β realized in D by a pair (d0, fj(d0)) for some d0 and j,
there is d ∈ D such that for d′ = fj(d) the pair (d, d′) has type β and there is an element
d′′ such that d′′ ̸= d, d′′ ̸= d′ and D |= ϕi(d, d

′, d′′).

A structure D, together with the functions fj meeting the conditions of the above lemma
will be called a witness of satisfiability for ϕ. As we see D satisfies the I2- and I3-conjuncts of
ϕ (Conditions (a), (b)), but need not to satisfy the I5-conjuncts. However, if a pair d0, d′0 does
not have a witness for an I5-conjunct, then there is an appropriate “similar” pair d, d′ having
such a witness (Conditions (c), (c’)).

Let us first prove the left-to-right direction of Lemma 9.

Left-to-right: extracting a witness of satisfiability from a model.

Stage 1: The building block B. Let A be a model of a normal form FO3
− formula ϕ = ϕ1∧ϕ2. Let

α and β be the sets of all 1-types and all 2-types realized in A, respectively. Since our logic does
not support equality, wlog. we assume that for each 1-type α ∈ α, there exists a pair a, b ∈ A
realizing the 2-type β ∈ β which “unwinds” α, which means that: tpA(a) = tpA(b) = α, and for
each relation symbol R in the signature it holds: A |= R(a, b) iff A |= R(a, a), and A |= R(b, a)
iff A |= R(a, a).

Let B be the finite structure constructed for ϕ1 and A as in Section 3.1. It will serve
as a building block in the construction of a witness of satisfiability D for ϕ. Inspecting the
construction of B we note that the set of 1-types realized in B is precisely α and the set of

13

Between two- and three-variable logic Fiuk and Kieroński

2-types is contained in β; and regarding the size of B, it is exponentially bounded in |ϕ|. Let
fj : B → B for j ∈ I3 be the witness functions defined as in Section 3.1.

Stage 2: The domain of Ds. The witness of satisfiability D will consists of some number of
copies of the structure B, say k (will be clarified later). More precisely, we will construct a
sequence of structures D0,D1, . . . ,Dk−1, where D0 is isomorphic to B and Dk−1 = D. Each
Ds+1 will be created from Ds by attaching a fresh disjoint copy of B, providing an I5-witness
for some pair of elements of (Ds+1↾Ds), and then completing the structure.

Formally, the domain of Ds is the set

Ds = B × {0, . . . , s}.

We make the structure Ds↾(B × {s}) isomorphic to B and for s > 0 we make the structure
Ds↾(B × {0, . . . , s− 1}) isomorphic to Ds−1. We should think that B × {0} is the “main” copy
of B and B × {m} for m > 0 are auxiliary copies that will help us to satisfy the conditions
(c) and (c’). We can adopt the functions fj : B → B to the functions fj : Ds → Ds by letting
fj((b,m)) = (fj(b),m).

We introduce a notion of an extended 2-type (β, j) ∈ β × (I3 ∪ {⊥}) which except the
information about the 2-type contains an information about whether one of the element (of a
pair realizing this 2-type) is an I3-witness for the other. We say that a1, a2 ∈ A (a1, a2 ∈ Ds)
realize an extended 2-type (β, j) in A (resp. Ds) if (1) a1, a2 realize 2-type β, and (2) either
i = ⊥, or fj(a1) = a2, or fj(a2) = a1. Denote by β+ the set of all extended 2-types realized in
A. For each i ∈ I5 select a pattern function patAi : β+ → A3 such that patAi (β, j) = (a1, a2, a3)
if {a1, a2} realizes (β, j) in A, and A |= ϕi(a1, a2, a3).

Stage 3: Constructing Ds+1 from Ds. Let b1, b2 ∈ Ds be a pair of distinct elements realizing an
extended 2-type (β, j) for which (c) or (c’) fails for some i ∈ I5. Let (a1, a2, a3) = patAi (β, j).
Set (Ds+1↾{b1, b2, b3}) ← pull(A, b1 ← a1, b2 ← a2, b3 ← a3), where b3 ∈ B × {s + 1} is any
element of the freshly added copy of B with the same 1-type as a3. After providing a witness
for b1, b2 this way, we need to complete D, i.e., we need to specify the relations between all
pairs and triples of elements for which we have not done it yet. Take any subset S ⊆ Ds+1 of
size 2 or 3, and search for an appropriate pattern in A, then pull it into Ds+1↾S. We will omit
the details here. Consult the Section 3.1 and the algorithm defined there for the very similar
line of the reasoning. Therefore, Ds+1 |= ϕ1 (Condition (a)), and Ds+1 |= ϕi(d, fj(d), d

′) for
each j ∈ I3 (Condition (b)).

