Problems in cryptography, set 3

1. Let \(p(x) \) be a polynomial irreducible in \(\mathbb{Z}_p \). You can extend the \(\mathbb{Z}_p \) with root \(a \) of the polynomial \(p(x) \), to a field \(\mathbb{F} \), whose elements have the form
\[
x_{k-1}a^{k-1} + \cdots + x_1a + x_0,
\]
where \(k \) is the degree of the polynomial \(p(x) \), and \(x_0, \ldots, x_{k-1} \in \mathbb{Z}_p \). How would you implement arithmetic operations in \(\mathbb{F} \)?

2. (a) Show that in any finite field \(\mathbb{F} \), there is a natural number \(p \), that one added to itself \(p \) times is equal 0.
(b) Show that the minimum such \(p \) is a prime number.
(c) Show that the field \(\mathbb{F} \) is a linear space over \(\mathbb{Z}_p \). It implies that the number of elements of \(\mathbb{F} \) is \(p^k \), where \(k \) is the dimension of the space.

3. (a) Show that if a finite field \(\mathbb{F} \) has \(m \) elements, then
\[
\prod_{y \in \mathbb{F} \setminus \{0\}} y = \prod_{y \in \mathbb{F} \setminus \{0\}} xy = x^{m-1} \prod_{y \in \mathbb{F} \setminus \{0\}} y
\]
and this implies that \(x^{m-1} = 1 \) for all \(x \in \mathbb{F} \).
(b) Show that if \(k \) is the smallest natural power that \(x^k = 1 \), and \(l \) is the smallest natural power that \(y^l = 1 \) for \(x, y \in \mathbb{F} \), then there is a \(z \in \mathbb{F} \), that \(n = \text{lcm}(k, l) \) is the smallest natural power that \(z^n = 1 \).
(c) Show that if \(k \) is the least common multiple of all the smallest powers \(l \) of \(x \in \mathbb{F} \setminus \{0\} \) that \(x^l = 1 \), then there is a \(y \in \mathbb{F} \) for which \(k \) is the smallest natural power that \(y^k = 1 \). Moreover, for all \(x \in \mathbb{F} \setminus \{0\} \) we have \(x^k = 1 \). Prove also that \(k|n - 1 \).
(d) Show that, since the polynomial \(x^k - 1 \) in a field has at most \(k \) roots, we have \(k = m - 1 \) and there exists \(y \) such that all the elements \(x \in \mathbb{F} \setminus \{0\} \) take the form \(x = y^t \). This means that the multiplicative group the finite field is always cyclic.

4. What is the order of the group \(\mathbb{Z}_p^* \), consisting of invertible elements modulo \(p^k \) (\(p > 2 \) is a prime number). What order in this group has the element \(p + 1 \)? Show that it is a cyclic group.

5. Show that if \(\alpha > 2 \), the group \(\mathbb{Z}_{2^\alpha}^* \) is not cyclic, but 5 generates a subgroup consisting of half of its elements (exactly those congruent to 1 mod 4).

6. The AES S-box calculates the byte value \(b \) in such a way that
- If \(b \neq 0 \), then \(c = b^{-1} \) in the field \(\mathbb{F}_{2^8} \), which is the field of polynomials over \(\mathbb{Z}_2 \) with arithmetic operations modulo some fixed irreducible polynomial of degree eight. If \(b = 0 \), then \(c = 0 \).
- Let \(c = c_0c_1c_2c_3c_4c_5c_6c_7 \). Then \(d_i = c_i \oplus c_{i+4} \oplus c_{i+5} \oplus c_{i+6} \oplus c_{i+7} \) where the indices are added modulo 8.
- The result of S-box of the \(e = d \oplus 01100011 \).

What is the inverse transformation to this S-box?