
Logical relations for coherence of effect subtyping
Dariusz Biernacki and Piotr Polesiuk

Institute of Computer Science, University of Wrocław
Joliot-Curie 15, 50-383 Wrocław, Poland
{dabi,ppolesiuk}@cs.uni.wroc.pl

Abstract
A coercion semantics of a programming language with subtyping is typically defined on typing
derivations rather than on typing judgments. To avoid semantic ambiguity, such a semantics is
expected to be coherent, i.e., independent of the typing derivation for a given typing judgment. In
this article we present heterogeneous, biorthogonal, step-indexed logical relations for establishing
the coherence of coercion semantics of programming languages with subtyping. To illustrate the
effectiveness of the proof method, we develop a proof of coherence of a type-directed, selective
CPS translation from a typed call-by-value lambda calculus with delimited continuations and
control-effect subtyping. The article is accompanied by a Coq formalization that relies on a
novel shallow embedding of a logic for reasoning about step-indexing.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.3.3 Studies of
Program Constructs

Keywords and phrases type system, coherence of subtyping, logical relation, control effect,
continuation-passing style

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.x

1 Introduction

Programming languages that allow for subtyping, i.e., a mechanism facilitating coercions of
expressions of one type to another, are usually given either a subset semantics, where one
type is considered a subset of another type, or – a coercion semantics, where expressions
are explicitly converted from one type to another. In the presence of subtyping, typing
derivations depend on the occurrences of the subtyping judgments and, therefore, typing
judgments do not have unique typing derivations. Consequently, a coercion semantics that
interprets subtyping judgment by introducing explicit type coercions is defined on typing
derivations rather than on typing judgments. But then a natural question arises as to whether
such a semantics is coherent, i.e., whether it does not depend on the typing derivation.

The problem of coherence has been considered in a variety of typed lambda calculi.
Reynolds proved the coherence of the denotational semantics for intersection types [22].
Breazu-Tannen et al. proved the coherence of a coercion translation from the lambda
calculus with polymorphic, recursive and sum types to system F [8], by showing that any
two derivations of the same judgment are normalizable to a unique normal derivation where
the correctness of the normalization steps is justified by an equational theory in the target
calculus. Curien and Ghelli introduced a translation from system F≤ to a calculus with
explicit coercions and showed that any two derivations of the same judgment are translated
to terms that are normalizable to a unique normal form [9]. Finally, Schwinghammer followed
Breazu-Tannen et al.’s approach to prove the coherence of coercion translation from Moggi’s
computational lambda calculus with subtyping [24].

The normalization-based proofs consist in finding a normal form for a representation of
the derivation and they hinge on showing that such normal forms are unique for a given

© Dariusz Biernacki and Piotr Polesiuk;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 42–57

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.x
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Biernacki and P. Polesiuk 43

typing judgment. When the source calculus under consideration is presented in the spirit
of the lambda calculus à la Church, i.e., the lambda abstractions are type annotated, as is
the case in all the aforementioned articles that follow the normalization-based approach, the
term and the typing context indeed determine the shape of the normal derivation (modulo
a top level coercion that depends on the type of the term) [18]. However, in calculi à la
Curry this is no longer the case and the method cannot be directly applied. Still, if the
calculus is at least weakly normalizing, one can hope to recover the uniqueness property for
normal typing derivations for source terms in normal form, assuming that term normalization
preserves the coercion semantics. For instance, in the simply typed λ-calculus the typing
context uniquely determines the type of the term in the function position in applications
building a β-normal form, and, hence, derivations in normal form for such terms are unique.
This line of reasoning cannot be used when the calculus includes recursion.

In this article, we consider the coherence problem in simply-typed lambda calculi with
general recursion, control effects and with no type annotations. The coercion semantics we
study translate typing derivations in the source calculus to a corresponding target calculus
with explicit type coercions (that in most cases can be further replaced with equivalent
lambda-term representations) and our criterion for coherence of the translation is contextual
equivalence [19] in the target calculus.

The main result of this work is a construction of logical relations for establishing so
construed coherence of coercion semantics, applicable in a variety of calculi. In particular,
we address the problem of coherence of a type-directed CPS translation from the call-by-
value λ-calculus with delimited-control operators and control-effect subtyping introduced
by Materzok and the first author [16], extended with recursion. While the translation for
the calculus with explicit type annotations has been shown to be coherent in terms of an
equational theory in a target calculus [15], no CPS coercion translation for the original
version, let alone extended with recursion, has been proven coherent.

The reasons why coherence in this calculus is important are twofold. First of all, it is very
expressive and therefore interesting from the theoretical point of view. In particular, the
calculus has been shown to generalize the canonical type-and-effect system for Danvy and
Filinski’s shift and reset control operators [10, 11], and, furthermore, that it is strictly more
expressive than the CPS hierarchy of Danvy and Filinski [17]. These results heavily rely on
the effect subtyping relation that, e.g., allows to coerce pure expressions to effectful ones.
From a more practical point of view, the selective CPS translation, that leaves pure (i.e.,
control-effect free) expressions in direct style and introduces explicit coercions to interpret
effect subtyping in the source calculus, is a good candidate for embedding the control
operators in an existing programming language, such as Scala [23].

In order to deal with the complexity of the source calculus and of the translation itself,
we introduce binary logical relations on terms of the target calculus that are: heterogeneous,
biorthogonal [14, 20, 13], and step-indexed [3, 2, 1]. Heterogeneity allows us to relate terms
of different types, and in particular those in continuation-passing style with those in direct
style. This is a crucial property, since the same term can have a pure type, resulting in a
direct-style term through the translation and another, impure type, resulting in a term in
continuation-passing style. Relating such terms requires quantification over types and to
assure well-foundedness of the construction, we need to use step-indexing, which also supports
reasoning about recursion, even if not in a critical way. We follow Dreyer et al. [12] in using
logical step-indexed logical relations in our presentation of step-indexing. Biorthogonality, by
imposing a particular order of evaluation on expressions, simplifies the construction of the
logical relations. It also facilitates reasoning about continuations represented as evaluation

TLCA’15

44 Logical relations for coherence of effect subtyping

contexts.
Apart from the calculus with effect subtyping, we have used the ideas presented in this

article to show coherence of subtyping in several other calculi, including the simply typed
lambda calculus with subtyping [18] extended with recursion, the calculus of intersection
types [22], and the lambda calculus with subtyping and the control operator call/cc.