Stage 4: Finalization. Conditions (a) and (b) are satisfied after every step, and after at most
|β+| many steps (the number k), which is polynomial in |β| and |ϕ|, all the 2-types will satisfy
(c) and (c’). Thus, all the conditions are met for Dk. The size of the domain of Dk is at most
exponential in |ϕ|, since Dk consists in fact of |β+| copies of B, and both B and |β+| are
exponentially bounded in ϕ.

Let us now turn to the right-to-left direction of Lemma 9.

Right-to-left: building a model from a witness of satisfiability

Let D be a witnesses of satisfiability. If ϕ does not have any I5-conjucts then D is already
a model of ϕ. In the other case, we will show how to construct a new witness of satisfiability
D′, but bigger. Iterating this construction indefinitely, and taking the limit structure, we will
obtain an infinite model of A.

14

Between two- and three-variable logic Fiuk and Kieroński

The construction of a new witnesses of satisfiability is very similar to the process of extracting
a witnesses of satisfiability from a model. Hence, we will just sketch the construction, and stress
the differences. The domain of D′ is the set3

D′ = D × {(⊥, ∅)} ∪D × I5 ×
(
D

2

)
,

and let the structure on D′↾D × {s} be isomorphic to D for each s ∈ {(⊥, ∅)} ∪ (I5 ×
(
D
2

)
).

Then we take care of witnesses for all I5-conjuncts for all the pairs of elements in D⊥,∅. The
witness for a conjunct ϕi and a pair {d1, d2} is provided in Di,{d1,d2}. The major difference is
that this time we pull pre-substructures not from an existing model of ϕ, but rather from D
itself; this is always possible due to Conditions (c) and (c’). Then we complete the structure,
similarly as in our previous constructions, by setting the relations between all the pairs and the
triples of elements for which we have not done it yet. Again, in this completion process the
pre-substructures are pulled from D, and not from an external structure. So after that all the
I2- and I3-conjuncts are satisfied, and all the pairs of elements from D have witnesses for all
I5-conjuncts. We claim that the newly obtained structure is again a witness of satisfiability,
with all elements from D having the required witnesses, but with a strictly larger domain. This
allows us to continue the process ad infinitum, with the natural limit structure being a model
of ϕ.

Having shown Lemma 9, and noting that checking if a given structure D is a witness of
satisfiability for ϕ can be easily done in time polynomial in |D| and |ϕ|, we get:

Theorem 10. The satisfiability problem for FO3
− is NExpTime-complete.

4.2 Finite model property via probabilistic method
The probabilistic model generation we present in this subsection is inspired by Gurevich and
Shelah’s fmp proof for Gödel class without equality [4]. The main differences are that we
will use finite building blocks B |= ϕ1 constructed deterministically and generate whole 3-
pre-substructures at once rather than sample individual 3-ary atoms. We will also present an
analysis of the size of a minimal model guaranteed by our reasoning.

Let ϕ = ϕ1 ∧ ϕ2 be a normal form FO3
−-sentence and A its model. Wlog. we assume that

any 1-type realized in A is realized by at least three distinct elements. If it is not the case, we
replace A by 3A–the structure with universe A × {0, 1, 2} such that (i) tp3A((a,m)) = tpA(a)
(ii) 3A ↾ {(a1,m1), (a2,m2)} is obtained as pull(A, (a1,m1) ← a1, (a2,m2) ← a2) and (3A ↾
{(a1,m1), (a2,m2), (a3,m3)})∗ is obtained by pull∗(A, (a1,m1)← a1, (a2,m2)← a2, (a3,m3)←
a3). As previously, we pick for every j ∈ I3 a witness function fj : A → A such that for every
a ∈ A we have A |= ∀zϕj(a, fj(a), z). Let α,β and γ∗ be the set of 1-types realized in A, the
set of 2-types realized in A, and, resp., the set of 3-pre-types realized in A.

Let us construct a model B |= ϕ1, together with functions pat : B → A and fj : B → B, for
j = 1, . . . , |I3|, the latter without fixed points, as in Section 3.1. We may assume that the set
of 1-types realized in B is α (cf. Section 4.1, Left-to-right, Stage 1).

