
Converging to the Chase – a Tool for Finite
Controllability

Tomasz Gogacz, Jerzy Marcinkowski,
Institute of Computer Science, University Of Wroclaw,

Abstract—We solve a problem, stated in [CGP10], showing
that Sticky Datalog∃, defined in the cited paper as an element of
the Datalog± project, has the finite controllability property. In
order to do that, we develop a technique, which we believe can
have further applications, of approximating Chase(D, T), for a
database instance D and a set of tuple generating dependencies
and datalog rules T , by an infinite sequence of finite structures,
all of them being models of T and D.

I. INTRODUCTION

Tuple generating dependencies (TGDs), recently also known
as Datalog∃ rules1, are studied in various areas, from database
theory to description logics and in various contexts. The
context we are interested in here is computing certain answers
to queries in the situation when some semantical information
about the database is known (in the form of database depen-
dencies), but the knowledge of the database facts is limited.

Let us remind the reader that a TGD is a formula of the
form ∀x̄ (Φ(x̄)⇒ ∃y Q(y, ȳ)) where Φ is a conjunctive query
(CQ), Q is a relation symbol, x̄, ȳ are tuples of variables and
ȳ ⊆ x̄. The universal quantifier in front of the formula is
usually omitted.

By a theory we mean a set consisting of some TGDs and
some Datalog rules. For a theory T and a database instance
D, we denote by Chase(T , D) the least fixpoint of the chase
operation: if the body (the left hand side) of some TGD is
satisfied in the current database, and the head (the right hand
side) is not satisfied, then add the atom in the head to the
database and, if the rule was a TGD, add a new constant being
the free witness for the existential formula in the head. By
Chasei(T , D) we mean the structure being the i-th stage of
the fixpoint procedure (so that Chase0(T , D) = D). Clearly,
we have Chase(T , D) |= D, T , but there is no reason to think
that Chasei(T , D) |= T for any i ∈ N.

Since Chase(T , D) is a ”free structure”, it is very easy to
see that for any query Φ (being a union of positive conjunctive
queries, or UCQ, all queries we consider in this paper are
positive) D, T |= Φ (which reads as ”Φ is certainly true in D,
in presence of T ”), if and only if Chase(T , D) |= Φ.

It is easy to see that query answering in presence of
TGDs is undecidable. As usually in such situations many sorts
of syntactic restrictions on the dependencies are considered,
which imply decidability while keeping as much expressive
power as possible. Recent new interest in such restricted logics

1By a TGD we always mean a single-head TGD.

comes from the Datalog± project, led by Georg Gottlob,
whose aim is translating concepts and proof techniques from
database theory to description logics and bridging an apparent
gap in expressive power between database query languages
and description logics (DLs) as ontology languages, extending
the well-known Datalog language in order to embed DLs
[CGT09].

From the point of view of Datalog± and of this paper, the
interesting logics are:
Linear Datalog∃ programs. They consist of TGDs which, as
the body, have a single atomic formula, and this formula is
joinless – each variable in the body occurs there only once. The
Joinless Logic we consider in this paper is a generalization
of Linear Datalog∃, in the sense that we no longer restrict the
body of the rule to be a single atom, but we still demand that
each variable occurs in the body only once. Let us note that
allowing variable repetitions in the heads does not change the
Finite Controllability status of a program, as we can always
remember the equalities as part of the relation name, so we
w.l.o.g. assume that such repetitions are not allowed in Joinless
Logic (see Section III for slightly more about this issue).

Guarded Datalog∃ is an extension of Linear Datalog∃. A
TGD is guarded if it has an atom, in the body, containing all
the variables that occur anywhere else in the body. Clearly,
Linear Datalog∃ programs are guarded, as they only have one
atom in the body.

Sticky Datalog∃ is a logic introduced in [CGP10] and then
extended in [CGP10+/-] as Sticky-Join Datalog∃. A set T of
TGDs is sticky, if some positions in the relations occurring in
the rules can be marked as ”immortal” in such a way that the
following conditions are satisfied:
• If some variable occurs in an immortal position in the

body of a rule form T then the same variable must occur
in immortal position in the head of the same rule.

• If some variable occurs more than once in the body of
a rule form T then this variable must occur in immortal
position in the head of the same rule.

Let us remark here, that the above property, that we use as a
definition of Sticky Datalog∃, is actually called ”the sticky-join
property” in [CGP12], and is a consequence of slightly more
complicated definitions of both Sticky Datalog∃ in [CGP10]
and Sticky-Join Datalog∃ in [CGP10+/-] (see Theorem 4.3 in
[CGP12]). This means that Theorem 1 of our paper holds both
for Sticky Datalog∃ and Sticky-Join Datalog∃. Actually, the

difference between the two logics can only be seen if repeated
variables in the heads of the rules are allowed and, as we said
before, from the point of view of Finite Controllability we can
disallow them w.l.o.g..

Apart from decidability, the properties of such logics which
are considered desirable and receive a lot of attention are:

Bounded Derivation Depth property (BDD). A set T of
TGDs has the bounded derivation depth property if for each
UCQ Ψ there is a constant kΨ ∈ N, such that for each database
instance D if Chase(T , D) |= Ψ then ChasekΨ(T , D) |=
Ψ. The BDD property turns out to be equivalent to positive
first order rewriteability [CGT09]: T has the BDD property
if and only if for each UCQ Ψ there exist a UCQ Ψ̄ such
that for each database instance D (finite or not) it holds that
Chase(D, T) |= Ψ if and only if D |= Ψ̄.

Finite Controllability (FC). A set T of TGDs has the finite
controllability property if for each UCQ Ψ and each database
instance D if Chase(T , D) 6|= Ψ then there exists a finite
structure M such that M |= T , D but M 6|= Ψ.

A logic is said to be FC (or BDD) if each T in this logic is
FC (BDD). A triple T , D, Ψ such that Chase(T , D) 6|= Ψ but
for each finite structure M if M |= T , D then also M |= Ψ
will be called a counterexample for FC.

It is usually very easy to see whether a logic is BDD and
it is usually very hard to see whether it FC.

The query answering problem for Linear Datalog∃ (or
rather for Inclusion Dependencies, which happens to be the
same notion as Linear Datalog∃) was shown to be decidable
(and PSPACE-complete) in [JK84]. The problem which was
left open in [JK84] was finite controllability – since we
mainly consider finite databases, we are not quite happy with
the answer that ”yes, there exists a database D̄, such that
D̄ |= T , D,¬Ψ” if all counterexamples D̄ for Ψ we can
produce are infinite. This problem was solved by Rosati [R06],
who proved, by a complicated argument, that IDs (Linear
Datalog∃) have the finite controllability property. His result
was improved in [BGO10] where FC is shown for Guarded
Datalog∃.

Sticky Datalog∃ was introduced in [CGP10], where it
was also shown to have the BDD property and where the
question of the FC property of this logic was stated as an
open problem. The argument, given in [CGP10], motivating
the study of Sticky Datalog∃ is that it can express assertions
having compositions of roles in the body, which are inherently
non-guarded. Sticky sets of TGDs can express constraints and
rules involving joins. We are convinced that the overwhelming
number of real-life situations involving such constraints can
be effectively modeled by sticky sets of TGDs. Of course, since
query-answering with TGDs involving joins is undecidable
in general, we somehow needed to restrict the interaction
of TGDs, when joins are used. But we believe that the
restriction imposed by stickiness is a very mild one. Only
rather contorted TGDs that seem not to occur too often in
real life violate it. For example, each singleton multivalued
dependency (MVD) is sticky, as are many realistic sets of

MVDs [CGP10].

Our contribution. We show two finite controllability results.
Probably the more important of them is:

Theorem 1: Sticky Datalog∃ is FC.

But this is merely a corollary to a theorem that we consider
the main technical achievement of this paper:

Theorem 2: Joinless Logic is FC.

To prove Theorem 2 we propose a technique, which we
think is quite elegant, and relies on two main ideas. One is that
we carefully trace the relations (we call them family relations)
between elements of Chase which are ever involved in one
atom. The second idea is to consider an infinite sequence of
equivalence relations, defined by the types of families which
the elements (and their ancestors) are members of, and con-
struct an infinite sequence of models as the quotient structures
of these equivalence relations. This leads to a sequence of
models, that, in a sense, ”converges” to Chase.

What concerns the Joinless Logic as such, we prefer not to
make exaggerated claims about its importance. We see it just
as a mathematical tool – the Chase resulting form a Joinless
theory is a huge and very complicated structure, much more
complex than the bounded tree-width Chase resulting from
guarded TGDs, and the ability to control it can give insight into
chases generated by logics enjoying better practical motivation
– Theorem 1 serves here as a good example. But still Theorem
2 is a very strong generalization of the result of Rosati about
Linear Datalog∃, which itself was viewed as well motivated,
while the technique we develop in order to prove it is powerful
enough to give, as a by-product, an easier proof of the finite
controllability result for sets of guarded TGDs [BGO10] (see
Section XI). It also appears that rules with Cartesian products,
even joinless, can be seen as interesting from some sort
of practical point of view, motivated by Description Logics
(where they would be called ”concept products”). After all,
”All Elephants are Bigger than All Mice” [RKH08].

Open problem: BDD/FC conjecture. Does the BDD property
always imply FC? In the proof of Theorem 1 we do not seem
to use much much more than just the fact that Sticky Datalog∃

is BDD. In our parallel paper [GM12] we show, that each
theory over a binary signature which is BDD is also FC. We
also explain there why the full conjecture is not so easy to
prove.