The article is accompanied by a Coq development that presently consists of a library
that provides a new shallow embedding of the logic for reasoning about step-indexed logical
relations, and complete formalization of the proofs presented in the rest of the article. The
code is available at http://www.ii.uni.wroc.pl/~ppolesiuk/lrcoherence.

The rest of this article is structured as follows. In Section 2, we briefly present Dreyer et
al.’s logic for reasoning about step indexing [12] on which we base our presentation. We also
describe the main ideas behind our Coq formalization of the logic. In Section 3, we introduce
the construction of the logical relations in a simple yet sufficiently interesting scenario – the
simply typed lambda calculus à la Curry with natural numbers, type Top, general recursion
and standard subtyping. The goal of this section is to introduce the basic ingredients of the
proof method before embarking on a considerably more challenging journey in the subsequent
section. In Section 4, we present the main result of the article – the logical relations for
establishing the coherence of the CPS translation from the calculus of delimited control with
effect subtyping. In Section 5, we summarize the article.

2 Reasoning about step-indexed logical relations

Step-indexed logical relations [3, 2, 1] are a powerful tool for reasoning about programming
languages. Instead of describing a general behavior of program execution, they focus on the
first n computation steps, where the step index n is an additional parameter of the relation.
This additional parameter makes it possible to define logical relations inductively not only
on the structure of types, but also on the number of computation steps that are allowed for
a program to make and, therefore, they provide an elegant way to reason about features that
introduce non-termination to the programming language, including recursive types [2] and
references [1].

However, reasoning directly about step-indexed logical relations is tedious because proofs
become obscured by step-index arithmetic. Dreyer et al. [12] proposed logical step-indexed
logical relations (LSLR) to avoid this problem. The LSLR logic is an intuitionistic logic for
reasoning about one particular Kripke model: where possible worlds are natural numbers
(step-indices) and where future worlds have smaller indices than the present one. All
formulas are interpreted as monotone (non-increasing) sequences of truth values, whereas the
connectives are interpreted as usual. In particular, in the case of implication we quantify over
all future worlds to ensure monotonicity, so the formula ϕ⇒ ψ is valid at index n (written
n |= ϕ⇒ ψ) iff k |= ϕ implies k |= ψ for every k ≤ n. In contrast to Dreyer et al. we do not
assume that all formulas are valid in world 0, because it is not necessary.

The LSLR logic is also equipped with a modal operator B (later), to provide access to
strictly future worlds. The formula Bϕ means ϕ holds in any future world, or formally Bϕ
is always valid at world 0, and n+ 1 |= Bϕ iff ϕ is valid at n (and other future worlds by
monotonicity). The later operator comes with two inference rules:

Γ,Σ ` ϕ
B-intro

Γ,BΣ ` Bϕ
Γ,Bϕ ` ϕ

LöbΓ ` ϕ

The first rule allows one to shift reasoning to a future world, making the assumptions about
the future world available. The Löb rule expresses an induction principle for indices. Note

http://www.ii.uni.wroc.pl/~ppolesiuk/lrcoherence

D. Biernacki and P. Polesiuk 45

τ ::= Nat | Top | τ → τ (types)
e ::= x | λx.e | e e | fix x(x).e | n (expressions)

S-Refl
τ ≤ τ

τ2 ≤ τ3 τ1 ≤ τ2 S-Trans
τ1 ≤ τ3

S-Top
τ ≤ Top

τ ′2 ≤ τ ′1 τ1 ≤ τ2
S-Arr

(τ ′1 → τ1) ≤ (τ ′2 → τ2)
(x : τ) ∈ Γ

T-VarΓ ` x : τ

Γ, x : τ1 ` e : τ2
T-AbsΓ ` λx.e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2 T-AppΓ ` e1 e2 : τ1

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
T-Fix

Γ ` fix f(x).e : τ1 → τ2

T-ConstΓ ` n : Nat
Γ ` e : τ τ ≤ τ ′

T-Sub
Γ ` e : τ ′

Figure 1 The source language – λ-calculus with subtyping

that the premise of the rule also captures the base case, because the assumption Bϕ is trivial
in the world 0. The later operator comes with no general elimination rule.

Predicates in LSLR logic as well as step-indexed logical relations can be defined induc-
tively on indices. More generally, we can define a recursive predicate µr.ϕ(r), provided all
occurrences of r in ϕ are guarded by the later operator, to guarantee well-foundedness of
the definition. For the sake of readability, in this paper we define recursive predicates and
relations by giving a set of clauses instead of using the µ operator.

Since the logic is developed for reasoning about one particular model, we can freely add
new inference rules for the logic if we prove they are valid in the model. We can also add new
relations or predicates to the logic if we provide their monotone interpretation. In particular,
constant functions are monotone, so we can safely use predicates defined outside of the logic,
such as typing or reduction relations.

Our Coq formalization accompanying this article is built on our IxFree library that
contains a shallow embedding of the LSLR logic similar to Appel et al.’s formalization of
the “very modal model” [4]. Logical connectives including the later operator are functions
on a special type IProp of “indexed propositions” defined as a type of monotone functions
from nat to Prop. The library provides tactics representing the most important inference
rules. One of the main differences between our library and Appel et al.’s formalization is a
way of keeping track of the assumptions. Instead of interpreting a sequent ϕ1, . . . , ϕn ` ψ
directly, we treat it as k |= ψ with the standard Coq assumptions k |= ϕ1, . . . , k |= ϕn. This
approach is very convenient since it allows for reusing a number of existing Coq tactics.

3 Introducing the logical relations

In this section we prove the coherence of subtyping in the simply-typed call-by-value lambda
calculus extended with recursion, where the coercion semantics is given by a standard
translation to the simply-typed lambda calculus with explicit coercions [9]. Our goal here is
to introduce the proof method in a simple scenario, so that in Section 4 we can focus on issues
specific to control effects. The logical relations we present in this section are biorthogonal
and step-indexed, which is not strictly necessary but it makes the development more elegant.
Furthermore, biorthogonality and step-indexing become crucial in handling more complicated
calculi such as the one of Section 4 and, therefore, are essential for the method to scale.