We now define a sequence of (partly) random structures Cn, for n = 1, 2,
Stage 0: The domain. Cn = B×{1, . . . , n}. We make the substructures Cn↾B×{m} isomorphic
to B, for all m = 1, 2, . . . , n, and set no other connections in this stage. We naturally lift
functions pat and the fj to Cn.

3By
(A
2

)
, where A is a set, we mean the set of all 2-element subsets of A.

15

Between two- and three-variable logic Fiuk and Kieroński

Stage 1: 2-types. For every pair c1, c2 ∈ Cn of distinct elements for which tpCn(c1, c2) has not
yet been defined (note that c1 and c2 belong then to different copies of B in this case) proceed
as follows. Let α1 = tpCn(c1), α2 = tpCn(c2) and let β0 be the set of 2-types β realized in A
such that β↾x1 = α1 and β↾x2 = α2. Clearly β0 is non-empty, since even if α1 = α2 we will
have two distinct realizations of this 1-type by our assumption about A. Choose tpCn(c1, c2) at
random from β0, with uniform probability.
Stage 2a: 3-pre-types. For every tuple c1, c2, c3 ∈ Cn such that c2 = fj(c1) for some j, and
pretpCn(c1, c2, c3) has not yet been defined proceed as follows. Recall that by the construction
of B, c2 may not be in the image of any fk for j ̸= k in this case. Let a1 = pat(c1) and
a2 = fj(a1), and α3 = tpCn(c3). Let γ∗

0 be the set of 3-pre-types realized in A by tuples
a1, a2, a3, for all a3 ∈ A having 1-type α3. Note that γ∗

0 is non-empty–even if a1 and a2 have
type α3 then at least one appropriate a3, different from a1, a2 exists since we assumed that
every 1-type realized in A is realized at least three times. Choose pretpCn(c1, c2, c3) at random
from γ∗

0, with uniform probability.
Stage 2b: 3-pre-types contd. For every tuple c1, c2, c3 ∈ Cn for which pretpCn(c1, c2, c3) has
not yet been defined proceed as follows. Let α1 = tpCn(a1), α2 = tpCn(a2), α3 = tpCn(a3) and
let γ∗

0 be the set of 3-pre-types γ∗ realized in A such that γ∗↾x1 = α1 and γ∗↾x2 = α2 and
γ∗ ↾x3 = α3. Again, using the assumption about A we note that γ∗

0 is non-empty. Choose
pretpCn(c1, c2, c3) at random from γ∗

0, with uniform probability.
Let us now estimate the probability that Cn ̸|= ϕ. It is not difficult to observe that, regardless

of our random choices, Cn |= ϕ1. Indeed, the conjuncts indexed by I3 are respected since they
are respected in B and we ensure that fj(c) remains an appropriate witness for c in Cn, for
every c in Stage 2a; the conjuncts indexed by I2 are respected since they are respected in B
and all pre-types defined in C are copied from A (Stages 2a, 2b). Hence, we need to take into
consideration only the satisfaction of ϕ2. Let F ic1,c2 , for a pair of distinct elements c1, c2 ∈ Cn
and i ∈ I5, denotes the event “Cn ̸|= ∃zϕi(c1, c2, z)”. We first estimate its probability.

Take a pair of distinct elements c1, c2 ∈ Cn and i ∈ I5. There are three cases: (a) c2 = fj(c1)
for some j, (b) c1 = fj(c2) for some j, and (c) none of the above holds. Let us go in details
through case (a). Let a1 = pat(c1), a2 = fj(a1). In this case c1 and c2 belong to the same
copy of B, say to B × {k}, and tpCn(c1, c2) was set in Stage 0 to be equal to tpA(a1, a2). If
A |= ϕi(a1, a2, a1) then Cn |= ϕi(c1, c2, c1), and if A |= ϕi(a1, a2, a2) then Cn |= ϕi(c1, c2, c2),
so the pair a1, a2 has a witness for the ϕi. Otherwise, there is an element a3, a3 ̸∈ {a1, a2}
such that A |= ϕi(a1, a2, a3). Let α3 = tpA(a3). Consider now any element c3 of type α3 in
B × ({1, . . . k − 1, k + 1, . . . n). During the construction of Cn we randomly chose tpCn(c1, c3)
and tpCn(c2, c3) (Stage 1) and pretpCn(c1, c2, c3) (Stage 2a). We had at most |β| choices for
tpCn(c1, c3) and at least one of them was tpA(a1, a3). Analogously, for tpCn(c2, c3). We had
at most |γ∗| choices for pretpCn(c1, c2, c3) and at least one of them was pretpA(a1, a2, a3).
Hence the probability that {c1 → a1, c2 → a2, c3 → a3} is a partial isomorphism and hence
Cn |= ϕi(c1, c2, c3) is at least ϵ = 1/(|β|2 · |γ∗|). As there are at least n − 1 elements of type
α3 in B × ({1, . . . k − 1, k + 1, . . . n) (at least one in each copy of B), and the structures on
c1, c2, c3 and c1, c2, c′3 for different such elements c3, c′3 are chosen independently, it follows that
Prob(F ic1,c2) ≤ (1− ϵ)n−1.