OUTLINE

In Section II we prove Theorem 1, assuming Theorem 2.
The proof of Theorem 2, which is the main technical

contribution of this paper, is presented in Sections III–X.
Finally, in a very short Section XI, we comment on the

relations between our construction and the FC property for
guarded sets of TGDs.

II. FROM JOINLESS LOGIC TO STICKY DATALOG∃

This Section is devoted to the proof of Theorem 1 (assuming
Theorem 2).

For a sticky theory T let T0 be the subset of T that consists
of all the joinless rules in T .

A pair D, T , where D is a database instance, will be called
weakly saturated if D |= T0. So if D, T is weakly saturated
then each new element in Chase(D, T) must have some
(sticky) join in its derivation.

Suppose now that Sticky Datalog∃ is not FC, and that
some sticky theory T of size l, over the signature Σ, some
finite database instance D and some query Φ are a minimal
counterexample for FC. By ”size” of T we mean here the
maximal arity of atoms in the heads of the rules of T . When
we say ”minimal” we mean that l is the smallest possible.

We are going to prove two Lemmas:

Lemma 3: The pair D, T is not weakly saturated.

Lemma 4: There is a finite database instance D′ such that the
pair D′, T is weakly saturated and the triple T , D′, and Φ is
also a counterexample for FC.

Notice that once the two above lemmas are proved we get
a contradiction, as the size of the counterexample T , D′, Φ
from Lemma 4 is l, so it is a minimal counterexample, and
thus, by Lemma 3 the pair D′, T cannot be weakly saturated.
So once the lemmas are proved the proof of Theorem 1 will
be finished. Theorem 2 will be used to prove Lemma 4.
Proof of Lemma 3: Suppose the pair D, T was weakly
saturated. We will construct a new sticky theory TD of size at
most l − 1, over a new signature ΣD and a new query ΦD,
such that the triple TD, ∅, ΦD is also a counterexample for
FC. This will contradict the assumption that l was minimal
possible, and thus end the proof of the Lemma.

Let us start form the definition of ΣD. For a predicate Q ∈
Σ, of arity j, and for a partial function γ : {1, 2, . . . j} → D
let Qγ be a new predicate, of arity j−|Dom(γ)|. ΣD will be
the set of all possible predicates Qγ , where Q and γ are as
above. Since we did not assume that γ is non-empty we have
that Σ ⊆ ΣD (we identify Q with Q∅).

To denote the predicates from ΣD we are going to use the
notational convention that will now be described by an exam-
ple. If Q(_, _, _) is a ternary predicate from Σ, γ = {〈2, c〉}
and γ′ = {〈1, c〉, 〈3, a〉} then Qγ will be denoted as Q(_, c, _)
and Q′γ will be denoted as Q(c, _, a). Notice that the a and
c in Q(_, c, _) and Q(c, _, a) are no longer understood to be
constants being arguments of the predicate. They are now part
of the name of the predicate. Notice that |Dom(γ)| = 1 and
indeed Q(_, c, _) is a binary relation, while |Dom(γ)| = 2
and Q(c, _, a) is a unary relation.

As we are never going to use the constants from D
as arguments in atoms over relations from ΣD, the above
notational convention does not lead to confusion as long as
we only talk about atoms over ΣD. But atoms over ΣD can
easily be confused with atoms over Σ with constants from D
as arguments. And this confusion is exactly what we want!

If ρ is a total function then Qρ is an arity zero predicate.
In particular each atom of the database instance D (over Σ)
can be read as a zero arity predicate over ΣD.

We are now going to define TD.
For a rule T from T by a constantification of T we will

mean a formula σ(T), where σ is a mapping that assigns
constants from D to some of the variables from V ar(T), in
such a way that for at least one variable x ∈ Dom(σ) this x
appears in a marked position in T (we mean here the marking
of immortal positions, from the definition of Sticky Datalog∃).
For example Q(c, y, z) ⇒ ∃w Q(c, z, w) (where c ∈ D) is a
constantification of Q(x, y, z) ⇒ ∃w Q(x, z, w) if position 1
is marked in Q. Clearly, a constantification of a rule from T
is (or ”can be seen as”) a rule over ΣD.

Let now theory TD over ΣD consist of all the facts from
D (which now are, as we mentioned before, zero arity facts)
and all the possible constantifications of rules from T . It is
not hard to see that TD is also sticky (hint: mark as immortal
the same positions as in T), and that the size of TD is at most
l − 1.

Let now C be the set of all atoms of Chase(T , D) (in
the standard notation) and let C1 be the set of all atoms of
Chase(TD, ∅) (written using the above notational convention).

The assumption that the pair D, T is weakly saturated
implies now:

Observation 5: C = C1.

For the proof of the Observation notice that each atom
of Chase(T , D) is either an atom of D or it contains some
constant from D in a marked position. This is because (as
D, T is weakly saturated) the only way for T to derive any
atoms which are not in D is to use some rule with the sticky
join, which requires immortalizing one of the arguments. And,
when restricted to atoms which contain some constant from
D in a marked position, the theories T and TD derive exactly
the same atoms. �

Now let us define ΦD as the disjunction of all possible
queries σ(Φ), where where σ is a mapping that assigns
constants from D to some of the variables from V ar(Φ)
By distributivity, if Φ was a UCQ then also ΦD is a UCQ.
And Chase(T , D) |= Φ if and only if Chase(T , D) |=
ΦD, which, by the above Observation, is equivalent to
Chase(TD, ∅) |= ΦD. Since we assumed that the triple
T , D, Φ is a counterexample for FC, this implies that
Chase(TD, ∅) 6|= ΦD.

In order to prove that TD, ∅, ΦD is a counterexample for
FC we still need to show that for each finite structure M over
ΣD there is M |= ΦD. So suppose there was a finite M such
that M |= TD and M 6|= ΦD. Define a new finite model MD

as a structure over Σ, containing all the elements of M and all
the elements of D, and all the atoms true in M . Of course the
atoms true in M were over the signature ΣD, but to define
MD we read them as atoms over Σ. It is easy to see that
MD |= T and MD 6|= Φ, which is however impossible as the
triple T , D, Φ was a counterexample for FC. �
Proof of Lemma 4: Since Sticky Datalog∃ enjoys the BDD

property, we know that there exists a positive FO rewriting of
Ψ, which is such a UCQ Ψ̄ that for each database instance
F (finite or not) it holds that F |= Ψ̄ if and only if
Chase(F, T) |= Ψ.

Clearly, Chase(Chase(D, T0), T) = Chase(D, T). So
Chase(D, T0) 6|= Ψ̄ (as Chase(D, T) 6|= Ψ).

Since T0 is joinless, we know, from Theorem 2, that there
exists a finite structure D′ such that D′ |= T0, D but D′ 6|= Ψ̄.
Notice that the pair T , D′ is weakly saturated.

Since D′ 6|= Ψ̄, using again the fact that Ψ̄ is the FO
rewriting of Ψ, we get Chase(D′, T) 6|= Ψ. It remains to
show that for each finite structure M , if M |= D′, T then
M |= Ψ. But, since D′ |= D, the structure M is a model of
D and we assumed that M |= Ψ holds for each finite model
of D and T . �

OUTLINE

Sections III – X are devoted to the proof of Theorem 2.
In Sections III and IV we explain that if there existed any

counterexample T , D, Φ for FC, with T being a joinless
theory, then there would also exist another counterexample
T ′, D′, Φ′ satisfying additional assumptions. One of the
assumptions is that D′ = ∅.

Then, in Sections V – X we show that if T and Φ satisfy
the assumptions from Sections III and IV, then the triple T ,
∅, Ψ cannot be a counterexample. The general architecture of
this part of the proof is described in Section V.

III. SOME TRIVIAL SIMPLIFICATIONS

Nothing deep happens in this Section. We are just cleaning
our desk before the real work starts.

We will call a joinless theory T clean if:
• heads of the rules are joinless, which means that if T is

a rule from T then each variable occurs in the head of
T at most once;

• each rule from T is either a Datalog rule of the form
(♣1:) Q(x̄) ⇒ Q′(ȳ), with ȳ ⊆ x̄, where by ȳ ⊆ x̄ we

mean that each element of the tuple ȳ occurs in x̄,
or a TGD of the form

(♣2:) Q0(x̄0) ∧Q1(x̄1)⇒ ∃y Q(y, x̄0, x̄1);
• the signature of T is a union of two disjoint sets:

parenthood predicates (or PPs), occurring in the heads
of rules of the form (♣ 2), and projection predicates,
occurring in the heads of rules of the form (♣ 1);

• for each projection predicate Q there is a parenthood
predicate Q′ such that Q(t̄)⇒ ∃t Q′(t, t̄) and Q′(t, t̄)⇒
Q(t̄) are rules of T .

We will call a UCQ (or a CQ) Φ clean if only the parenthood
predicates appear in Φ. A triple T , D, Φ is clean if T and Φ
are clean, and D is empty.

Lemma 6: If there exists any counterexample T , D, Φ for FC,
with T being a joinless theory, then there exists also a clean
counterexample.

This is a simple Lemma and we leave its proof as an exercise
for the reader. Hint: for the condition that D is empty use the
constantification technique from the proof of Lemma 3. Once
D is empty, all the atoms in Chase(T , D) are produced by the
rules of T , so we can rewrite the program to make sure that
repeated variables in the heads of the rules are unnecessary
because they are remembered as a part of the name of a
predicate. The argument, from Section II of representing
queries over the new signature as finite disjunctions of queries
over the old signature would need to be used here again. The
remaining conditions are trivial.