TLCA’15

46 Logical relations for coherence of effect subtyping

τ ::= Nat | Unit | τ → τ (types)
c ::= id | c ◦ c | top | c→ c (coercions)
e ::= x | λx.e | e e | c e | fix x(x).e | n | 〈〉 (expressions)
v ::= x | λx.e | fix x(x).e | (c→ c) v | n | 〈〉 (values)
E ::= � | E e | v E | c E (evaluation contexts)

S-Reflid :: τ . τ
c1 :: τ2 . τ3 c2 :: τ1 . τ2 S-Transc1 ◦ c2 :: τ1 . τ3

S-Toptop :: τ . Unit
c1 :: τ ′2 . τ ′1 c2 :: τ1 . τ2

S-Arr
c1 → c2 :: (τ ′1 → τ1) . (τ ′2 → τ2)

T-ConstΓ ` n : Nat
(x : τ) ∈ Γ

T-VarΓ ` x : τ

T-Unit
Γ ` 〈〉 : Unit

Γ, x : τ1 ` e : τ2
T-AbsΓ ` λx.e : τ1 → τ2

c :: τ . τ ′ Γ ` e : τ T-CApp
Γ ` c e : τ ′

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2 T-AppΓ ` e1 e2 : τ1

Γ, f : τ1 → τ2, x : τ1 ` e : τ2
T-Fix

Γ ` fix f(x).e : τ1 → τ2

E[(λx.e) v] →β E[e{v/x}]
E[(fix f(x).e) v] →β E[e{fix f(x).e/f, v/x}]

E[id v] →ι E[v]
E[(c1 ◦ c2) v] →ι E[c1 (c2 v)]

E[top v] →ι E[〈〉]
E[(c1 → c2) v1 v2] →ι E[c2 (v1 (c1 v2))]

Figure 2 The target language – λ-calculus with explicit coercions

3.1 The simply-typed lambda calculus with subtyping
The syntax and typing rules for the source language are given in Figure 1. The language is
the simply-typed lambda calculus with recursive functions (fix f(x).e) and natural numbers
(n). For brevity we do not consider any primitive operations on natural numbers or other
basic types, but they could seamlessly be added to the language. We include the type Top, to
make the subtyping relation interesting. The typing and subtyping rules are standard [18].

3.2 Coercion semantics
The semantics of the source language is given by a translation of the typing derivations
to a target language that extends the source language with explicit type coercions (and
replaces Top with Unit). The coercions express conversion of a term from one type to another,
according to the subtyping relation. Figure 2 contains syntax, typing rules and reduction
rules of the target language. The type coercions c and their typing rules correspond exactly
to the subtyping rules of the source language. The grammar of terms contains explicit
coercion application of the form c e and it is worth noting that terms of the form (c→ c) v
are considered values, since they represent a coercion expecting another value as argument
(witness the last reduction rule).

The operational semantics of the target language distinguishes between β-rules that
perform actual computations and ι-rules that rearrange coercions. Both of them are used
during program evaluation. We say that program e terminates (written e↓) when it can be
reduced to a value using both sorts of reduction rules, according to the evaluation strategy
determined by the evaluation contexts.

General contexts are closed terms with one hole (possibly under some binders), and are
denoted by the metavariable C. We write ` C : (Γ; τ1) τ2 if for any e with Γ ` e : τ1
we have Γ ` C[e] : τ2. Contextual approximation, written Γ ` e1 -ctx e2 : τ , means that

D. Biernacki and P. Polesiuk 47

Jτ1 → τ2K = Jτ1K→ Jτ2K JNatK = Nat JTopK = Unit

SJτ ≤ τKS-Refl = id
SJTop ≤ τKS-Top = top

SJτ1 ≤ τ3KS-Trans(D1,D2) = SJτ2 ≤ τ3KD1 ◦ SJτ1 ≤ τ2KD2

SJτ ′1 → τ1 ≤ τ ′2 → τ2KS-Arr(D1,D2) = SJτ ′2 ≤ τ ′1KD1 → SJτ1 ≤ τ2KD2

T JxKT-Var = x

T Jλx.eKT-Abs(D) = λx.T JeKD
T Je1 e2KT-App(D1,D2) = T Je1KD1 T Je2KD2

T Jfix f(x).eKT-Fix(D) = fix f(x).T JeKD
T JeKT-Sub(D1,D2) = SJτ ≤ τ ′KD2 T JeKD1

T JnKT-Const = n

Figure 3 Coercion semantics for the λ-calculus with subtyping

for any context C and type τ ′, such that ` C : (Γ; τ) τ ′ if C[e1] terminates, then so
does C[e2]. If Γ ` e1 -ctx e2 : τ and Γ ` e2 -ctx e1 : τ , then we say that e1 and e2 are
contextually equivalent.

The coercion semantics of the source language is given in Figure 3. The function SJ.K.
translates subtyping proofs into coercions, and function T J.K. translates typing derivations
into terms of the target language.

I Lemma 1. Coercion semantics preserves types.
1. If D :: τ1 ≤ τ2 then SJτ1 ≤ τ2KD :: Jτ1K . Jτ2K.
2. If D :: Γ ` e : τ then JΓK ` T JeKD : JτK.

3.3 Logical relations
In order to reason about contextual equivalence in the target language, we define logical
relations (Figure 4). Relations are expressed in the LSLR logic described in Section 2, so
they are implicitly step-indexed.

We call these relations heterogeneous because they are parameterized by two types, one
for each of the arguments. This property is important for our coherence proof, since it makes
it possible to relate the results of the translation of two typing derivations which assign
different types to the same term. When both types τ1 and τ2 are Nat or both are arrow
types, the value relation VJτ1; τ2K is standard. Two values are related for type Nat if they
are the same constant, and two functions are related when they map related arguments to
related results. The most interesting are the cases when type parameters of the relation are
different. When one of these types is Unit, then any values are in the relation, because we do
not expect them to carry any information – Unit is the result of translating the Top type.
Functions are never related with natural numbers.