Note that the event “Cn ̸|= ϕ” is equal to
⋃
c1 ̸=c2

⋃
i∈I5

F ic1,c2 . Hence

Prob(Cn ̸|= ϕ) = Prob(
⋃
c1 ̸=c2

⋃
i∈I5

F ic1,c2) ≤
∑
c1 ̸=c2

∑
i∈I5

Prob(F ic1,c2) = n|B|(n|B|−1)|I5|(1−ϵ)n−1.

The limit of the above estimation when n approaches infinity is 0 (note that ϵ, |B| and |I5| do

16

Between two- and three-variable logic Fiuk and Kieroński

not depend on n). In particular for some n ∈ N we have that Prob(Cn ̸|= ϕ) < 1 and thus one
of the possible (finite number) of choices of Cn is indeed a finite model of ϕ.

We can refine this reasoning and achieve an exponential bound on the size of a minimal
finite model by applying the following Lemma:

Lemma 11. There exists an exponential function f such that Prob(Cn ̸|= ϕ) < 1 for n ≥ f(|ϕ|).

Proof. Denote by |ϕ| the size of ϕ in any reasonable encoding. In Section 3.1 we estimated the
size of the domain of B to be exponential in |ϕ|. Hence, there exist a polynomial p1(x) such that
|B| ≤ 2p1(|ϕ|). Similarly, from Lemma 1 we get that there exists polynomials q1(x) and q2(x)
such that |β| ≤ 2q1(|ϕ|) and |γ∗| ≤ 2q2(|ϕ|). Wlog. we can assume that p1(x), q1(x), q2(x) ≥ 10x.

Let us state the bound on the probability of the event “Cn+1 ̸|= ϕ” in terms of p(x) := 2p1(x),
and q(x) := 2q1(x) + q2(x):

Prob(Cn+1 ̸|= ϕ) = (n+ 1)|B|((n+ 1)|B| − 1)|I5|(1− ϵ)n ≤ 10n22p(|ϕ|)|ϕ|(1− ε(|ϕ|))n, (1)

where ε(x) is defined as ε(x) := 1/2q(x) and therefore ε(|ϕ|) ≤ 1/(|β|2 · |γ∗|) = ϵ.
We need to show that taking n = f(|ϕ|) for some exponential function f makes the right-

hand side of (1) strictly less than one.4 Let f(x) = 10 ln(2) · 22q(x)p(x). Then taking log on
both sides of:

10f(x)22p(x)x(1− ε(x))f(x) < 1

gives us:
log(10) + 2 log(f(x)) + p(x) + log(x) + f(x) log(1− ε(x)) < 0.

Recall that the Mercator Series states that ln(1− x) = −
∑∞
i=1 x

i/i for all x ∈ (−1, 1). Hence
we want to see that:

log(10) + 2 log(f(x)) + p(x) + log(x) <
f(x)

ln(2)

∞∑
i=1

ε(x)i

i
.

Since f(x) and ε(x) are always positive, the above inequality is implied by:

log(10) + 2 log(f(x)) + p(x) + log(x) < f(x)ε(x)/ ln(2).

Expanding the definition of ε(x) and f(x):

log(10)+2 log(10 ln(2))+4q(x)+2 log(p(x))+p(x)+log(x) < 10 ln(2) ·22q(x)p(x) ·2−q(x)/ ln(2).

Finally we get:

log(10) + 2 log(10 ln(2)) + 4q(x) + 2 log(p(x)) + p(x) + log(x) < 10 · 2q(x)p(x),

and it is easy to see that each term on the left-hand side is bounded by 2q(x)p(x) (possibly for
a large enough x), so the inequality holds.

Recalling Lemma 8 we conclude.

Theorem 12. FO3
− has the finite (exponential) model property. The finite satisfiability problem

(=satisfiability problem) for FO3
− is NExpTime-complete.

4We did not tried to optimize this bound for the sake of simplicity.