IV. ON THE IMPORTANCE OF FAMILY VALUES

Let T be a clean theory, as described in Section III. From
now on we will always have D = ∅. Since the context is clear
we will simply write Chase instead of Chase(T , ∅).

In this Section we will imagine Chase as the humankind.
Generations after generations of elements are being born (by
the TGDs) and then projected out (by the Datalog rules). And
atoms are like families, as you are going to see.

Let l be the maximal predicate arity in the signature of T .
Imagine a family of at most l members having dinner

together (or imagine an atom true in Chase) We will be
interested in its family pattern – the complete information
about the family relations between the diners. An important
part of it is family ordering – the information about the
ancestor relation within the family. All the families we are
going to consider will be tree-like with this respect:

Definition 7: By a family ordering we mean any tree-like
partial order, whose set of vertices is {1, 2, . . . k} where
k ≤ l. By a tree-like partial order we mean that each two
elements smaller than any given one are comparable. If a
family ordering is a tree then 1 is the root of this tree.

If a family ordering is a tree, the youngest family member
is the root of the tree. If Alice dines with her parents, we
have a tree with Alice as the root, and two leaves. If Alice
dines only with her boyfriend Bob, they form a family ordering
consisting of two elements and no edges – this is why we need
unions of trees rather than just trees. As our family orderings
are tree-like there are never any siblings in the families.

But the family ordering alone is not everything we want to
know about a family. Alice dining only with her granny form
the same ordering as Alice dining with her mother, but they
do not form the same family pattern:

Definition 8: A family pattern is a pair F, δ, where F is a
family ordering and δ is a function assigning a number, from
the set {1, 2, . . . l}, to each pair j, i of elements of F such
that i <F j, where <F is the ordering relation on F (i is an
ancestor2 of j).

Clearly, once l is fixed, the set of all possible family patterns
is finite.

If j, i are members of some family, with pattern F, δ, and i is
an ancestor of j then the value of δ(j, i) should be understood

2Mnemonic hint: the one is smaller whose date of birth is a smaller number.

as ”how j addresses i”. Father or maternal grandmother are,
strictly speaking, not among the possible values for δ(j, i), but
one could imagine that they are.

We are soon going to see what the notions are good for.
But first we need:

A remark about notations. For any syntactic object X
by V ar(X) we will mean the set of all the variables in X .
Symbol Q will be used to denote relation symbols. Letters
P and R will denote atoms of variables. Letters A,B,C,D
will denote atoms of elements of Chase. PP will be used
for parenthood predicates and sometimes also for parenthood
atoms. To denote elements of Chase we will use a, b, c, d,
while i, j, k will always be positions in atoms. F,G will
be family orderings. For an atom B = QF,δ(b1, b2...bk)
(where b1, b2...bk are constants in Chase) we define a notation
B(i) = bi. The same applies for atoms of variables.

Definition 9: A clean joinless theory T respects family pat-
terns if:

1) Each relation Q of arity k in the signature of T contains,
as a part of its name (as a subscript) a family pattern,
with the family ordering F having exactly k vertices.

2) If R⇒ P is a Datalog rule of T , where R = QF,δ(x̄),
P = Q′G,γ(ȳ) and if R(i) = P (j) and R(i′) = P (j′)
then:
(a) i <F i

′ if and only if j <G j′

(b) if i <F i′ then δ(i′, i) = γ(j′, j)

3) If R ∧ R′ ⇒ ∃z P is a TGD from T , where R =
QF,δ(x̄), R′ = Q′F ′,δ′(ȳ), arity of QF,δ is k and arity
of Q′F ′,δ′ is k′, then P = Q′′G,γ(z, x̄, ȳ) for some Q′′G,γ
of arity 1 + k + k′ and:
(a) i <G j ⇔ (j = 1∧ i > 1)∨ (i− 1 <F j− 1∧ 1 <

i, j ≤ k + 1) ∨ (i− k − 1 <F ′ j − k − 1 ∧ k + 1 <
i, j ≤ k + k′ + 1)

(b) If j = 1 and 1 < i ≤ k + k′ + 1 then γ(j, i) = i.
If 1 < j, i ≤ k + 1 then γ(j, i) = δ(i− 1, j − 1). If
k + 1 < j, i ≤ k + k′ + 1 then γ(j, i) = δ′(i− k −
1, j − k − 1).

Definition 9 is written in an ugly low-level language, so let
us use our running metaphor to explain what is going on.

Condition (1) says that relation atoms should be understood
as families, and that the complete information about the family
pattern should be a part of the predicate name.

To see the meaning of Condition (2) imagine that Alice
used to live with her two ancestors: her father and her paternal
grandmother, whom she called ”granny”. Then something very
sad happened, and now she lives only with her grandmother.
Condition (2a) says that the grandmother is still her ancestor
and condition (2b) says that Alice still calls her ”granny”.
Notice that since we only know how to name people by their
positions at the table, and the table used by the smaller family
is not the same as the one that was used by the bigger family,
we need to formulate the condition in a complicated form.
For example we say ”If the one at position i (or i′) before
the projection and the one at position j (or, resp., j′) after

the projection are both the same person (i.e. if R(i) = P (j),
or resp. R(i′) = P (j′)) then the name i′ used to address i
(i.e. δ(i′, i)) is the same as the name j′ uses to address j (i.e.
γ(j′, j))”.

Now Condition (3). There were two families R and R′. They
somehow have a new child together, so they dine together,
as one family. The way they are seated (i.e. the order of
arguments in the rule head) is determined by condition (♣
2). Condition (a) says that the birth of the new child’s does
not change the ancestor relation in the family, except from the
fact that each of the members of the two families is now also
this child’s ancestor. The meaning of condition (b) is that the
newborn child learns how to address his ancestors: it addresses
them by their positions at the family table, as it sees it at the
moment of its birth. The child’s birth does not change the way
his ancestors are addressing each other.

Lemma 10: If there exists any clean counterexample T , ∅, Φ
to FC then there also exists a clean counterexample T ′, ∅, Φ′,
with T ′ respecting family patterns.

Proof sketch: For the proof of this easy Lemma follow the
ideas of the proof of Lemma 3. Introduce new predicate
names – one new predicate for each old predicate and for
each way of arranging its arguments into a family pattern.
Then construct the theory T ′ by replacing each rule T ∈ T
by a set of rules: one rule for each way of assigning the
family patterns to the atoms in the body of T . As each old
predicate can be now seen as a disjunction of new predicates,
by distributivity UCQ Φ can be rewritten as an equivalent
UCQ Φ′ in the new context. �

OUTLINE

From now on we assume that T is a fixed clean theory which
respects family patterns. Before we end this Section let us
study some properties of Chase(T , ∅).

The following Lemma is an obvious consequence of the
assumption that T is clean:

Lemma 11: For each element a of Chase there exists exactly
one parenthood predicate atom A = PP (a, ā) such that
Chase |= A. It will be called the parenthood atom of a, and
the elements of ā will be called parents of a.

Notice that we use the word ”parents” to denote all the
ancestors of a who were present when a was born. So it it is
perfectly normal in our scenario that a and b are parents of c
while a is a parent of b.

Definition 12: For two elements a, b of Chase we will say that
a and b are 0-equivalent (denoted a ≡0 b) if the parenthood
atoms of a and b are atoms of the same predicate.

Suppose a ≡0 b, and A and B are parenthood atoms of a
and b (resp.). Then, for each i, the elements A(i) and B(i) will
be called respective parents of a and b. For tuples a1,a2, . . .

as and b1,b2, . . . bs by a1,a2, . . . as ≡0 b1,b2, . . . bs we mean
that ai ≡0 bi for all 1 ≤ i ≤ s.

The next lemma can be easily proved by induction on the
structure on Chase. It says, using our running metaphor, that
the person an element a of Chase calls its granny does not
change during its lifetime. Moreover, the way a’s father calls
a’s granny also remains unchanged:

Lemma 13: Suppose Chase |= B,C, for B = QF,δ(b̄) and
C = PPG,γ(a, ā). Suppose also that a = B(i) and j, j′ <F i.
Then:

1) B(j) is a parent of a;
2) B(j) = C(δ(i, j));
3) j <F j

′ if and only if δ(i, j) <G δ(i, j′);
4) if j <F j′ then δ(j′, j) = γ(δ(i, j′), δ(i, j).

Now we have something slightly more complicated. The
following lemma, which is is not going to be needed before
Section X, is where the importance of family patterns is seen:

Definition 14: For a family ordering F and a set I of po-
sitions in F we define the set PY (I) of positions in F as⋂
i∈I{j : ¬(j ≤F i)}.
PY (I) (which reads ”possibly younger”) is exactly the set

of family members who potentially can be younger than each
of the elements of I. Of course the set PY depends on the
ordering F , but we do not make it explicit in the notation as
the context is always clear.