The relation EJτ1; τ2K for closed terms is defined by biorthogonality. Two terms are related
if they behave the same in related contexts, and contexts are related (relation KJτ1; τ2K)
if they yield the same observations when plugged with related values. Yielding the same
observations (relation -) is defined for each step-index separately: e1 - e2 is valid at k iff
termination of e1 using at most k β-steps (and any number of ι-steps) implies termination of
e2 in any number of steps. This interpretation is monotone, so the relation - can be added
to the LSLR logic. The relation EJτ1; τ2K is extended to open terms as usual: two open

TLCA’15

48 Logical relations for coherence of effect subtyping

(v1, v2) ∈ VJNat; NatK ⇐⇒ ∃n, v1 = v2 = n

(v1, v2) ∈ VJτ ′1 → τ1; τ ′2 → τ2K ⇐⇒ ∀(a1, a2) ∈ VJτ ′1; τ ′2K.(v1 a1, v2 a2) ∈ EJτ1; τ2K
(v1, v2) ∈ VJτ1; τ2K ⇐⇒ > if τ1 = Unit or τ2 = Unit
(v1, v2) ∈ VJτ1; τ2K ⇐⇒ ⊥ otherwise
(e1, e2) ∈ EJτ1; τ2K ⇐⇒ ∀(E1, E2) ∈ KJτ1; τ2K.E1[e1] - E2[e2]

(E1, E2) ∈ KJτ1; τ2K ⇐⇒ ∀(v1, v2) ∈ VJτ1; τ2K.E1[v1] - E2[v2]
k |= e1 - e2 ⇐⇒ e1 ↓k =⇒ e2 ↓

(γ1, γ2) ∈ GJΓ1; Γ2K ⇐⇒ ∀x, (γ1(x), γ2(x)) ∈ VJΓ1(x); Γ2(x)K
Γ1; Γ2 ` e1 -log e2 : τ1; τ2 ⇐⇒ ∀(γ1, γ2) ∈ GJΓ1; Γ2K.(e1γ1, e2γ2) ∈ EJτ1; τ2K

Figure 4 Logical relations for the λ-calculus with explicit coercions

terms are related (written Γ1; Γ2 ` e1 -log e2 : τ1; τ2) when every pair of related closing
substitutions makes them related.

Notice that we do not assume that related terms have valid types. Our relations may
include some “garbage”, e.g., (1, λx.x) ∈ VJUnit; NatK, but it is non-problematic. One
can mechanically prune these relations to well-typed terms, but this change complicates
formalization and we did not find it useful.

In this presentation we consider languages with only one base type. Adding more base
types and some subtyping between them will not change the general shape of the proof, but
defining logical relations for such a case is a little trickier. We would stipulate that two
values v1 and v2 are related for base types b1 and b2 iff for every common supertype b of b1
and b2, coercing v1 and v2 to b yields the same constant.

The relation - is preserved by reductions in the following sense, where the third assertion
expresses an elimination rule of the later modality that is crucial in the subsequent proofs.

I Lemma 2. The following assertions hold:
1. If e1 →ι e

′
1 and e′1 - e2 then e1 - e2.

2. If e2 →ι e
′
2 and e1 - e′2 then e1 - e2.

3. If e1 →β e
′
1 and Be′1 - e2 then e1 - e2.

4. If e2 →β e
′
2 and e1 - e′2 then e1 - e2.

The proof of soundness of the logical relations follows closely the standard technique
for biorthogonal logical relations [20, 13]. First, we need to show compatibility lemmas,
which state that the relation is preserved by every language construct. Most of them are
standard and we omit them due to lack of space. The only compatibility lemma specific to
our relations is the following lemma for coercion application.

I Lemma 3 (Adequacy). If (e1, e2) ∈ EJτ ; τK then e1 - e2.

Proof. Let us show �[e1] - �[e2]. Using the assertion (e1, e2) ∈ EJτ ; τK, it suffices to show
(�,�) ∈ KJτ ; τK, which is trivial, since values always terminate. J

I Lemma 4 (Coercion compatibility). The logical relation is preserved by coercion application.
1. If c :: τ1 . τ2 and Γ1; Γ2 ` e1 -log e2 : τ1; τ0 then Γ1; Γ2 ` c e1 -log e2 : τ2; τ0.
2. If c :: τ1 . τ2 and Γ1; Γ2 ` e1 -log e2 : τ0; τ1 then Γ1; Γ2 ` e1 -log c e2 : τ0; τ2.

Proof. We prove both cases by induction on the typing derivation of the coercion c. J

I Theorem 5 (Fundamental property). If Γ ` e : τ then Γ; Γ ` e -log e : τ ; τ .

D. Biernacki and P. Polesiuk 49

Proof. By induction on the derivation Γ ` e : τ . In each case we apply the corresponding
compatibility lemma. J

I Lemma 6 (Precongruence). If ` C : (Γ; τ) τ0 and Γ; Γ ` e1 -log e2 : τ ; τ then
(C[e1], C[e2]) ∈ EJτ0; τ0K.

Proof. By induction on the derivation of context typing, using the appropriate compatibility
lemma in each case. For contexts containing subterms we also need the fundamental property.
For the empty context we use the empty substitution, since the empty substitutions are in
relation GJø; øK. J

I Theorem 7 (Soundness). If k |= Γ; Γ ` e1 -log e2 : τ ; τ holds for every k, then
Γ ` e1 -ctx e2 : τ .

Proof. Suppose ` C : (Γ; τ) τ0 and C[e1]↓, we need to show C[e2]↓. By Lemma 6 and
Lemma 3 we know k |= C[e1] - C[e2] for every k. Taking k to be the number of steps in
which C[e1] terminates, we have that C[e2] also terminates, by the definition of -. J

3.4 Coherence of the coercion semantics
Having established soundness of the logical relations, we are in a position to prove the main
coherence lemma, phrased in terms of the logical relations, and the coherence theorem.

I Lemma 8. If Di :: Γi ` e : τi for i = 1, 2 are two typing judgments for the same term e

of the source language, then JΓ1K; JΓ2K ` T JeKD1 -log T JeKD2 : Jτ1K; Jτ2K.

Proof. The proof follows by induction on the structure of both derivations D1 and D2. At
least one of these derivations is decreased in every case. When one of derivations starts with
subsumption rule (T-Sub), we apply Lemma 4. The coercion that we get after translation
is well-typed by Lemma 1. In other cases we just apply the appropriate compatibility
lemma. J

I Theorem 9 (Coherence). If D1 and D2 are derivations of the same typing judgment
Γ ` e : τ , then JΓK ` T JeKD1 -ctx T JeKD2 : JτK.

Proof. Immediately from Lemma 8 and Theorem 7. J

Coercion semantics described here translates the source language into the language with
explicit coercions. We chose coercions to be a separate syntactic category, because we found
it very convenient, especially for proving Lemma 4. However, one can define a coercion
semantics which translates subtyping proofs directly to λ-expressions. Our result can be
easily extended for such a translation. Let |e| be a term e with all the coercions replaced
by the corresponding expressions. To prove that for any contextually equivalent terms e1
and e2 in the language with coercions, terms |e1| and |e2| are contextually equivalent in the
language without coercions, we need three simple facts that can be easily verified:
1. every well-typed term in the language without coercions is well typed in the language

with coercions,
2. term e terminates iff |e| terminates,
3. if context C does not contain coercions then C[|e|] = |C[e]|.