17

Between two- and three-variable logic Fiuk and Kieroński

5 Concluding remarks

5.1 Notes on equality

It is clear that allowing equality in FO3
− spoils the decidability, as FO3 contains formulas of the

form ∀x∀y∃zϕ, for quantifier-free ϕ, which form an undecidable subclass of Gödel class with
equality [2].

Turning to AUF3
1, we have two options of adding equality: first, we can treat the equality

symbol as the relation symbols from the signature and allow only its uniform use; second: we
can allow for free use of equality, as e.g. in the formula ∀xyz(R(x, y, z) → x ̸= y). As for the
former, note that the syntactic restrictions allow the equality to be used only in I1-conjuncts and
(less importantly) I4-conjuncts. I1-conjuncts allow one to say that some 1-types are realized
at most once. We believe that treating the realizations of such types with appropriate care and
respect (extending the approach with kings and court from [3]) one can show the finite model
property for the obtained variant and its decidability in NExpTime. We leave the details to
be worked out. Regarding the free use of equality, we observe that the finite model property is
lost. Consider the following formula:

∃xS(x) ∧ ∀x∃y∀z(¬S(y) ∧R(x, y, z) ∧ (x = z ∨ ¬R(z, y, x))

It is satisfied in the model whose universe is the set of natural numbers, S is true only at 0 and
R(x, y, z) is true iff y = x+1. It is readily verified that there are no finite models (every x needs
to take a fresh y as a witness since otherwise R(z, y, x) would not hold for one of the earlier
z, z ̸= x). The above example shows that satisfiability and finite satisfiability are different
problems in this case. We do not know if they are decidable, however. This issue is left for
further investigations.

5.2 Future work

Except the potential addition of equality, the main question which remains open is if full AUF1

has decidable satisfiability and the finite model property. We partially answer this question in
the already mentioned upcoming paper, in which we show decidability for a subvariant of AUF1

in which every block of quantifiers is purely universal or ends with the existential quantifier.
The general case is left open.

References
[1] K. Gödel. Zum entscheidungsproblem des logischen funktionenkalkuils. Monatshefte fur Mathe-

matik und Physik, 40:433–443, 1933.
[2] W. D. Goldfarb. The unsolvability of the Gödel class with identity. J. Symb. Logic, 49:1237–1252,

1984.
[3] E. Grädel, P. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable first-order logic.

Bulletin of Symbolic Logic, 3(1):53–69, 1997.
[4] Y. Gurevich and S. Shelah. Random models and the Gödel case of the decision problem. J.

Symbolic Logic, 48(4):1120–1124, 1983.
[5] L. Hella and A. Kuusisto. One-dimensional fragment of first-order logic. In Proceedings of Advances

in Modal Logic, 2014, pages 274–293, 2014.
[6] A.S. Kahr, E.F. Moore, and H. Wang. Entscheidungsproblem reduced to the ∀∃∀ case. Proc. Nat.

Acad. Sci. U.S.A., 48:365–377, 1962.

18

Between two- and three-variable logic Fiuk and Kieroński

[7] Y. Kazakov. Saturation-based decision procedures for extensions of the guarded fragment. PhD
thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

[8] E. Kieroński. Results on the guarded fragment with equivalence or transitive relations. In CSL,
volume 3634 of LNCS, pages 309–324. Springer, 2005.

[9] E. Kieronski and A. Kuusisto. Uniform one-dimensional fragments with one equivalence relation.
In CSL, volume 41 of LIPIcs, pages 597–615, 2015.

[10] H. R. Lewis. Complexity results for classes of quantificational formulas. Journal of Computer and
System Sciences, 21(3):317 – 353, 1980.

[11] M. Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik und Grund-
lagen der Mathematik, 21:135–140, 1975.

[12] D. Scott. A decision method for validity of sentences in two variables. Journal Symbolic Logic,
27:477, 1962.

[13] B. ten Cate and L. Segoufin. Unary negation. Logical Methods in Comp. Sc., 9(3), 2013.

19

	1 Introduction
	2 Preliminaries
	2.1 Notation, structures and pre-structures, types and pre-types
	2.2 Fragments of logic
	2.3 The satisfiability problems and the finite model property

	3 Decidability of AUF13
	3.1 Dealing with -conjuncts.
	3.2 FMP for AUF13

	4 Reaching beyond AUF13
	4.1 The complexity of FO3-
	4.2 Finite model property via probabilistic method

	5 Concluding remarks
	5.1 Notes on equality
	5.2 Future work

	References