Lemma 15 (About the Future): Let Chase |= A for some
A = PPF,δ(a, ā). Suppose I = {i1, i2, . . . is} is a set
of, pairwise incomparable by <F , positions in F and let
b1, b2, . . . bs be equal to A(i1), A(i2), . . . A(is) respectively.
Suppose d1, d2, . . . ds is another tuple of elements of Chase
such that b1, b2, . . . bs ≡0 d1, d2, . . . ds. Then there exists an
atom C = PPF,δ(c, c̄), such that:

1) Chase |= C;
2) d1, d2, . . . ds equal C(i1), C(i2), . . . C(is) respectively;
3) if j ∈ PY (I) then A(j) ≡0 C(j);

Lemma 15 (which is proved in Appendix A) says that the
potential of forming atoms in Chase only depends on the
≡0 equivalence class of elements (and tuples of independent
elements), not on the elements themselves. If b1, b2, . . . bs
and d1, d2, . . . ds are 0-equivalent tuples of elements and
b1, b2, . . . bs appear in some atom A in Chase (at independent
positions) then there exists an atom C, somewhere in Chase,
which not only has d1, d2, . . . ds in the same positions, but
also is as similar to A as one could dream of: everything that
happens in the future of some bi in A is 0-equivalent to the
respective future of the respective di in C. Remember that the
fact that b ≡0 d does not imply that the respective parents of
b and d are 0-equivalent, and it follows easily from Lemma
13 that if j 6∈ PY (I) then the elements A(j) and C(j) are
respective parents of some bk and dk:

Lemma 16: If ik ∈ I and j <F ik then A(j) and C(j) are
respective parents of bk and and dk (where the notations are
like in Lemma 15). �

OUTLINE

In the following Sections V– X we show that a clean triple
T , ∅, Ψ, where T respects the family patterns, is never a
counterexample for FC.

V. GENERAL SCHEME OF THE PROOF. THE FIRST LITTLE
TRICK

We will construct, for our theory T , an infinite sequence
of finite structures Mn, which will ”converge” to Chase. The
following property will be satisfied:

Property 17: (i) Mn |= T for each n ∈ N.
(ii) For each UCQ Ψ and each n ∈ N if Mn 6|= Ψ then

Mn+1 6|= Ψ.

Assume, that a sequence Mn, satisfying Property 17 (i), (ii)
is constructed. Then:

Definition 18: A formula Φ will be called M-true if Mn |= Φ
for each n ∈ N.

Lemma 19 (First Little Trick): If Φ is an M-true UCQ then
there exists a disjunct of Φ which is M-true.

Proof: By Property 17 (ii) all queries true in Mn+1 are
also true in Mn. Since Φ is true in each Mn, some disjunct
from Φ must be true infinitely often, and therefore in each
Mn. �

The rest of the paper is organized as follows:
In Section VI the sequence Mn is defined. In Section VII

we present our second little trick, which is the main engine
of the proof. In the very short Section VIII a trivial case of
cyclic queries (whatever it means) is considered. In Section
IX we define a normal form of a conjunctive query and use
our two little tricks to prove:

Lemma 20 (The Normal Form Lemma): For each clean M-
true CQ φ there exist a clean CQ β in the normal form such
that:

(∗) β is M-true and
(∗∗) Chase |= (β ⇒ φ).

Then, in Section X we prove:

Lemma 21 (The Lifting Lemma): If a clean CQ φ is in the
normal form and M0 |= φ then Chase |= φ.

Assuming existence of a sequence Mn, satisfying Property
17, and assuming Lemmas 20 and 21 we can now present the
main body of Proof of Theorem 2:
Suppose a clean triple T , ∅, Ψ, where T respects the family
patterns, is a counterexample for FC. This means there is no
finite model satisfying T and not satisfying Ψ, so in particular
Ψ is M-true. Let φ be an M-true disjunct of Ψ (which must
exist due to the First Little Trick). Since T , ∅, Ψ is a coun-
terexample for FC we know that Chase(T , ∅) = Chase 6|= Ψ,
so in particular Chase 6|= φ. Let β be the normal form of
φ as described in the Normal Form Lemma. We know from

(*) that β is M-true, so in particular M0 |= β. The Lifting
Lemma tells us that Chase |= β. But, by (**), we have that
Chase |= (β ⇒ φ), so also Chase |= φ. Contradiction. �

The proof above was a high-level one. We neither bothered
to know what the structures Mn are, nor what the normal form
could actually be. It was enough for us to know that they are
tailored for Lemmas 20 and 21 to be true. The real work
begins now.

VI. THE CANONICAL MODELS Mn

In this section we define an infinite sequence of finite
models Mn, which will “converge” to Chase.

Definition 22: By the 1-history of an element a ∈ Chase
(denoted as H1(a)) we mean the set consisting all the
parents of a. By the n + 1-history of a we mean the set
Hn+1(a) = {a} ∪

⋃
b∈H1(a)H

n(b).

Consider now an infinite well-ordered set of colors. For each
natural number k we need to define the k-coloring of Chase:

Definition 23: The k-coloring is the coloring of elements of
Chase, such that each element of Chase has the smallest
color not used in its k-history.

Definition 24: For two elements a, b of Chase and for n ∈ N
by a 'n0 b we mean that a ≡0 b and a and b have the same
n-color. By a 'nk+1 b we mean that a 'n0 b and that a′ 'nk b′
for each pair a′, b′ of respective parents of a, b.

To see what a 'nn b means imagine that each element of
Chase keeps the record of its family history. It knows its
n-color and the name of the predicate it was born with, the n-
colors of its parents and the names of the predicates its parents
were born with. And so on, n generations back. Equivalence
'nn identifies elements of Chase if and only if the records
they keep are equal.

Definition 25: For a natural n ≥ 1 we define two elements
a, b ∈ Chase to be n-equivalent (denoted as a ≡n b) if a 'kk b
for each k ≤ n and if a′ ≡k b′ for each pair a′, b′ of respective
parents of a, b and each k < n.

The reader should not feel too much confused by the colors
here. They will only be needed to deal with one trivial case,
in Section VIII. The real message to be remembered is that if
a ≡n+1 b then the parenthood atoms of a and b are atoms of
the same predicate and all the respective parents of a and b
are pairwise n-equivalent. As an exercise the reader may want
to prove that n-equivalent tuples of parents always produce
n-equivalent children. It is also very easy to notice that:

Lemma 26: ≡n is an equivalence relation of finite index.

Now the next definition hardly comes as a surprise:

Definition 27: Mn = Chase/≡n. Relations on Mn are
defined, in the natural way, as minimal relations such that
the quotient mapping is a homomorphism.

Since being (n + 1)-equivalent implies being n-equivalent
(which is another easy exercise) the sequence of structures Mn

satisfies Property 17 (ii). It is also easy to see that it satisfies

Property 17 (i) (the assumption that T is joinless needs to be
used in the proof):

Lemma 28: Mn |= T for each n ∈ N.

The second sentence of Definition 27 sounds complicated.
We hope the next definition and lemma will shed some light:

Definition 29: For a conjunctive query φ let Occ(φ) be the
set of all variable occurrences in φ. More precisely, Occ(φ) =⋃
R∈φ({1, 2 . . . arity(R)} × {R}).
An n-evaluation of φ is a function f : Occ(φ) → Chase

assigning, to each atom R from φ and each position i in R,
an element f(i, R) ∈ Chase, in such a way that:
(*) for each pair of atoms R,R′ in φ if R(i) = R(i′) then

f(i, R) ≡n f(i′, R′).
(**) for each atom R in φ it holds that Chase |= f(R).

Where by f(R) we mean the atomic formula resulting from
replacing, in R, each R(i) (which is a variable) by f(i, R)
(which is an element of Chase).

It is easy to notice that:

Lemma 30: Mn |= φ if and only if there exists an n-
evaluation of φ. �

See how simple it is: in order to analyze the behavior of
queries in the structures Mn we do not need to imagine these
complicated finite structures at all! The only structure we
need to think about is Chase, together with the equivalence
relation ≡n. Imagine a CQ φ written in the following way.
First there is a conjunction of atoms, and each variable occurs
in this conjunction at most once. Then there is a conjunction
of equalities between variables. Of course every CQ can be
written like this. Now, let φ′ be φ with each equality symbol
replaced by ≡n. What Lemma 30 really says is that Mn |= φ
if and only if Chase |= φ′.

Next two lemmas can now be seen as exercises. But at some
point we will need them:

Lemma 31: Consider an M-true conjunctive query φ = P ∧
R ∧ ψ, where P is a parenthood atom of some variable x
(which means that P (1) = x), and where R = QF,δ(w̄) and
R(i) = x. Let j <F i be a position in R. Then the position
δ(i, j) exists in the atom P .

Hint: This is not a priori clear that it must always be so. For
example one could imagine R being a high arity atom, with
the position i close to its root, so that the number of such
positions j in R that j <F i is higher than the arity of P .

This would however contradict the assumption that φ is M-
true. To see it use the fact that M0 |= φ, Lemma 30 and
Lemma 13. �

Lemma 32: Let ψ be an M-true query and let PF,δ and RG,γ
be atoms in ψ. Suppose x = P (1) = R(j), for some variable
x and some position j in R. Suppose also that positions j′

and j′′ in R are such that j′ <G j′′ <G j. Let i′ and i′′ be
such positions in P that i′ = γ(j, j′) and i′′ = γ(j, j′′). Then
i′ <F i

′′ and δ(i′′, i′) = γ(j′′, j′)

Hint: The query ψ is M-true. So consider a 0-evaluation f of
ψ. Let aP = f(1, P) and aR = f(j, R). Of course aP ≡0 aR.

Let also CP = f(P), CR = f(R) and let C be the parenthood
atom of aR in Chase. Of course CP and C are atoms of the
same predicate (because aP ≡0 aR).