In the next section we show that the results presented in this section can be adapted to
a considerably more complex calculus – a calculus of delimited control with control-effect
subtyping.

TLCA’15

50 Logical relations for coherence of effect subtyping

τ ::= Nat | τ → T (pure types)
T ::= τ | τ [T]T (types)
e ::= x | λx.e | e e | fix x(x).e | S0x.e | 〈e〉 | n (expressions)

S-Refl
T ≤ T

T2 ≤ T3 T1 ≤ T2 S-Trans
T1 ≤ T3

τ1 ≤ τ2 T2 ≤ T1 U1 ≤ U2 S-Cons
τ1[T1]U1 ≤ τ2[T2]U2

T1 ≤ T2 S-Lift
τ ≤ τ [T1]T2

τ2 ≤ τ1 T1 ≤ T2 S-Arr
(τ1 → T1) ≤ (τ2 → T2)

Γ ` e : T T ≤ U
T-SubΓ ` e : U

(x : τ) ∈ Γ
T-VarΓ ` x : τ

Γ, x : τ ` e : T
T-AbsΓ ` λx.e : τ → T

Γ ` e1 : τ → T Γ ` e2 : τ
T-PAppΓ ` e1 e2 : T

Γ ` e1 : (τ2 → τ1[U4]U3)[U2]U1 Γ ` e2 : τ2[U3]U2
T-App

Γ ` e1 e2 : τ1[U4]U1
T-ConstΓ ` n : Nat

Γ, f : τ → T, x : τ ` e : T
T-Fix

Γ ` fix f(x).e : τ → T

Γ, x : τ → T ` e : U
T-Sft

Γ ` S0x.e : τ [T]U
Γ ` e : τ [τ]T

T-Rst
Γ ` 〈e〉 : T

Figure 5 The source language – λ-calculus with delimited control and effect subtyping

4 Coherence of a CPS translation of control-effect subtyping

The calculus of delimited control studied in this section is the λ-calculus extended with
recursion and the control operators shift0 (S0) and reset0 (〈·〉) [11] that can explore and
reorganize an arbitrary portion of the stack of delimited continuations. It was built around a
central idea that types for such a calculus should contain information about the stack and
that the amount of that information should be governed by a subtyping mechanism [16]. We
will define the semantics of the calculus by a CPS translation to a target calculus endowed
with a reduction semantics, but if we were to directly give a reduction rule for shift0, it would
be:

F [〈E[S0x.e]〉] → F [e{λy.〈E[y]〉/x}]

where E is a pure evaluation context representing the current delimited continuation (delim-
ited by 〈·〉 and captured by S0) and F is a metacontext, i.e., a list of such pure evaluation
contexts separated by control delimiters, representing the current metacontinuation [6]. In
terms of abstract-machine semantics E together with F represent the entire control stack. We
can see from the reduction rule that nothing prevents the expression e from capturing another
delimited continuation from F and, therefore, the types of the calculus express requirements
on the shape of the control stack, so that expressions can safely perform control operations
exploring the stack. However, under some conditions, an expression that imposes certain
requirements on the stack can be used with a stack of which more is known or assumed. Such
coercions are possible thanks to the subtyping relation that lies at the heart of the calculus.

4.1 The lambda calculus with delimited control and effect subtyping
The syntax and typing rules of the calculus of delimited control are shown in Figure 5. Types
are either pure (τ) or effect annotated (τ [T1]T2). An expression of type τ [T1]T2 can be used
with the top-most delimited continuation that when given a value of type τ behaves as
specified by its answer type T1, and with the rest of the stack whose type is T2.

The calculus comprises the simply typed lambda calculus with the standard subtyping
rules, extended with typing and subtyping rules for effectful computations. The most

D. Biernacki and P. Polesiuk 51

τ ::= Nat | τ → T (pure types)
T ::= τ | (τ → T)⇒ T (types)
c ::= id | c ◦ c | c→ c | ↑c | c[c]c (coercions)
e ::= x | λx.e | e e | c e | fix x(x).e | n (expressions)
v ::= x | λx.e | fix x(x).e | (c→ c) v | ↑c v | (c[c]c) v | n (values)
E ::= � | E e | v E | c E (evaluation contexts)

S-Reflid :: T . T
c1 :: T2 . T3 c2 :: T1 . T2 S-Trans

c1 ◦ c2 :: T1 . T3

c1 :: τ2 . τ1 c2 :: T1 . T2 S-Arr
c1 → c2 :: (τ1 → T1) . (τ2 → T2)

c :: T1 . T2 S-Lift
↑c :: τ . ((τ → T1)⇒ T2)

c :: τ1 . τ2 c1 :: T2 . T1 c2 :: U1 . U2 S-Cons
c[c1]c2 :: ((τ1 → T1)⇒ U1) . ((τ2 → T2)⇒ U2)

(x : τ) ∈ Γ
T-VarΓ ` x : τ

Γ, x : τ ` e : T
T-AbsΓ ` λx.e : τ → T

Γ ` e1 : τ → T Γ ` e2 : τ
T-AppΓ ` e1 e2 : T

Γ, x : τ → T ` e : U
T-KAbs

Γ ` λx.e : (τ → T)⇒ U

Γ ` e : (τ → T)⇒ U Γ ` v : τ → T
T-KAppΓ ` e v : U

c :: T . U Γ ` e : T T-CAppΓ ` c e : U

Γ, f : τ → T, x : τ ` e : T
T-Fix

Γ ` fix f(x).e : τ → T
T-ConstΓ ` n : Nat

E[(λx.e) v] →β E[e{v/x}]
E[(fix f(x).e) v] →β E[e{fix f(x).e/f, v/x}]

E[↑c v1 v2] →β E[c (v2 v1)]

E[id v] →ι E[v]
E[(c1 ◦ c2) v] →ι E[c1 (c2 v)]

E[(c1 → c2) v1 v2] →ι E[c2 (v1 (c1 v2))]
E[(c[c1]c2) v1 v2] →ι E[c2 (v1 ((c→ c1) v2))]

Figure 6 The target language – λ-calculus with explicit coercions of control effects

interesting from the point of view of effect subtyping are the rules S-Cons and S-Lift. The
rule S-Cons is a direct consequence of the interpretation of effect-annotated types given
above that actually follows from the CPS interpretation of delimited continuations – a type
τ [T1]T2 is interpreted in CPS as (τ → T1)⇒ T2, where ⇒ means an effectful function space
(see Section 4.2). The rule S-Lift is more interesting and it says that a pure computation can
be considered impure, provided the answer type of the top-most delimited continuation can
be coerced into the type of the rest of the stack. We have, for an example, Nat ≤ Nat[Nat]Nat.
It is worth noting that the calculus provides two rules for function application. They are
necessary for expressivity reasons, but at the same time they are an additional source of
difficulty when it comes to establishing the coherence of the subtyping. For more detailed
presentation of the calculus we refer the reader to [16]. (The presentation of the type system
in [16] differs from the one shown in Figure 5 in some inessential details, but the two type
systems are equally expressive.)

4.2 Coercion semantics: a type-directed selective CPS translation
The syntax and typing rules of the target language are presented in Figure 6. There are
two kinds of arrow type: the usual one τ → T for regular functions and the effectful one
(τ → T)⇒ U for expressions in CPS. We make this distinction to express the fact that the
CPS translation (see Figure 7) yields expressions with strong restrictions on the occurrence
of terms in CPS: they are never passed as arguments (typing environment consists of only

TLCA’15

52 Logical relations for coherence of effect subtyping

JNatKp = Nat
Jτ → T Kp = JτKp → JT K

JτK = JτKp
Jτ [T]UK = (JτKp → JT K)⇒ JUK

SJT ≤ T KS-Refl = id
SJT1 ≤ T3KS-Trans(D1,D2) = SJT2 ≤ T3KD1 ◦ SJT1 ≤ T2KD2

SJτ1 → T1 ≤ τ2 → T2KS-Arr(D1,D2) = SJτ2 ≤ τ1KD1 → SJT1 ≤ T2KD2

SJτ ≤ τ [T]UKS-Lift(D) = ↑SJT ≤ UKD
SJτ1[T1]U1 ≤ τ2[T2]U2KS-Cons(D,D1,D2) = SJτ1 ≤ τ2KD[SJT2 ≤ T1KD1]SJU1 ≤ U2KD2

T JxKT-Var = x

T Jλx.eKT-Abs(D) = λx.T JeKD
T Jfix f(x).eKT-Fix(D) = fix f(x).T JeKD
T JeKT-Sub(D1,D2) = SJT ≤ UKD2 T JeKD1

T Je1 e2KT-PApp(D1,D2) = T Je1KD1 T Je2KD2

T Je1 e2KT-App(D1,D2) = λk.T Je1KD1 (λf.T Je2KD2 (λx.f x k))

T JS0x.eKT-Sft(D) = λx.T JeKD
T J〈e〉KT-Rst(D) = T JeKD (λx.x)
T JnKT-Const = n

Figure 7 Type-directed selective CPS translation

pure types) and they can be applied only to values (witness the rule T-KApp) representing
continuations.

Again, the operational semantics distinguishes between β-rules and ι-rules. We classified
the last β-rule as “actual computation” because it does not only rearrange coercions. It
translates back a lifted value v1 and applies to it a given continuation v2. This rule and the
last ι-rule reduce a coerced value applied to a continuation, so terms of the form (↑c v) and
(c[c]c v) are considered values. Notice that these values have effectful types. We extend the
notion of ι-reduction to evaluation contexts: E1 →ι E2 holds iff E1[v] →ι E2[v] for every
value v.

As in Section 3, the metavariable C denotes general closed contexts. We also define
typing of general contexts ` C : (Γ;T) T0 as before. The definition of contextual
approximation Γ ` e1 -ctx e2 : T is slightly weaker, because we allow only contexts with
pure answer type. Indeed, an expression that requires a continuation to trigger computation
can hardly be considered a complete program.

The coercion semantics of the source language is given by the type-directed selective CPS
translation presented in Figure 7. The translation is selective because it leaves terms of pure
type in direct style – witness, e.g, the equations for variable or pure application. Effectful
applications are translated according to Plotkin’s call-by-value CPS translation [21], whereas
the translation of shift0 and reset0 is surprisingly straightforward – shift0 is turned into a
lambda-abstraction expecting a delimited continuation, and reset0 is interpreted by providing
its subexpression with the reset delimited continuation, represented by the identity function.

I Example 10. Consider the program (fix f(x).f x) 1 in the source language. We derive the
type Nat[T]T for it in two ways: let D1 be the derivation

. . .

f : Nat→ Nat[T]T, x : Nat ` f x : Nat[T]T
T-Fix

` fix f(x).f x : Nat→ Nat[T]T T-Const` 1 : Nat
T-PApp

` (fix f(x).f x) 1 : Nat[T]T

D. Biernacki and P. Polesiuk 53

(v1, v2) ∈ VJNat; NatK ⇐⇒ ∃n, v1 = v2 = n

(v1, v2) ∈ VJτ1 → T1; τ2 → T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(v1 a1, v2, a2) ∈ EJT1;T2K
(v1, v2) ∈ VJτ1; τ2K ⇐⇒ ⊥ otherwise
(e1, e2) ∈ EJT1;T2K ⇐⇒ ∀(E1, E2) ∈ KJT1;T2K.E1[e1] - E2[e2]

(E1, E2) ∈ KJτ1; τ2K ⇐⇒ ∀(v1, v2) ∈ VJτ1; τ2K.E1[v1] - E2[v2]
(E1, E2) ∈ KJτ1; (τ2 → T2)⇒ U2K ⇐⇒ ∃T, (E, k) ∈ KVJτ1 T ; τ2 → T2K,

(E′1, E′2) ∈ KJT ;U2K.
E1 →∗ι E′1[E[]] ∧ E2 →∗ι E′2[[] k]

(E1, E2) ∈ KJ(τ1 → T1)⇒ U1; τ2K ⇐⇒ ∃T, (k,E) ∈ BVKJτ1 → T1; τ2 T K,
(E′1, E′2) ∈ BKJU1;T K.

E1 →∗ι E′1[[] k] ∧ E2 →∗ι E′2[E[]]
(E1, E2) ∈ KJ(τ1 → T1)⇒ U1;

(τ2 → T2)⇒ U2K ⇐⇒ ∃(k1, k2) ∈ VJτ1 → T1; τ2 → T2K,
(E′1, E′2) ∈ KJU1;U2K.

E1 →∗ι E′1[[] k1] ∧ E2 →∗ι E′2[[] k2]
(E, v) ∈ KVJτ1 T1; τ2 → T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(E[a1], v a2) ∈ EJT1;T2K
(v,E) ∈ VKJτ1 → T1; τ2 T2K ⇐⇒ ∀(a1, a2) ∈ VJτ1; τ2K.(v a1, E[a2]) ∈ EJT1;T2K

(γ1, γ2) ∈ GJΓ1; Γ2K ⇐⇒ ∀x.(γ1(x), γ2(x)) ∈ VJΓ1(x); Γ2(x)K
Γ1; Γ2 ` e1 -log e2 : T1;T2 ⇐⇒ ∀(γ1, γ2) ∈ GJΓ1; Γ2K.(e1γ1, e2γ2) ∈ EJT1;T2K

Figure 8 Logical relations for the λ-calculus with explicit coercions of control effects

and D2 be the derivation

. . .

` fix f(x).f x : Nat→ Nat[T]T . . .
T-Sub

` fix f(x).f x : (Nat→ Nat[T]T)[T]T

T-Const` 1 : Nat · · · T-Sub
` 1 : Nat[T]T

T-App
` (fix f(x).f x) 1 : Nat[T]T

Then

T J(fix f(x).f x) 1KD1 = (fix f(x).f x) 1
T J(fix f(x).f x) 1KD2 = λk.(↑ id (fix f(x).f x)) (λg.(↑ id 1) (λy.g y k))

By the results of the next sections, these terms are contextually equivalent.

I Lemma 11. Coercion semantics preserves types.
1. If D :: T1 ≤ T2 then SJT1 ≤ T2KD :: JT1K . JT2K.
2. If D :: Γ ` e : T then JΓK ` T JeKD : JT K.

4.3 Logical relations
The logical relations are defined in Figure 8. The relation VJτ1; τ2K for pure values and
the relation EJT1;T2K for expressions are similar to the relations defined in Section 3.3. All
information about control effects is captured in the relation KJT1;T2K for contexts. If T1 and
T2 are computation arrow types, then two contexts are related iff they can be decomposed
as applications to related continuations in related contexts. In general, this application to a
continuation does not have to be the top-most element of the context and some rearrangement
of coercions is needed, so such a decomposition is defined by ι-reduction of contexts.

TLCA’15

54 Logical relations for coherence of effect subtyping

The most interesting are the cases that relate pure and impure contexts. As previously,
the impure context should be decomposed to a continuation k and the rest of the context.
Then the pure context should be decomposed in such a way that the continuation k is
related with some portion E of the pure context. The answer type of E cannot be retrieved
from the type of the initial pure context, so we quantify over all possible types. In order
to make the construction well-founded, the relations are defined by nested induction on
step indices and on the structure of the second type. Notice that step indices play a role
only in one case – when we quantify over the second type and the later operator guards
the non-structural use of the relations VKJτ1 → T1; τ2 T K and KJU1;T K. The auxiliary
relations KVJτ1 T1; τ2 → T2K and VKJτ1 → T1; τ2 T2K relate a portion of an evaluation
context with a value of an arrow type and they are defined analogously to the value relation
for functions.

The relations of this section possess properties analogous to the ones of Section 3.3, in
particular the relation - is preserved by reduction (Lemma 2) and the compatibility lemmas
(including Lemma 4) hold. However, the proof of the compatibility lemmas requires the
following results that establish the preservation of relations with respect to ι-reductions of
evaluation contexts.

I Lemma 12. The following assertions hold:
1. If E →∗ι E′ and E′[e1] - e2 then E[e1] - e2.
2. If E →∗ι E′ and e1 - E′[e2] then e1 - E[e2].
3. If E1 →∗ι E′1 and (E′1, E2) ∈ KJT1;T2K then (E1, E2) ∈ KJT1;T2K.
4. If E2 →∗ι E′2 and (E1, E

′
2) ∈ KJT1;T2K then (E1, E2) ∈ KJT1;T2K.

The rest of the soundness proof follows the same lines as in Section 3.3. Interestingly, the
adequacy lemma can be proved only for pure types, which is in harmony with the notion of
contextual equivalence in the target calculus.

I Theorem 13 (Fundamental property). If Γ ` e : T then Γ; Γ ` e -log e : T ;T .

I Lemma 14 (Precongruence). If ` C : (Γ;T) τ and Γ; Γ ` e1 -log e2 : T ;T , then
(C[e1], C[e2]) ∈ EJτ ; τK.

I Lemma 15 (Adequacy). If (e1, e2) ∈ EJτ ; τK then e1 - e2.

I Theorem 16 (Soundness). If k |= Γ; Γ ` e1 -log e2 : T ;T holds for every k, then
Γ ` e1 -ctx e2 : T .

4.4 Coherence of the CPS translation
Although standard compatibility lemmas and coercion compatibility suffice to prove soundness
of logical relations, we need another kind of compatibility to prove coherence, since there is
another source of ambiguity. Two typing derivations in the source language can be different
not only because of the subsumption rule, but also because of two rules for application.

I Lemma 17 (Mixed application compatibility). The following assertions hold:
1. If Γ1; Γ2 ` f1 -log f2 : ((τ ′1 → (τ1 → U4)⇒ U3)→ U2)⇒ U1; τ ′2 → T2

and Γ1; Γ2 ` e1 -log e2 : (τ ′1 → U3)⇒ U2; τ ′2
then Γ1; Γ2 ` λk.f1 (λf.e1 (λx.f x k)) -log f2 e2 : (τ ′1 → U4)⇒ U1;T .

2. If Γ1; Γ2 ` f1 -log f2 : τ ′1 → T1; ((τ ′2 → (τ2 → U4)⇒ U3)→ U2)⇒ U1
and Γ1; Γ2 ` e1 -log e2 : τ ′1; (τ ′2 → U3)⇒ U2
then Γ1; Γ2 ` f1 e1 -log λk.f2 (λf.e2 (λx.f x k)) : T ; (τ ′2 → U4)⇒ U1.

D. Biernacki and P. Polesiuk 55

Proof. Both cases are similar, so we show only the first one. We have to show that both
terms closed by substitutions have the same observations in related contexts (E1, E2) ∈
KJ(τ ′1 → U4)⇒ U1;T K. Since context E1 is in relation for effectful type, by the definition of
logical relations and Lemma 12, it can be decomposed as a continuation k and the rest of the
context. Now we have the missing continuation k that can trigger computation in the first
term, so the rest of the proof consists in simple context manipulations, applying definitions
and performing reductions. J

I Lemma 18. If Di :: Γi ` e : Ti for i = 1, 2 are two typing judgments for the same term e

of the source language, then JΓ1K; JΓ2K ` T JeKD1 -log T JeKD2 : JT1K; JT2K.

I Theorem 19 (Coherence). If D1 and D2 are derivations of the same typing judgment
Γ ` e : T , then JΓK ` T JeKD1 -ctx T JeKD2 : JT K.

In contrast to the calculus considered in Section 3.4, such coherence theorem does not
imply coherence of translation directly to the simply typed λ-calculus (where coercions are
expressed as λ-terms). As a counterexample, the derivations from Example 10 give us terms
that can be distinguished by the context C = (λx.1) []. This is because types in the target
language carry more information than simple types, and in particular, an expression of a
type (τ → T)⇒ U is not a usual function, but a computation waiting for a continuation, as
explained in Section 4.2.

But still we can prove some interesting properties of a direct translation to the simply
typed λ-calculus in two cases: when control effects do not leak to the context or when we
relate only whole programs. Let |e| be a term e with all coercions replaced by corresponding
expressions.

I Corollary 20. If D1, D2 :: Γ ` e : τ and τ does not contain any type of the form τ ′[T]U ,
then |T JeKD1 | and |T JeKD2 | are contextually equivalent.

I Corollary 21. If D1, D2 :: Γ ` e : τ then |T JeKD1 | terminates iff |T JeKD2 | terminates.
Moreover, if τ = Nat and one of the expressions terminates to a constant, then the other
term evaluates to the same constant.

5 Conclusion

We have shown that the technique of logical relations can be used for establishing the
coherence of subtyping, when it is phrased in terms of contextual equivalence in the target
of the coercion translation. In particular, we have demonstrated that a combination of
heterogeneity, biorthogonality and step-indexing provides a sufficiently powerful tool for
establishing coherence of effect subtyping in a calculus of delimited control with the coercion
semantics given by a type-directed selective CPS translation. However, we have successfully
applied the presented approach also to other calculi with subtyping, e.g., as demonstrated in
this article for the simply-typed λ-calculus with recursion. The Coq development accompa-
nying this paper is based on a new embedding of Dreyer et al.’s logic for reasoning about
step-indexing that, we believe, considerably improves the presentation and formalization of
the logical relations.

Regarding logical relations for type-and-effect systems, there has been a work on proving
correctness of a partial evaluator for shift and reset by Asai [5], and on termination of
evaluation of the λ-calculi with delimited-control operators by Biernacka et al. [6, 7] and by
Materzok and the first author [16]. Unsurprisingly, all these results, like ours, are built on
the notion of biorthogonality, even if not mentioned explicitly. The distinctive feature of our

TLCA’15

56 Logical relations for coherence of effect subtyping

construction is a combination of heterogeneity and step-indexing that supports reasoning
about the observational equivalence of terms of different types whose structure is very distant
from each other, e.g., about direct-style and continuation-passing-style terms.

Acknowledgments We thank Andrés A. Aristizábal, Małgorzata Biernacka, and the anony-
mous reviewers for helpful comments on the presentation of this work.

This work has been supported by the Polish National Science Center, grant no. DEC-
011/03/B/ST6/00348.

References
1 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-

pendence. In POPL’09, Savannah, GA, USA, 2009, pp. 340–353.
2 Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.

In ESOP’06, Vienna, Austria, March 2006, LNCS 3924, pp. 69–83.
3 Andrew W. Appel and David McAllester. An indexed model of recursive types for founda-

tional proof-carrying code. ACM TOPLAS, 23(5):657–683, 2001.
4 Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A

very modal model of a modern, major, general type system. In POPL’07, Nice, France,
2007, pp. 109–122.

5 Kenichi Asai. Logical relations for call-by-value delimited continuations. In Trends in
Functional Programming 2005, Tallinn, Estonia, 2005, pp. 413–428.

6 Małgorzata Biernacka and Dariusz Biernacki. Context-based proofs of termination for
typed delimited-control operators. In PPDP’09, Coimbra, Portugal, 2009, pp. 289–300.

7 Małgorzata Biernacka, Dariusz Biernacki, and Sergueï Lenglet. Typing control operators
in the CPS hierarchy. In PPDP’11, Odense, Denmark, 2011, pp. 149–160.

8 Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93(1):172–221, 1991.

9 Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum typing and
type-checking in F≤. Mathematical Structures in Computer Science, 2(1):55–91, 1992.

10 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU
Rapport 89/12, DIKU, University of Copenhagen, Copenhagen, Denmark, 1989.

11 Olivier Danvy and Andrzej Filinski. Abstracting control. In Lisp and Functional Program-
ming 1990, Nice, France, 1990, pp. 151–160.

12 Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical relations.
Logical Methods in Computer Science, 7(2:16):1–37, 2011.

13 Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming, 22(4-5):477–528,
2012.

14 Jean-Louis Krivine. Classical logic, storage operators and second-order lambda-calculus.
Annals of Pure and Applied Logic, 68(1):53–78, 1994.

15 Marek Materzok. Axiomatizing subtyped delimited continuations. In CSL’13, Torino, Italy,
2013, LIPIcs 23, pp. 521–539.

16 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In ICFP’11,
Tokyo, Japan, 2011, pp. 81–93.

17 Marek Materzok and Dariusz Biernacki. A dynamic interpretation of the CPS hierarchy.
In APLAS’12, LNCS 7705, Kyoto, Japan, 2012, pp. 296–311.

18 John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
19 James H. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, Mas-

sachusetts Institute of Technology, 1968.

D. Biernacki and P. Polesiuk 57

20 Andrew Pitts and Ian Stark. Operational reasoning for functions with local state. In Higher
Order Operational Techniques in Semantics, pp. 227–273. 1998.

21 Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

22 John C. Reynolds. The coherence of languages with intersection types. In Theoretical
Aspects of Computer Software 1991, Sendai, Japan, 1991, LNCS 526, pp. 675–700.

23 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic de-
limited continuations by a type-directed selective CPS-transform. In ICFP’09, Edinburgh,
UK, 2009, pp. 317–328.

24 Jan Schwinghammer. Coherence of subsumption for monadic types. Journal of Functional
Programming, 19(2):157–172, 2009.

TLCA’15

	Introduction
	Reasoning about step-indexed logical relations
	Introducing the logical relations
	The simply-typed lambda calculus with subtyping
	Coercion semantics
	Logical relations
	Coherence of the coercion semantics

	Coherence of a CPS translation of control-effect subtyping
	The lambda calculus with delimited control and effect subtyping
	Coercion semantics: a type-directed selective CPS translation
	Logical relations
	Coherence of the CPS translation

	Conclusion