Now use Lemma 13 for a = aR, to show that i′ <F i′′ and
δ(i′′, i′) = γ(j′′, j′) hold in C. This of course implies that
they also hold in CP . �

VII. THE SECOND LITTLE TRICK

As we said in Section V, for each M-true CQ φ we will
construct its ”normal form” β. The following lemma describes
a single step of the normalization process. Its proof relies on
what we find to be the nicest technical idea of this paper, so
please try to have fun:

Lemma 33 (Second Little Trick): Consider an M-true con-
junctive query φ = P ∧ R ∧ ψ, where P is a parenthood
atom of some variable x (which means that P (1) = x), and
where R = QF,δ(w̄) and R(i) = x.

Let σ be a unification, which for every position j <F i
in R identifies the variable R(j) with the variable P (δ(i, j))
(which exists, due to Lemma 31). Then σ(φ) is also M-true.

Clearly, σ(φ) is more constrained than φ, so whatever
structure M we consider it holds that M |= (σ(φ) ⇒ φ)
(this observation has something to do with condition (**) of
the Normal Form Lemma).

Notice however that, despite the fact that σ(φ) appears to be
more constrained, we also have: Chase |= (φ⇒ σ(φ)). This
follows from Lemma 13, which says that each element – call
it b – of Chase has a unique tuple of parents, and whenever
b = R(i) for some atom R the element R(j) (with j <F i,
where F , δ are the family pattern of R) must be the same as
the element in position δ(i, j) in the parenthood atom of b.

This implies that every satisfying valuation of φ in Chase
must substitute the same element for the variables R(j) and
P (δ(i, j)) anyway, and so the unification from the Lemma
does not really lead to more constraints.

But the situation in the structures Mn is different. Lemma
13 is not valid there, as elements of Mn can have more than
one tuple of parents. This is because when we identify two
n-equivalent elements of Chase each of them comes with its
own parents, and we cannot be sure that the respective parents
will also be n-equivalent, and thus identified. What we know
however is that the respective parents will be at least (n− 1)-
equivalent. And this turns out to be sufficient for the proof of
Lemma 33:
Proof of Lemma 33: We want to show that for each natural
n the query σ(φ) is true in Mn. Fix n ∈ N. We know that φ
is M-true, so Mn+1 |= φ.

Suppose f is an (n+1)-evaluation of φ. The lemma will be
proved if we can show that the same function f is also an n-
evaluation of σ(φ). Of course condition (**) of Definition 29
is still satisfied, as it neither depends on n nor on the equalities
between the variables. Also condition (*) is satisfied for the
pairs of variables that were already equal in φ. What remains
to be proved is that condition (*) holds true also for pairs of
variables unified by σ. In other words, we need to show that

f(P (δ(i, j)), P) ≡n f(R(j), R) for each position j <F i in
R.

But we know that f(P (1), P) ≡n+1 f(R(i), R). This is
because the variables P (1) and R(i) are equal (to x), so
f , being an (n + 1)-evaluation, must map them to elements
of Chase which are (n + 1)-equivalent. Since f satisfies
condition (**) of Definition 29, we know (by Lemma 13)
that f(P (δ(i, j)), P) and f(R(j), R) are respective parents
of f(P (1), P) and f(R(i), R). Now, to end the proof, use the
fact that respective parents of (n+ 1)-equivalent elements of
Chase are n-equivalent. �

VIII. CYCLIC QUERIES

We are already used to the fact that each atom comes with
an ordering (”family ordering”) of its arguments. Now we will
extend the ordering from individual atoms to the conjunctive
query they form and study carefully the new ordering.

Definition 34: Let φ be a CQ.
1) By →φ we mean the smallest transitive (but not nec-

essarily reflexive) relation such that for each x, y ∈
V ar(φ) if there is an atom P = QF,δ(t̄) in φ and
positions i, j in F , such that P (i) = y, P (j) = x and
i <F j, then x→φy.

2) φ is called acyclic if →φ is a partial order3 on V ar(φ)
(which means that it is antisymmetric). Otherwise it is
cyclic.

Clearly, if φ is cyclic then Chase 6|= φ. But it is also very
easy to see that:

Lemma 35: If φ is a cyclic query consisting of k atoms, then
Mk+1 6|= φ. So a cyclic query is never M -true.

Proof of the lemma is left as an exercise for the reader. Hint:
notice that, by Definition 23 and the first claim of Lemma 13,
Mk+1 |= φ would imply the existence of an element of Chase
having an k+ 1-equivalent element in its k+ 1-history, which
is impossible, for coloring reasons. This was the only place
where we needed to think about colors.

It follows from Lemma 35 that in the proof of the Normal
Form Lemma we only need to consider acyclic queries.

IX. ACYCLIC QUERIES AND THE NORMAL FORM

Now please be ready for the most technical part of the paper.
Let φ be an acyclic and M-true CQ and let →φ be the partial
order on V ar(φ), as defined in the previous Section.

Definition 36: Call a variable x ∈ V ar(φ) important if x =
P (1) for some atom4 P in φ. Otherwise x is called ordinary.

So the important variables are the ones we know a lot about
– we know all their parents by name.

Let us remind the reader that the notation PY was intro-
duced in Definition 14.

Definition 37: • For an atom P = QF,δ(t̄) let I(P) denote
the set of such non-root positions i in P that the variable

3When x→φy then we think that y is smaller than x. Mnemonic hint: the
arrowhead of → looks like >.

4Do not forget that only parenthood atoms appear in queries

P (i) is important and that for each j 6= 1 if i <F j then
P (j) is ordinary.

• For an atom P of φ define top.pos(P) = PY (I(P)).
Let top.pos(φ) ⊆ Occ(φ) be the set of such variable
positions (i, P) that i ∈ top.pos(P).

• For an atom P let top.var(P) = {P (j) : j ∈
top.pos(P)}. A variable y ∈ V ar(φ) is a top variable if
y ∈ top.var(P) for some atom P of φ.

In other words top.pos(φ) is the set of positions in the atoms
of φ, which are, in a certain sense ”close to the roots” of the
respective atoms – there are no important variables between
this position and the root of the atom. The set top.var(P) is
a set of variables – these variables that occur in one of the
”top positions” of P .

Now we can define the normal form of a conjunctive query:

Definition 38: A CQ φ is in the normal form if:
Ideological condition: If P is an atom in φ which is a

parenthood atom of an important variable x, if R =
QF,δ(t̄) is another atom in φ, such that R(i) = x, and
if j is a position in R such that j <F i, then R(j) =
P (δ(i, j)).

Technical condition: Each variable from V ar(φ) occurs in
at most one position in top.pos(φ).

Notice that it follows from the Ideological Condition, that
an important variable of a query φ in the normal form can
be in the root position in only one atom of φ (a query
is a set of atoms, so equal atoms count as one). Call this
atom PPx. Since the root positions are the only positions of
important variables which are in top.pos(φ) this means that
the Technical Condition for the important variables is implied
by the Ideological Condition.

Notice also that the Ideological Condition is the condition
from Lemma 33. So one can imagine now, how we are going
to prove Lemma 20 – we will start from the query φ (or from
something similar – actually it is not going to be exactly φ)
and perform the unifications from Lemma 33 on it, as long
as possible. The main difficulty in the proof of Lemma 38
is to make sure that the final result of such a unification
procedure indeed satisfies the Technical Condition for the
ordinary variables, which will be very much needed (in Section
X) for the proof of the Lifting Lemma.

For the (mostly boring and syntactical) details of the proof
of Lemma 20 see Appendix B.

As it turns out, the assumption that an M-true query φ is
in the normal form, or even that it satisfies the Ideological
Condition alone, implies a lot about the ordering →φ:

Definition 39: Let y, y′ ∈ V ar(φ). We will call y′ a successor
of y if y′→φy and there is no such z ∈ V ar(φ) that y′→φz
and z→φy.

Lemma 40: Let φ be an acyclic M-true query satisfying the
Ideological Condition. Then:

A. Every variable in V ar(φ) is a top variable.
B. If an ordinary variable y′ is a successor of an ordinary

variable y then there is an atom PPx such that y, y′ ∈

top.var(PPx). If an important variable x is a successor
of an ordinary variable y then y ∈ top.var(PPx).

Lemma 41: Let φ be an acyclic M-true query in the normal
form. Then:

A. Each ordinary variable has exactly one successor.
B. Suppose y ∈ top.var(PPx), the variable z is important

and z→φy. Then z→φx.

For the (nice, short, ideological) proofs of Lemmas 40 and
41 see Appendix C.

X. PROOF OF THE LIFTING LEMMA

In this section we show what remains to be shown: that if
M0 |= ψ and ψ is in the normal form then also Chase |= ψ.

As we remember from Section VI, M0 |= ψ means that
there exists a 0-evaluation of ψ. Such a 0-evaluation is a
function assigning to each variable occurrence in ψ an element
of Chase in such a way that the atoms in ψ map into atoms
true in Chase and (different occurrences of) equal variables
map to 0-equivalent elements of Chase. Chase |= ψ means
almost the same, the only difference is that equal variables
map to equal elements of Chase, not just to 0-equivalent.

Definition 42: A 0-evaluation f is faithful with respect to a
set S ⊆ V ar(ψ) if for each pair of atoms R,P in ψ such
that V ar(R), V ar(P) ⊆ S if R(i) = P (i′) then f(i, R) =
f(i′, P)

If f is faithful with respect to S then for an atom R in
ψ, such that V ar(R) ⊆ S, and for z = R(i), we write f(z)
instead of f(i, R).

Being faithful with respect to S means to look, inside S
like a real valuation of a ψ in Chase. Clearly Chase |= ψ
if and only if there exists a 0-evaluation faithful with respect
to V ar(ψ). On the other hand, since M0 |= ψ, we know that
there exists a 0-evaluation faithful with respect to ∅. We are
going to gradually modify this 0-evaluation to make it more
and more faithful, until we get one faithful with respect to
V ar(ψ).

The sets S we will be interested in are ideals in V ar(ψ):

Definition 43: Subset S ⊆ V ar(ψ) is an important ideal if:
1) If x ∈ S and x→ψy then also y ∈ S.
2) All maximal elements of S are important variables.

From now on let S be an important ideal and let x ∈ V ar(ψ)
be a minimal important variable not in S. Let Let PPx =
P〈F,δ〉(x, x̄). be, as usually, the parenthood atom of x in ψ.
Let S′ be the important ideal generated by x and S.

Lemma 44: 1) If R is an atom in ψ such that V ar(R) ⊆ S′
but V ar(R) 6⊆ S then R = PPx.

2) S′ \ S = top.var(PPx)

Proof: 1) Each atom in ψ is the PP atom of some important
variable. If R is the PP atom of some y ∈ S then V ar(R) ⊆ S.
If R is the PP atom of some y 6∈ S′ then of course V ar(R) 6⊆
S′. And x is the only important variable in S′ \ S.

2) This follows easily from Lemmas 40 and 41. Let us
show, for example, that top.var(PPx) ⊆ S′ \ S. Of course

top.var(PPx) ⊆ S′ so what we need to show is that
top.var(PPx) ∩ S = ∅. Let y ∈ top.var(PPx). Suppose
y ∈ S. This would mean that there exists an important
z ∈ S such that z→ψy. But, by Lemma 41, this would imply
that z→ψx, which is a contradiction. The proof of the other
inclusion is left as an easy exercise. �

We will need the following easy remark about local (re-
stricted to one atom only) modifications of 0-evaluations:

Definition 45: Suppose f is a 0-evaluation, f ′ : Occ(ψ) →
Chase is any function, and P is an atom in ψ. We say that
f ′ is P -similar to f if:
• f ′(i, R) = f(i, R) for each atom R 6= P , and each

position i in R;
• Chase |= f ′(P)
• f ′(i, P) ≡0 f(i, P) each position i in P .

Lemma 46: If f is a 0-evaluation and f ′ is P -similar to f
then f ′ is also a 0-evaluation. �

Let S, S′ and x be as above. In view of Lemma 44 1) and
Lemma 46, due to an induction argument, in order to prove
Lemma 21, is now only remains to show:

Lemma 47: Let f a 0-evaluation faithful with respect to S.
Then there exists a 0-evaluation f ′, PPx-similar to f and
faithful with respect to S′.

Proof: First we of course define f ′(i, R) = f(i, R) for each
atom R 6= PPx, and each position i in R, so the first condition
of Definition 45 is satisfied.

We will now define f ′(PPx). Then we will make sure that
the second and third conditions from Definition 45 hold, so
f ′ is indeed a 0-evaluation. Finally we will notice that f ′ is
faithful with respect to S′.

Let I(PPx) = {i1, i2 . . . is}, where I(PPx) is the set of
maximal important non-root positions, as in Definition 37. Let
y1, y2, . . . ys be the important variables in positions i1, i2 . . . is
in PPx (the variables may repeat, this does not bother us).
For each 1 ≤ j ≤ s let dj = f(yj) (notice that this
definition makes sense, because yj ∈ S for each j) and let
bj = f(ij , PPx).

Clearly, since f is an evaluation, we have bj ≡0 dj for all
j. But this means that we are now in the situation of Lemma
About the Future (Lemma 15), where A = f(PPx).

So let C be as in Lemma 15. For any position j ∈
top.pos(PPx) define f ′(j, PPx) as C(j). Notice, that we can
be sure (thanks to Lemma 15) that f ′(j, PPx) ≡0 f(j, PPx).

Let now j be a position in PPx which is not in
top.pos(PPx). That means that the variable z = PPx(j) is in
S. Define f ′(j, PPx) as f(z). The condition f ′(j, PPx) ≡0

f(j, PPx) now holds trivially, since f was a 0-evaluation.
We defined a function f ′, which satisfies the first and the

third condition from Definition 45. Now we need to make
sure that Chase |= f ′(PPx). We know that Chase |= C,
so this part of proof would be finished if we could show
that f ′(PPx) = C. Of course by the definition of f ′ the
atoms f ′(PPx) and C have equal elements of Chase in the
root and in all the positions in the set top.pos(PPx). But

this is not that clear what happens in the remaining positions.
Surprisingly, this is the crucial moment, the one we spent long
pages preparing for. The full power of the normal form and
family patterns is going to be used in the next 8 lines:

Consider two positions in PPx: i ∈ {i1, i2 . . . is} and
j <F i. Let z = P (j) and let y be the variable in position i.
Since y is important, its parenthood atom, PPy , is in ψ.

Since ψ is in the normal form, we know, by the Ideological
Condition, that PPy(δ(i, j)) = z. Since we defined f ′(j, PPx)
to be f(z), we get f ′(j, PPx) = f(δ(i, j), PPy). What we
want to show is that f ′(j, PPx) = C(j). But this now follows
directly from Lemma 13.

In order to finish the proof of the Lemma we still need to
notice that f ′ is S′-faithful. The atoms described by Definition
42 are now all the atoms that were already contained in S, and
one new atom PPx. If PPx(j) was in S we defined f(j, PPx)
as f(PPx(j)), so we did not spoil anything. The only problem
could be with the values assigned to positions in PPx with
variables from S′ \ S. But, by the Technical Condition each
of these variables occurs in PPx only once, so the condition
from Definition 42 is trivially satisfied. �

XI. REMARK ABOUT GUARDED TGDS

The proof in Sections V-X can be also read as a new
proof of the FC property for guarded TGDs [BGO10]. The
only difference is that, in order to construct Mn, it is not
enough, in the guarded case, to remember by which rules last
n generations of parents of an element were born, but also
what other atoms are true about the elements. That is why a
condition ”and the n-histories of a and b are isomorphic” needs
to be added to Definition 25. On the other hand, all the family
orderings we would need to consider in the guarded case are
total orderings, which significantly simplifies everything – for
example the Technical Condition of the normal form comes
for free, being implied by acyclicity.

XII. REFERENCES

[BGO10] V. Barany, G. Gottlob, and M. Otto; Querying the
guarded fragment; Proceedings LICS 2010 pp. 1–10, 2010.
[CGT09] A. Cali, G. Gottlob, and T. Lukasiewicz; A general
datalog-based framework for tractable query answering over
ontologies; Proceedings of PODS 2009.
[CGP10] A. Cali, G. Gottlob, and A. Pieris; Advanced pro-
cessing for ontological queries; Proceedings of VLDB-10,
3(1):554–565, 2010.
[GM12] T. Gogacz, J. Marcinkowski; On the BDD/FC con-
jecture; submitted.
[JK84] D. S. Johnson and A. C. Klug; Testing containment of
conjunctive queries under functional and inclusion dependen-
cies; JCSS 28(1):167-189, 1984.
[R06] R. Rosati; On the decidability and finite controllability
of query processing in databases with incomplete information;
in Proc. PODS 2006, pp. 356–365.
[RKH08] S. Rudolph and M. Krötzsch and P. Hitzler; All
Elephants are Bigger than All Mice; 21st Description Logic
Workshop Dresden, Germany, 2008.

XIII. APPENDIX A.
PROOF OF THE LEMMA ABOUT THE FUTURE.

We will consider (a fragment of) the derivation tree of the
atom A in Chase, which we will call D. This is how D is
defined:
• Atom A is a root of D (and thus an inner node of D).

Positions i1, i2, . . . is are painted in A.
• Suppose an atom B = QG,γ(e, ē) is an inner node of D

and Chase |= B. Suppose B′ = Q′G′,γ′(ē1) and B′′ =
Q′G′′,γ′′(ē2) are such two atoms, true in Chase, that B
was derived in Chase, from B′ and B′′, by a single use
of the rule: X ′ ∧X ′′ ⇒ ∃x X , where X ′ = Q′G′,γ′(x̄1),
X ′′ = Q′G′′,γ′′(x̄2) and X = QG,γ(x̄, x) Then B′ and
B′′ are nodes of D. If position i was painted in B and
X(i) = X ′(j) then position j is painted in B′ (reminder:
X(i) and X ′(j) are variables, at position i in the atom X
and position j in X ′). Similarly, if position i was painted
in B and X(i) = X ′′(j) then position j is painted in
B′′. The case when B was derived by a projection rule
X ′ ⇒ X is handled analogously.

• A node with no painted positions is a leaf, called an
unpainted leaf. A node which is a PP atom, and whose
only painted position is its root is a leaf, called a painted
leaf. All other nodes of D are inner nodes.

The idea here is that we trace the derivation of A back to the
parenthood atoms of the elements bi. The way we formulated
it was a bit complicated, but we could not simply write ”an
atom is a leaf of D if it does not contain any of b1, b2, . . . bs”.
This was due to the fact, that b’s can occur in the derivation
not only in meaningful positions – the positions that lead to
i’s in A, but also in non-meaningful ones, not connected, by
the rules of T , to any of the i’s in A.

Now, once we have D, consider another derivation D′, with
the underlying tree isomorphic to D, defined as follows:
• If B is an unpainted leaf of D then B is also the

respective leaf of D′.
• If B is a painted leaf of D, which means that B is the

parenthood atom of some bi, then the parenthood atom
of di is the respective leaf of D′.

• If B is an inner node of D, being a result of applying
some rule from T to atoms B′ and B′′ (or just to B′)
then the same rule is used to create the respective atom
in D′.

Clearly, D′ is also a part of Chase. Notice however that if
T was not joinless, the last step would not always be possible
in Chase.

Now, the atom in the root of D′ is the C from the Lemma.
�

XIV. APPENDIX B, PART ONE.
THE QUERY WHICH IS THE NORMAL FORM OF φ.

OUTLINE

In this Section we consider some fixed M-true CQ φ and
construct a CQ β being the normal form of φ, as specified by
Lemma 20 and Definition 38.

The definition of β itself (Definition 52) is quite natural and
not very complicated. The really technical part begins right
after Definition 52, where we prove that the defined query is
indeed the normal form of φ. There are no deep ideas there,
we just need to carefully analyze the consequences of the
unifications resulting from applications of the Second Little
Trick, and such analysis is, by its nature, a very syntactic
thing.

NOTATIONAL CONVENTIONS. The typical situation in this part
of the paper will be that we will consider some fixed CQ θ,
and restrict attention only to queries being equality variants of
θ. By this we mean queries that can be obtained from θ by
renaming some of the occurrences of variables.

We need a convenient language for this scenario, so let us
start from defining such a language.

Equality variants of θ only differ by the names of the
variables, and they all have the same set of positions. We will
imagine that θ is a conjunction of some atoms P lFl,δl

, with
l ∈ V for some set V , and we will denote by P the set of all
positions in θ (which is a disjoint union of the sets of positions
in the atoms). By saying ”let i ∈ P” we can now address a
position directly, without specifying in which of the atoms of
θ it is located. The cost to pay is that no longer we can use
1 for the name of the position in the root of the atom, so by
root(i) we will mean that i ∈ P is a position in the root of
some P l. By Pξ(i) (or just P(i) when the context is clear)
we will mean the variable in position i ∈ P in the equality
variant ξ of θ.

Let ≺ be the disjoint union of all relations <Fl
, so that by

i ≺ j, for i, j ∈ P , we mean that positions i and j are in the
same atom P l, for some l, and i <Fl

j. Similarly, let δ be the
disjoint union of all the functions δl.

It will be also convenient to have a notation ∆(i, i, j′, j′)
for the formula root(i) ∧ δ(i, i′) = δ(j, j′).

In other words (for those who do not like our new language)
∆(i, i, j′, j′) means that there are l and l′ such that i is the
position in the root of P l, i′ is a position in P l, j and j′ are
positions in P l

′
, and δl(i, i′) = δl′(j, j

′).
Since the objects defined in this subsection (P , ∆, ≺, δ)

depend on our current choice of θ, they only have meaning in
the contexts where θ is defined.

See how conveniently the Ideological Condition from
Definition 38 can now be expressed:

(♥) for each i, i′, j, j′ ∈ P , if ∆(i, i′, j, j′) and P(i) = P(j)

then P(i′) = P(j′).

THE UNIFICATION PROCEDURE. For a query ψ let u(ψ) be a
result of:
The unification procedure:
fix θ as ψ;

/∗ So that the above notations apply ∗/
ξ := ψ
while there exist: i, j, i′, j′ ∈ P such that ∆(i, i′, j, j′),
Pξ(i) = Pξ(j) and Pξ(i′) 6= Pξ(j′)
do
{
replace all occurrences of Pξ(j′) in ξ by Pξ(i′)
(in other words ξ := ξ[Pξ(j′)/Pξ(i′)]);
}
forget that θ was ψ;

/∗ So that we can use θ somewhere else ∗/
remove the repeating atoms from ξ;
return ξ as u(ψ);
end of the unification procedure.

What this procedure does is exactly checking if the Ide-
ological Condition is satisfied in ξ, and if it isn’t, unifying
the variables that violate the Ideological Condition, using the
Second Little Trick. Clearly, the procedure always terminates
and u(ψ) always satisfies the Ideological Condition. We also
know, from Lemma 33 that if ψ is M-true then u(ψ) also is.
It is also obvious that Chase |= (u(ψ)⇒ ψ).

We are however not claiming that u(ψ) is always the normal
form of ψ. This is because there is no reason for the Technical
Condition to be satisfied in u(ψ). One could for example easily
take ψ to be a query which already satisfies the Ideological
Condition (so that u(ψ) = ψ) but not the Technical Condition.

The unification procedure is nondeterministic – at each step
it nondeterministically selects, for the unification, a pair of
variables. But:

Lemma 48: The result of the unification procedure – the u(ψ)
– is unique for ψ, in the sense that it does not depend on the
nondeterministic choices made by the procedure.

Proof: Since the set of positions P is fixed, a query ξ can be
identified with its equality relation =ξ on the set of positions
(this relation says that the variables in two positions are
equal in ξ). What the unification procedure does is computing
the fixpoint of some datalog program. The relations ∆ and
=ψ are the input predicates of this program while =u(ψ)

is its output predicate. The rules of the program are the
condition (♥) above, and the reflexivity, symmetricity and
transitivity axioms for =u(ψ). And of course the fixpoint of a
datalog program does not depend on the order of execution. �

ELEVATING THE IMPORTANCE OF THE VARIABLES. As we
said, u(ψ) is not always in the normal form, as it may
not satisfy the Technical Condition. The Technical Condition
concerns the ordinary variables, and the reason why ψ may
not satisfy it is that there may be some unwelcome equalities

between ordinary variables in ψ. Our way towards the solution
of the problem is to elevate the (potentially) misbehaving
ordinary variables to the position of importance, so that they
are allowed more.

Definition 49: For a query ψ by a closure of ψ we will
mean any query of the form ψ ∧

∧
x∈V arord(ψ)R(x, x̄) where

V arord(ψ) is the set of all the ordinary variables of ψ, R is
any parenthood predicate and x̄ is a tuple of fresh variables.

It is now straightforward to see that:

Lemma 50: if ψ′ is any closure of ψ then:
• if x ∈ V ar(ψ) then x is important in ψ′;
• each ordinary variable in ψ′ occurs in ψ′ only once;
• Chase |= (ψ′ ⇒ ψ);
• ψ′ satisfies the Technical Conditions (although not nec-

essarily the Ideological Condition).

It is also not hard to show that:

Lemma 51: If ψ is M-true then there exists an M-true ψ′ being
a closure of ψ.

Proof: For each n ∈ N if Mn |= ψ then also Mn |= ψ for
some closure ψ′ of ψ. This is because each element of Mn is
a child in some parenthood atom valid in Mn.

Since there are only finitely many possible closures of ψ,
if ψ is M-true, then there is a closure ψ′ which is true in Mn

for infinitely many numbers n. Now use the argument from
the First Little Trick. �

From now on, for an M -true conjunctive query ψ by c(ψ)
we will denote an M-true closure of ψ.

THE QUERY β – THE NORMAL FORM OF φ. We are finally
ready to name the query β which is the normal form of φ:

Definition 52: β = u(c(φ)).

Lemma 53: 1) β is M-true;
2) Chase |= (β ⇒ φ);
3) β satisfies the Ideological Condition;
4) β satisfies the Technical Condition.

Claims 1)–3) follow immediately from the construction. But
Claim 4) is not obvious at all, it needs a proof, and this proof,
while not really complicated, is unfortunately not going to be
short. Notice however that once Lemma 53 is proved then of
course also the proof of Lemma 20 will be finished.

OUTLINE

We defined the query β. What remains to be done is showing
that β is indeed the normal form of φ. The main proof
technique is a patient syntactical analysis of the unifications
that led to β.

XV. APPENDIX B, PART TWO.
PROOF OF LEMMA 53

Let now θ – the query with respect to which the notations
are defined in the beginning of this Section – be equal to β.
And this is not going to change any more.

Before we show Lemma 53 let us try to imagine how
β looks like. There are two kinds of atoms in β. One are
those that originated in φ. Now they contain only important
variables. Second kind are the atoms that were originally
added to φ when c(φ) was created. They may contain
ordinary variables, but also, after all the unifications on c(φ)
they contain some important variables in non-root positions.

PROOF OF LEMMA 53. Please allocate memory for two more
equality variants of β. They will be called β0 and βwu (as
”weakly unified”), which will at the end turn out to actually
be equal to β.

We need to do something strange now. Due to a reason that
will be explained later, we need to destroy the structure of β,
to some extend, and then to rebuild it again:

Definition 54: Let β0 be the result of substituting a fresh
variable for each occurrence of an ordinary variable in β.

Of course β0 is not simply c(φ). The unifying procedure
run on c(φ) a) unified some of the fresh variables in the new
atoms of c(φ) with the variables from V ar(φ)), and b) unified
some of these fresh variables with other fresh variables. The
query β0 is the result of undoing the unifications from b), but
not from a) .

Lemma 55: u(β0) = β;

This is because β = u(c(φ)) is more unified than β0 and β0

is more unified than c(φ)). Use the datalog fixpoint argument
from the proof of Lemma 48) . �

Clearly, β0 satisfies the Technical Condition.
Now we are going to run a version of the unification

procedure on β0, which will lead us to a new query βwu
(as ”weakly unified”). The query βwu is in fact β, but this
is a secret yet. In this new unification procedure the pairs
of variables to be unified, will be carefully hand-picked in
the correct order and nothing will be left to nondeterminism.
Thanks to that we will be able to make sure that the Technical
Condition keeps being satisfied One of course could ask here
why did we bother to define β first, if then we run another
unification procedure on β0 anyway? And the answer is, that
we only can know the correct order once we know β! So we
need to know β, constructed in any way, to be able to construct
β again in the careful way.

Notice that whatever our order of the execution of the
unification procedure is going to be, we will never unify
any important variable with any other variable (important or
ordinary). If x is an important variable in β then it is also
important in β0 and for each i ∈ P we have that Pβ(i) = x
if and only if Pβ0

(i) = x. This observation leads to a series
of definitions:

Definition 56: Call a position j ∈ P ordinary, if the vari-
able Pβ0(j) is ordinary (or – equivalently – if the variable
Pβ(j) is ordinary). Otherwise j is important. Let Pord and
Pimp denote, respectively, the sets of ordinary and important
positions.

Definition 57: For an ordinary position j ∈ P denote by
nearest.pos(j) the smallest, with respect to the ordering ≺,
important position i in P such that j ≺ i. By nearest.var(j)
denote the variable P(nearest.pos(j)).

In other words nearest.pos(j) is the first important position
on the path from j to the root of the atom where j is located,
and nearest.var(j) is the name of the important variable that
lives there.

Definition 58: For an important variable x let layer(x) =
{j ∈ Pord : nearest.var(j) = x}.

Of course:

Lemma 59: The sets layer(x), for x ∈ V arimp(β), form a
partition of Pord (by which we mean that they are pairwise
disjoint and that their union equals Pord).

Let us also remind that an ordinary position j is a top
position if root(nearest.pos(j)) (this is Definition 37 in our
new language).

Notice that while the set of top positions could again be
equivalently defined with respect to β instead of β0, this no
longer seems to be true for the set of top variables. Top
variables in β0 are the fresh ordinary variables in top positions
of beta0. But then the unifications come, and many things can
happen, as we are going to see.

Now we are ready for:

The weak unification procedure:
ξ := β0;
to-be-considered := V arimp(β0)

while to-be-considered 6= ∅
do:
{ /∗ ♦ ∗/
Let x be a minimal, with respect to the ordering →β , variable
in the set to-be-considered;
/∗ See! Here is where we need to know β. ∗/

Let i ∈ P be such that P(i) = x and root(i);
/∗ We took the position in the root of the atom PP x. ∗/

For each non-top position j′ such that j′ ∈ layer(x),
and for each i′ such that ∆(i, i′, nearest.pos(j′), j′)

substitute the variable P(j′) in ξ by the variable P(i′);
/∗ Call the above the ”unification step” ∗/

Remove the variable x from to-be-considered;
}
Return ξ as βwu.
end of the procedure.

Let us try to explain the substitution step of the procedure.
Once x is fixed (which is one of the →β minimal vari-

ables not yet considered) we look for all possible positions

j′ ∈ Pord, such that the if we started, in j′ a path (in the
ordering ≺) towards the root of the atom where j′ is located,
the first important position on this path would be some non-
root position j = nearest.pos(j′), and the variable there
would be x.

Then we ask j: ”how do you call j′ ?”. And we get some
answer ”δ(j, j′)”. So we ask i: ”whom do you call δ(j, j′) ?”.
And we get some answer ”i′”. Then we say: ”So, since the
variables in i and j are equal, the Ideological Condition wants
the variables in i′ and j′ to unify. From now on the one in j′

will adopt the name of the one in i′”.
Of course unification means more than just renaming the

variable in j′. We need to rename all the occurrences of P(j′)
in the current ξ. But the trick is that:

Lemma 60: Each time the control passes the point marked
with ♦, if x ∈ to-be-considered and j ∈ layer(x) then P(j)
is a fresh variable (which means that it only occurs once in
ξ).

Proof: There are two ways for a variable to lose its freshness.
One is to be copied somewhere, which means being the i′ from
the unification step, the other is to be substituted with another
variable, which means being the j′ from the unification step.

But notice that each non-top position in P is exactly once
the j′ from the unification step, and right after that the variable
nearest.var(j′) is removed from the set to-be-considered.
Notice also, that each position that, at some point of time, had
already been the i′ of the unification step, must be a position in
some atom PP z , with z not being in the set to-be-considered
any more (because in the unification step we take the names
for the variables from the atom having the currently considered
variable x in the root). And if k ∈ layer(x) and x ∈ to-be-
considered then k is a position in the atom PP z for some z
such that z→βx, which implies that z ∈ to-be-considered. �

The meaning of the last lemma is that the substitution in the
unification step is just a renaming of one variable occurance –
the one in j′. It does not propagate, in the sense that it does not
force any other renamings. This means that there is just one
chance for a position, during the execution of the procedure,
to have its variable changed – when this position is the j′ from
the unification step. Since only non-top positions are ever the
j′, the next lemma follows:

Lemma 61: If j is a top position in P then Pβ0
(j) = Pβwu

(j)

Lemma 61 implies that the query βwu satisfies the Technical
Condition. But we still cannot be sure that it also satisfies the
Ideological Condition. While the while loop from the original
unification procedure (from Section XIV) really checks for the
premise of the Ideological Condition and, if this premise holds,
it performs the unifications, and does it as long as needed, the
loop in the weak unification procedure only performs some
hand-picked unifications. We need one more lemma to improve
our understanding of how the query βwu looks like:

Lemma 62: If, at some point of the execution of the weak
unification procedure, the variables in positions i′ and j′ were
unified (i.e. the variable from i′ was copied to j′) then they

remain equal in βwu
Proof: As we said before, the variable in each position can
only be changed once by the weak unification procedure. So
the variable in j′ will not be changed any more. We need to
make sure that the variable in i′ will not be changed after it
was copied to j′. Suppose the variable x was being considered
when the variables in positions i′ and j′ were unified. This
means that either i′ is a top position in PPx (which means,
as we observed before, that the variable there can never be
changed) or i′ ∈ layer(z) for some z such that x→βz. But this
means that at the moment of the unification z is no longer in
the set to-be-considered, and so the variable in i′ was already
substituted, and it never will again. �

Now the last lemma we need to show in order to finish the
proof of Lemma 53:

Lemma 63: The query βwu satisfies the Ideological Condition.
In consequence, βwu = β.

Proof: We know from Lemma 62 that βwu is weakly
unified, which means that if i, i′, j, j′ are positions in P
such that ∆(i, i′j, j′), if Pβwu

(i) = Pβwu
(j), and if j =

nearest.pos(j′) then Pβwu
(i′) = Pβwu

(j′).
What we need to show is that the Ideological Condi-

tion holds, that is if i, i′, j, j′ are positions in P such
that ∆(i, i′j, j′), if Pβwu

(i) = Pβwu
(j), then Pβwu

(i′) =
Pβwu

(j′).
Suppose that the above is not true and let x be a minimal,

with respect to the ordering →β , important variable such that
there exist positions i, i′, j, j′ in P such that ∆(i, i′j, j′) and
Pβwu

(i) = Pβwu
(j) but Pβwu

(i′) 6= Pβwu
(j′).

Let y be an important variable such that j′ ∈ layer(y), and
let kj = nearest.pos(j′) (so that Pβwu

(kj) = y). Of course it
cannot be that kj = j, as this would contradict the assumption
that βwu was weakly unified. So we have j′ ≺ kj ≺ j.

Let ki ≺ i be such position that δ(i, ki) = δ(j, kj). From
Lemma 32 we know that i′ ≺ ki and δ(ki, i′) = δ(kj , j

′).
Notice that δ(i, ki) = δ(j, kj) implies that Pβ(ki) =
Pβ(kj). This is because the variables in i and j are equal
in β and β satisfies the Ideological Condition. But Pβ(ki) =
Pβ(kj) = y is an important variable, so we have that
Pβwu

(ki) = Pβwu
(kj) = y.

Let now k ∈ P be such that root(k) and Pβwu
(k) = y.

Such k must exist because each important variable is a root
somewhere. Let k′ be such that δ(k, k′) = δ(kj , j

′) (and thus
also δ(k, k′) = δ(ki, i

′)).
Since x→βy, by the minimality of x we now get that
Pβwu

(k′) = Pβwu
(j′) and Pβwu

(k′) = Pβwu
(i′). Contradic-

tion. �
This ends the proof of Lemma 53 and of Lemma 20.

XVI. APPENDIX C. PROOFS OF LEMMAS 40 AND 41

PROOF OF LEMMA 40A. Suppose there is a variable y ∈
V ar(φ) which is not a top variable. Let z be a minimal, with
respect to the ordering →φ, important variable such that y ∈
V ar(PPz). Let <F , δ be the family pattern of PPz .

We know that y 6∈ topvar(PPz), so there must be an
important variable x ∈ V ar(PPz) such that x 6= z and
i <F j, where PPz(i) = y and PPz(j) = z. But this means,
since φ satisfies the Ideological Condition, that y occurs in
the atom PPx (in position δ(j, i)), which contradicts the
minimality of z.

Notice that we silently used Remark 31 here, and this is
where the assumption that φ is M-true was needed. �

PROOF OF LEMMA 40B. If y′ (ordinary or important) is
a successor of y then, by the definition of →φ, there must
be an atom PPx, with the family ordering <F , and positions
i, i′ in PPx, such that i <F i′, PPx(i) = y, PPx(i′) = y′.
Notice also that, if i and i′ are as above, there is no position j
satisfying i <F j <F i′ – this is because the variable PPx(j)
would be between y and y′ in the ordering →φ. Let x be a
minimal, with respect to the ordering →φ variable such that
PPx satisfies the above requirements. Now, use the argument
from the proof of claim A. to show that i is a top position in
PPx. �

PROOF OF LEMMA 41. Claim A. follows directly from
Lemma 40B and from the Technical Condition. Claim B.
follows directly from A. �

