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Abstract

We present a context-based approach to proving termination of evaluation in reduction semantics (i.e., a
form of operational semantics with explicit representation of reduction contexts), using Tait-style reducibility
predicates defined on both terms and contexts. We consider the simply typed lambda calculus as well as
its extension with abortive control operators for first-class continuations under the call-by-value and the
call-by-name evaluation strategies. For each of the proofs we present its computational content that takes
the form of an evaluator in continuation-passing style and is an instance of normalization by evaluation.
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1 Introduction

In the term-rewriting setting, a typical presentation of the lambda calculus as a

prototypical programming language relies on the grammar of terms and a reduction

relation defined on these terms. Felleisen et al. have introduced the notion of reduc-

tion/evaluation contexts [15–17] that proved useful in expressing various reduction

strategies concisely, building on the notion of context as a term with a hole [2].

Felleisen’s contexts represent “the surrounding term” of the current subterm, or “the

rest of the computation”, and they directly correspond to continuations: the latter

can be seen as functional representations of contexts. More precisely, Danvy ob-

served that reduction contexts arise as defunctionalized continuations of a one-step
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reduction function whereas evaluation contexts arise as defunctionalized continua-

tions of an evaluation function (i.e., big-step) [11, 12]. Since these defunctionalized

representations of continuations are in both cases the same, the terms “evaluation

context” and “reduction context” are usually used interchangeably, and we will

adhere to this practice in the remainder of this article.

Because of their close relation to continuations, the benefits of using contexts

can be seen perhaps most prominently in languages with control operators, i.e.,

syntactic constructs that manipulate the current continuation/context [15]. More-

over, as shown by Wright and Felleisen [27], context-based reduction semantics of a

programming language provide a convenient formalism for expressing and proving

type soundness properties.

In this article we present yet another application of contexts: we give novel

proofs of termination of evaluation in the simply typed lambda calculus under the

call-by-value and call-by-name reduction strategies where reduction contexts play a

major role. Subsequently we extend the simply typed lambda calculus with common

abortive control operators: callcc, abort and Felleisen’s C and we use the same

approach as for the pure lambda calculus to prove termination for the extended

language, using its standard context-based reduction semantics.

The method of proof we apply in this work—using context-based variant of Tait-

style reducibility predicates [25]—is a modification of the method considered in a

previous work of Biernacka et al. that used “direct-style” reducibility predicates

[9]. In effect, we obtain direct, simple proofs of termination that take advantage

of the context-based formulation of the reduction semantics. In contrast, many of

the existing proofs of normalization properties for typed lambda calculi with control

operators are indirect and they use a translation to another language already known

to be normalizable [1, 18, 24]. This line of work on proof-theoretic properties of

typed control operators was originated by Griffin who gave a type assignment to

Felleisen’s C operator, abort and callcc, and who proved termination of evaluation

for his language using a translation to the simply typed lambda calculus akin to

Plotkin’s colon translation [18].

On the other hand, the method of proving normalization using Tait-style re-

ducibility predicates has been applied to the pure lambda calculus, both for weak

and strong normalization [5,25,26] as well as for weak head normalization under call

by name (essentially due to Martin-Löf) and call by value (due to Hoffmann) [9].

An extension to control operators has been considered by Parigot who modified

Girard’s reducibility candidates to prove strong normalization for his second-order

λµ-calculus corresponding to classical natural deduction [21]. Berger and Schwicht-

enberg identified the computational content of their constructive proof of strong

normalization that uses the reducibility method to be an instance of normalization

by evaluation, and subsequently this observation has been applied to proofs of weak

head normalization by Coquand and Dybjer for combinatory logic [10] and by Bier-

nacka et al. for the lambda calculus [9]. Some of the proofs have been formalized in

proof assistants and normalizers have been extracted from them in the form of func-

tional programs [4,6]. Not surprisingly, the computational content of our proofs are

instances of normalization by evaluation; the extracted programs are evaluators in

continuation-passing style, whose continuations arise by extraction from a context
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reducibility predicate. Thus the present article provides a logical confirmation of

the connection between continuations and contexts, previously observed and inves-

tigated by Danvy [11,12].

2 The simply typed lambda calculus

In this section we present two proofs of weak head normalization for the simply

typed lambda calculus using context-based reducibility predicates à la Tait. We

consider closed terms and two strategies: call by value (i.e., applicative order) and

call by name (i.e., normal order). Contrary to previous work, we use a different

formulation of logical predicates: instead of a type-indexed family of reducibility

predicates on terms, we define two such families: one for terms and one for eval-

uation contexts. This formulation relies on the fact that we define programs as

pairs consisting of a term and an evaluation context, and evaluation contexts are

part of the syntax of the language. The specificity of this approach is that the

definition of reducibility predicates differs for each evaluation strategy. The proofs

themselves seem to be even easier to carry out than the proofs using the standard

reducibility predicates. Finally, an—expected—consequence of this approach is that

the computational content of the proofs (i.e., the extracted program) are evalua-

tors in continuation-passing style. These CPS evaluators can be otherwise obtained

by CPS-translating the evaluators extracted from the standard proofs (in both the

call-by-value and call-by-name strategies).

2.1 Terms: syntax and typing

We introduce terms and reduction contexts as two syntactic categories, where the

syntax of terms is standard:

(terms) t ::= x | λx.t | t t

and the syntax of reduction contexts depends on the strategy we choose for reduction

(in fact, the grammar of reduction contexts reflects the reduction strategy). Because

of that, we postpone the actual definitions of reduction contexts for call by value

and call by name to Section 2.2 and Section 2.3, respectively.

We define the set of free and bound variables in a term in the usual way, and

we distinguish closed terms, i.e., terms with no free variables. As is also standard,

we identify terms that differ only in the names of their bound variables.

Next, we define a typing relation for terms, again in the standard way. Types

are either base types, or arrow types:

(types) A ::= b | A→ A

and the typing relation on terms is given by the following inference system, where

Γ is the usual typing environment associating free variables with their types:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t0 : A→ B Γ ` t1 : A

Γ ` t0 t1 : B
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2.2 The call-by-value reduction strategy

2.2.1 Contexts

Given the grammar and the typing of terms from Section 2.1, we now define call-

by-value reduction contexts as follows:

(CBV contexts) E ::= • | v E | E t

(values) v ::= λx.t

where values form a subcategory of terms and are used to denote normal forms.

Contexts are part of the syntax and not just a metarepresentation of “terms

with a hole”. They are represented inside-out, i.e.: • represents the empty context,

v E represents the “term with a hole” E[v [ ]] (in an informal notation), and E t

represents the “term with a hole” E[[ ] t]. We say a reduction context is closed, if

its constituent terms are all closed.

In order to formalize the meaning of contexts, we define the function plug map-

ping a term and a context to the term such a pair represents:

plug (t, •) = t

plug (t, v E) = plug (v t,E)

plug (t0,E t1) = plug (t0 t1,E)

We write the result of plugging the term t in the context E in the usual way: E[t].

Given the grammar of terms and contexts, we now define a program in the

call-by-value language as a pair of a term and a call-by-value reduction context:

(programs) p ::= 〈t,E〉

The program 〈t,E〉 represents the term obtained by plugging the term t into the

context E, i.e., the term E[t]. This representation allows us to represent all lambda

terms (and only lambda terms) in such a way that we explicitly state the “boundary”

of a program (or, top level); note that we do not have a way to compose programs, so

we cannot obtain a bigger program by plugging one program into another reduction

context—which is possible if we treat terms as programs in the usual way. While

this choice of representation does not matter for the pure lambda calculus, it will

play a significant role later on, when we extend the language with abortive control

operators (cf. Section 3).

Of course, according to the definition of program, various pairs of a term and a

context can represent the same “plugged term”, i.e., the application of the function

plug to different pairs may give the same lambda term as a result. From the point of

view of computation, all such pairs will be regarded as various representations of the

same program. Therefore, from now on, we will consider programs as abstraction

classes of the equivalence relation between well-typed pairs defined as follows:

〈t0,E0〉 ∼ 〈t1,E1〉 := E0[t0] = E1[t1]

where the equality on the right-hand side denotes syntactic equality modulo alpha

renaming. For example, the program 〈(λx.r) s, •〉 can be otherwise represented

by another program 〈λx.r, (• s)〉 or by 〈s, ((λx.r) •)〉. All these representations

correspond to different decompositions of the same term.
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Next, we introduce a typing relation on reduction contexts in a way consistent

with the standard typing of lambda terms.

Types of contexts are defined using the following syntax:

(context types) T ::= contA

and the typing relation on contexts is defined by the following inference system:

Γ ` • : contA

Γ ` t : A Γ ` E : contB

Γ ` E t : cont (A→ B)

Γ ` v : A→ B Γ ` E : B

Γ ` v E : contA

It is not difficult to see that function plug ensures and preserves well-typedness of

terms in the way formalized by the following lemma.

Lemma 2.1 The following hold:

(i) If Γ ` t : A and Γ ` E : cont A, then there exists a type B such that

Γ ` E[t] : B.

(ii) If Γ ` E[t] : B, then Γ ` t : A and Γ ` E : contA for some type A.

Proof. The proof is done by induction on the structure of E. 2

The type of the program 〈t,E〉 can naturally be defined to be the type of the

term E[t]; the following rule for typing programs is well defined (it does not depend

on the choice of a particular pair from an abstraction class):

Γ ` E[t] : A

Γ ` 〈t,E〉 : A

The type contA could be interpreted as in Griffin’s work [18], i.e., as ¬A (A→ ⊥),

if we included ⊥ in the grammar of types (interpreted as formulas through the

Curry-Howard isomorphism [20]). However, according to the above rule, ⊥ would

play no role in typing programs.

Finally, we observe that the class of well-typed programs defines exactly the set

of simply typed lambda terms.

2.2.2 Reduction

The grammar of contexts defined in the previous subsection determines the call-by-

value reduction strategy for evaluation. We define a one-step reduction relation on

programs as follows:

〈(λx.r) v,E〉 →v 〈r{v/x},E〉

where v is a value and the notation r{v/x} stands for the usual metaoperation of

capture-avoiding substitution of v for variable x in r. Terms of the form (λx.r) v

are the familiar call-by-value β-redexes.
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Thanks to the unique-decomposition property of the lambda calculus under call

by value, the relation→v is deterministic and it is a function on abstraction classes.

Property 1 (Unique decomposition (CBV)) For all terms t, t either is a

value, or it decomposes uniquely into a CBV reduction context E and a redex 3

r, i.e., t = E[r].

Next, we define the evaluation relation as the reflexive-transitive closure of one-

step reduction (→∗v). The result of the evaluation is a (program) value of the form

pv := 〈v, •〉.
It is easy to see that there is an exact correspondence between reductions of

programs in this sense and reductions of terms in the usual sense, according to the

following lemma.

Lemma 2.2 For each program p := 〈t,E〉, p reduces to another program p′ :=

〈t′,E′〉 if and only if the simply typed lambda term E[t] reduces to the term E′[t′]

under the standard CBV reduction strategy.

The reduction relation preserves types of programs, because of the subject re-

duction property for simply typed lambda terms: the type of a β-redex is preserved

after the reduction.

Corollary 2.3 (Progress and Preservation) For each program p, p either is a

value or it reduces uniquely to another program p′ such that if Γ ` p : A, then

Γ ` p′ : A.

2.2.3 Termination

We now give a proof of termination for call-by-value evaluation that uses logical

predicates in the style of Tait but based on contexts as well as on terms rather

than on terms only. From now on, for simplicity, we only consider closed programs,

although the method generalizes to open well-typed terms.

We first introduce two mutually inductive logical predicates: RA is defined on

closed values of type A, and CcontA is defined on closed contexts of type cont A as

follows:

Rb(v) := True

RA→B(v0) := ∀v1.RA(v1)→ ∀E. CcontB(E)→ N (〈v0 v1,E〉)

CcontA(E) := ∀v.RA(v)→ N (〈v,E〉)

where

N (p) := ∃v. p→∗v 〈v, •〉

In the standard approach, the reducibility predicate on well-typed terms ex-

presses the property that whenever a reducible term is applied to another reducible

term of the right type, the resulting term has also this property. Moreover, if a term

is reducible, then it normalizes. The proof of termination consists in showing that

3 More precisely, a decomposition is in general a context and a potential redex, i.e., a proper redex that can
be contracted, or a “stuck” term. We ignore this issue here, since the languages considered in this article
do not contain stuck terms.
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all well-typed terms are reducible, from which it follows that all well-typed terms

normalize.

Here, we prove normalization using a modified version of the reducibility pred-

icate, noted RA. First of all, we only need to define this property on well-typed

values (we could extend it to all well-typed terms, but it is not necessary for the

proof). A reducible value is such that, when applied to another reducible value,

and paired with a reducible context, normalizes as a program. Simultaneously, we

define a reducibility predicate on well-typed reduction contexts, CcontA, saying that

any reducible value in a reducible context normalizes as a program. The typing

properties ensure that the programs occurring in the definitions of the predicates

are all well typed, but we do not need to know their type in order to prove the

normalization theorem.

Lemma 2.4 Let t be a well-typed term such that x1 : B1, . . . , xn : Bn ` t : A.

Next, let ~v be a sequence of closed well-typed value terms such that ` vi : Bi
and RBi(vi) for 1 ≤ i ≤ n. Then for all closed well-typed reduction contexts E

such that ` E : cont A and CcontA(E), the program 〈t{~v/~x},E〉 normalizes, i.e.,

N (〈t{~v/~x},E〉) holds. (Notation t{~v/~x} stands for the simultaneous substitution of

each value term vi for the free variable xi in t.)

Proof. The proof is done by induction on the structure of t.

Case x. By assumption x is one of the variables xi and t{~v/~x} = vi. Hence,

by assumption RA(vi) and for any E such that CcontA(E) holds, unfolding the

definition of CcontA entails that N (〈vi,E〉) holds.

Case λx.r. Because λx.r is well typed, its type A must be an arrow type; let

A = A′ → A′′. Taking r′ = r{~v/~x}, we have (λx.r){~v/~x} = λx.r′. We

will show that RA(λx.r′) holds, and from this fact it follows that the required

N (〈(λx.r){~v/~x},E〉) holds as in the previous case. In order to prove RA(λx.r′),

let us assume that v is a value of type A′ and such that RA′(v) holds. Next,

let E be a well-typed context of type A′′ and such that CcontA′′(E) holds. We

have to prove that N (〈( λx.r′)v,E〉) holds. By the reduction rule, 〈(λx.r′) v,E〉
reduces in one step to program 〈r{~v/~x, v/x},E〉. By induction hypothesis,

N (〈r{~v/~x, v/x},E〉) holds and hence also N (〈(λx.r′) v,E〉) holds.

Case t0 t1. Since t0 t1 is well typed, then x1 : B1, . . . , xn : Bn ` t0 : C → A

and x1 : B1, . . . , xn : Bn ` t1 : C for some type C. Taking t′0 = t0{~v/~x} and

t′1 = t1{~v/~x}, we have (t0 t1){~v/~x} = t′0 t
′
1. By definition, the program 〈t′0 t′1,E〉 is

the same as the program represented by 〈t′0,E t′1〉. Since t0 is a subterm of t0 t1,

we can apply the induction hypothesis to deduce N (〈t′0,E t′1〉) provided that E t′1
is well typed and that Ccont (C→A)(E t′1) holds. The former is easy to see, and

for the latter let us unfold the definition of Ccont (C→A). Let v be a value of type

C → A and such that RC→A(v) holds. We need to show that N (〈v,E t′1〉) holds.

Here again we can use another representative of the class of programs equal to

〈v,E t′1〉, such as 〈t′1, v E〉. Now we can apply the induction hypothesis again, this

time for t1, provided that v E is well typed and Ccont C(v E) holds. And again, the

former property is easy to see, and for the latter we again unfold the definition of

Ccont C : let v′ be a value of type C and such that RC(v′) holds. We now need to
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show that N (〈v′, v E〉) holds. But this is equivalent to showing that N (〈v v′,E〉)
holds, and this property follows from the fact that RC→A(v) holds by an earlier

assumption.

2

Theorem 2.5 (Termination of CBV evaluation) If t is a closed well-typed

term, then N (〈t, •〉) holds.

Proof. It is straightforward to see that the empty context satisfies CcontA for any

type A. From Lemma 2.4 it follows that if we take a closed well-typed term t

and put it in the empty context, then the resulting program evaluates to a value

program. 2

It follows that all closed well-typed terms evaluate to a value in the standard

sense.

2.2.4 Extracted evaluator

The specification of the normalization problem and the proof of Theorem 2.5 can

be formalized in a number of ways and its computational content can be extracted

in the form of a lambda term that can be interpreted as an evaluator for the object

language [3–6, 9]. In this work, our interest lies not in completely formalizing the

problem—it can easily be done, e.g., along the lines of the work cited above—but

in showing another way of proving normalization using a context-based approach.

Therefore we conduct the development on an informal level and we only outline the

program that can be extracted from the proof of Theorem 2.5. The basic idea of

program extraction relies on the Curry-Howard correspondence between proofs and

programs: roughly, we can view the proof of Theorem 2.5 as a lambda term (the

proof is constructive). In this proof term, some parts represent logical inferences and

some parts can be seen as computations (here, these computations serve to build

the normal form of a given term). Erasing the logical parts, we obtain a lambda

term that only contains computationally relevant parts of the original proof, and it

is this term that we call the “extracted” program—in our case, an evaluator, i.e., a

program computing weak head normal forms of lambda terms. This is essentially

what the modified realizability interpretation does to a proof term to extract its

computational content [3, 9].

If we apply this method of extraction to the proof term for Theorem 2.5, we

obtain a program that normalizes simply-typed lambda terms into values according

to the call-by-value strategy. The program extracted from the proof of Lemma 2.4

is in continuation-passing style and its structure is the following:

eval~x xi = λ~v~uκ.κ vi ui

eval~x λx.t = λ~v~uκ.κ ((λx.t){~v/~x}) (λvuκ.eval~xx t (~vv) (~uu) κ)

eval~x t0 t1 = λ~v~uκ.eval~x t0 ~v~u (λv0u0.eval
~x t1 ~v~u (λv1u1.u0 v1u1 κ))

The evaluator is parameterized by the vector of free variables occurring in a term

(~x) and it uses two environments: one (~v) containing values to be substituted for

the free variables ~x in the evaluated term, and one (~u) containing functions (these

functions arise as the computational content of the relations RA for appropriate
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A). The substitutions are needed in the final step of computation when we have to

return a value as a closed term—this is the only place where the first environment

plays a role. But whenever a lambda abstraction in the object language is applied

to a value, instead of substitution, we apply the suitable function from the second

environment and evaluate the body of the lambda abstraction with the given ar-

gument. (Note that apart from supplying the argument as a syntactic value, the

function evaluating the body of an abstraction expects another function that knows

how to evaluate the body of the supplied argument—a value—in case it becomes

applied in the future.) Therefore, this evaluator is an instance of normalization by

evaluation—normalization (reduction) in the source language is done by evaluation

on the metalevel.

Continuations (κ) in the evaluator arise as the computational content of the

relations CcontA for appropriate A. The syntactic representations of contexts we

used in the proof can be optimized away (i.e., simply erased) since they do not

play any role in the evaluator. This optimization is not arbitrary—it is prov-

ably correct and it corresponds to Berger’s optimization to eliminate unused object

variables, based on distinguishing between computationally relevant and irrelevant

variables [3]. Without this optimization, the extracted evaluator would thread an

additional argument—the context—which is never used. 4

The function eval is the computational content of the proof of Lemma 2.4. In

the proof of Theorem 2.5, we apply Lemma 2.4 with the empty sequence of values

and with the empty context to obtain the proof of N (〈t, •〉). Thus the program

extracted from the proof of the fact CcontA(•) is the initial continuation with which

we activate the eval function. It is easy to observe that this initial continuation is

the function λvu.v; as expected, this initial continuation immediately returns the

value it is passed as argument (here, it is also passed a function associated with the

value which is ignored).

The complete evaluator therefore can be written as follows:

norm t = evalε t εεκinit

where κinit = λvu.v and ε denotes the empty sequence.

According to the normalization-by-evaluation nomenclature, the eval function

“reflects” object-level terms at the metalevel (as functions accepting two environ-

ments and a continuation) and the application to the initial (empty) environments

and the initial continuation is the “reification” of metaobjects at the object level.

The evaluator extracted from the proof is in continuation-passing style, i.e., all

computations are sequentialized and their intermediate results are named. In this

case, the order of evaluation imposed by using continuations is call by value.

2.3 The call-by-name reduction strategy

The development for the call-by-name reduction strategy is done along the same

lines as the one for call by value, modulo necessary adjustments. In this subsection,

we only give a brief account of call by name, pinpointing the main differences with

the previous subsection.

4 In contrast, the representations of contexts are essential in the evaluators for control operators presented
in Section 3.
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2.3.1 Syntax and typing

The terms are the same as in call by value, but reduction contexts have to be defined

differently:

(CBN contexts) E ::= • | E t

In call by name, we do not have the context v E and so the plug function has fewer

cases. The typing relation for CBN contexts is a subset of the inference rules for

CBV contexts.

The notion of program and its typing are defined as in the CBV case, using the

equivalence relation on pairs of terms and CBN contexts. All the typing properties

stated in Section 2.2.1 hold for call by name as well.

2.3.2 Reduction and termination

The one-step reduction relation for the call-by-name strategy differs in that a

lambda abstraction can be applied to an arbitrary term instead of to a value:

〈(λx.r) t,E〉 →n 〈r{t/x},E〉

All the above adjustments are standard and the properties analogous to those

of Section 2.2.2 hold for call-by-name as well. Next we need to define the logical

relations needed for the proof of termination for the call-by-name case:

Rb(v) := True

RA→B(v) := ∀t.QA(t)→ QB(v t)

QA(t) := ∀E. CcontA(E)→ N (〈t,E〉)

CcontA(E) := ∀v.RA(v)→ N (〈v,E〉)

where

N (p) := ∃v. p→∗n 〈v, •〉
Here, we also define two main logical predicates: RA on closed values of type A

and CcontA on closed contexts of type contA. The auxiliary predicate QA is defined

on closed terms of type A and it expresses the property that a term in any context

satisfying CcontA normalizes (as a program).

We are now ready to state the main result of this section.

Lemma 2.6 Let t be a well-typed term such that x1 : B1, . . . , xn : Bn ` t : A.

Next, let ~t be a sequence of closed well-typed terms such that ` ti : Bi and QBi(ti) for

1 ≤ i ≤ n. Then for all closed well-typed reduction contexts E such that ` E : contA
and CcontA(E), the program 〈t{~t/~x},E〉 normalizes, i.e., N (〈t{~t/~x},E〉) holds.

Proof. The proof is done by induction on the structure of t.

Case x. By assumption x is one of the variables xi and t{~t/~x} = ti. Hence, by as-

sumption QA(ti) and for any E such that CcontA(E) holds, unfolding the definition

of QA(ti) entails that N (〈ti,E〉) holds.

Case λx.r. Because λx.r is well typed, its type A must be an arrow type; let

A = A′ → A′′. Taking r′ = r{~t/~x}, we have (λx.r){~t/~x} = λx.r′. We will
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show that RA(λx.r′) holds, and from this fact, by unfolding the definition of

CcontA(E), it follows that the required N (〈(λx.r){~t/~x},E〉) holds. In order to

prove RA(λx.r′), let us assume that s is a well-typed term of type A′ and such

that QA′(s) holds. Next, let E be a well-typed context of type A′′ and such that

CcontA′′(E) holds. We have to prove that N (〈(λx.r′) s,E〉). By the reduction

rule, 〈(λx.r′) s,E〉 reduces in one step to program 〈r{~t/~x, s/x},E〉. By induction

hypothesis, N (〈r{~t/~x, s/x},E〉) holds and hence also N (〈(λx.r′) s,E〉) holds.

Case t0 t1. Since t0 t1 is well typed, then x1 : B1, . . . , xn : Bn ` t0 : C → A

and x1 : B1, . . . , xn : Bn ` t1 : C for some type C. Taking t′0 = t0{~t/~x} and

t′1 = t1{~t/~x}, we have (t0 t1){~t/~x} = t′0 t
′
1. By definition, the program 〈t′0 t′1,E〉 is

the same as the program represented by 〈t′0,E t′1〉. Since t0 is a subterm of t0 t1,

we can apply the induction hypothesis to deduce N (〈t′0,E t′1〉) provided that E t′1
is well typed and that Ccont (C→A)(E t′1) holds. The former is easy to see, and

for the latter let us unfold the definition of Ccont (C→A). Let v be a value of type

C → A and such that RC→A(v) holds. We need to show that N (〈v,E t′1〉). Here

again we can use another representative of the class of programs equal to 〈v,E t′1〉,
such as 〈v t′1,E〉. From the definition of RC→A(v), it is sufficient to show that

QC(t′1). By induction hypothesis on t1, we obtain that N (〈t′1,E′〉) for any context

E′ such that Ccont C(E′), which proves that QC(t′1).

2

Theorem 2.7 (Termination of CBN evaluation) If t is a closed well-typed

term, then N (〈t, •〉) holds.

Proof. Since the empty context satisfies CcontA for any type A, the theorem follows

from Lemma 2.6. 2

2.3.3 Extracted evaluator

The program we obtain by extraction from the proof of Lemma 2.6 is as follows:

eval~x xi = λ~t~uκ.ui κ

eval~x λx.t = λ~t~uκ.κ ((λx.t){~t/~x}) (λsuκ.eval~xx t (~ts) (~uu) κ)

eval~x t0 t1 = λ~t~uκ.eval~x t0 ~t~u (λvu.u (t1{~t/~x}) (λκ.eval~x t1 ~t~u κ))

As in call by value, the evaluator is in continuation-passing style (but here, the use

of continuations imposes the call-by-name evaluation order) and it threads two envi-

ronments: ~t with unevaluated closed terms to be substituted in the final value, and ~u

with delayed computations, i.e., thunks, waiting to be activated with a continuation

(κ).

The complete evaluator for call by name, extracted from the proof of Theo-

rem 2.7, can be written as follows:

norm t = evalε t εεκinit

where κinit = λvu.v.

11
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2.4 Comparison with the standard approach

In a previous work by Biernacka et al. the authors formalized the problem of weak

head normalization for the simply typed lambda calculus using standard, “direct-

style” logical predicates à la Tait [9]. By extraction using modified realizability,

they obtained two evaluators for the two reduction strategies. Not surprisingly, the

evaluators obtained in the present work are closely related to those “direct-style”

evaluators. In the call-by-name case, the evaluator we obtained here is a CPS-

translated counterpart of the call-by-name evaluator from the cited work (using

the standard call-by-name CPS transformation [22]). In the call-by-value case, the

evaluator is also in CPS but obtained by the standard call-by-value translation

from the call-by-value direct-style evaluator. Both evaluators obtained here differ

slightly from literal CPS translations because here we used slightly optimized logical

predicates: we defined them on values only and therefore we did not need to include

the condition that they normalize in the empty context in the definition of the

predicate RA, because it is trivially satisfied for values. If we had defined the

logical predicates on terms, in each case we would have obtained an evaluator that

would be exactly the CPS-translated version of the respective direct-style evaluator

(but it would contain redundancies.)

3 Abortive control operators

In this section, we extend the simply typed lambda calculus with abortive control

operators for first-class continuations and we prove termination of evaluation in the

extended language under the call-by-value and call-by-name reduction strategies.

3.1 The call-by-value reduction strategy

3.1.1 Terms and contexts: syntax and typing

The language we consider here is the simply typed lambda calculus extended with

the binder version of the operator callcc (Kk.t), introduced by Reynolds [23], and

with a construct to apply a captured continuation (k ←↩ t) akin to the operator

throw known from Standard ML of New Jersey [19]. When evaluated, the expression

Kk.t captures the current continuation (in some representation, e.g., as a reduction

context), binds it to k and evaluates t with the current continuation. If at some

point a value is thrown to k, the then-current continuation is discarded and the

continuation bound to k becomes the current continuation. Hence, abortive control

operators model jumps.

In the reduction semantics for callcc that we consider, captured continuations

will be represented syntactically by reduction contexts. Therefore, we extend the

syntax with applications of a captured context to a term (E←↩ t), an expression that

may arise in the process of evaluation of programs containing callcc. The extended

grammar of terms reads as follows:

(terms) t ::= x | λx.t | t t | Kk.t | k ←↩ t | E←↩ t

where context variables (or, continuation variables) k are drawn from a separate set

than object variables x, i.e., a continuation variable can only be used in the binder

12
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Kk.t or in a context application expression k ←↩ t.
In accordance with the description above, the construct E←↩ t is never used in

writing actual programs in languages with callcc and throw. Therefore, we distin-

guish terms that do not contain any subterm of the form E ←↩ t and we call such

terms plain terms.

In addition to the standard call-by-value reduction contexts, the language con-

tains contexts of the form E′ E representing “the term with the hole” E[E′ ←↩ [ ]],

whereas functions remain the only values:

(CBV contexts) E ::= • | v E | E t | E′ ←↩ E

(values) v ::= λx.t

The plugging function is defined as before, with the new context handled as follows:

plug (t,E′ E) = plug (E′ ←↩ t,E)

As for the simply typed lambda calculus, we define programs as pairs consisting

of a term and a reduction context and we equate such pairs if they represent the

same plugged term. We say a term, a context or a program is closed if none of its

object variables or continuation variables occur free.

Besides plain terms, we also distinguish plain contexts and plain programs. In

the sequel, we will show that plain programs have the strong type soundness prop-

erty (not guaranteed if we consider arbitrary terms) and we will prove termination

of evaluation for plain programs.

The grammar of types of terms and contexts remains unchanged. However, in

the presence of continuation variables (k) the typing judgments use an additional

typing context ∆ that associates continuation variables with their types. Terms are

assigned types according to the following inference rules:

Γ, x : A; ∆ ` x : A

Γ, x : A; ∆ ` t : B

Γ; ∆ ` λx.t : A→ B

Γ; ∆ ` t0 : A→ B Γ; ∆ ` t1 : A

Γ; ∆ ` t0 t1 : B

Γ; ∆, k : contA ` t : A

Γ; ∆ ` Kk.t : A

Γ; ∆, k : contA ` t : A

Γ; ∆, k : contA ` k ←↩ t : B

Γ; ∆ ` E : contA Γ; ∆ ` t : A

Γ; ∆ ` E←↩ t : B

We can see that these rules agree with the standard typing for first-class contin-

uations both from the semantics and logic viewpoints [1, 19, 27]. In particular, if

we interpret them through the Curry-Howard correspondence, we obtain a natu-

ral deduction system for minimal classical logic, i.e., minimal logic + Peirce’s law.

Indeed, we have λy.Kk.y (λx.k ←↩ x) : ((A→ B)→ A)→ A.

We also need to define a set of rules for typing contexts:

13
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Γ; ∆ ` • : contA

Γ; ∆ ` v : A→ B Γ; ∆ ` E : contB

Γ; ∆ ` v E : contA

Γ; ∆ ` t : A Γ; ∆ ` E : contB

Γ; ∆ ` E t : cont (A→ B)

Γ; ∆ ` E′ : contA Γ; ∆ ` E : contB

Γ; ∆ ` E′ ←↩ E : contA

Finally, the rule for typing a complete program refers to the type of the term

represented by that program:

Γ; ∆ ` E[t] : A

Γ; ∆ ` 〈t,E〉 : A

3.1.2 Reduction

The one-step reduction relation of our language is given by the following rules:

〈(λx.t) v,E〉 →v 〈t{v/x},E〉

〈Kk.t,E〉 →v 〈t{E/k},E〉

〈E′ ←↩ v,E〉 →v 〈v,E′〉

Besides the usual βv rule modeling function applications, we have the rule for cap-

turing the current continuation (represented as a reduction context) and the rule

for applying a previously captured context. Terms of the form (λx.t) v, Kk.t and

E′ ←↩ v are redexes. Note, however, that the two new reductions are context sen-

sitive, because—unlike in β-reduction—the reduction step alters not only redexes

themselves, but also the surrounding context [8]. This is the reason why we need

to be able to clearly state the boundary of the entire program.

Before proceeding to the proof of termination of evaluation of well-typed plain

programs, let us discuss some of the typing properties of the presented type sys-

tem. We base our presentation on Wright and Felleisen’s work who considered type

soundness of a polymorphic functional language with callcc and abort [27].

Because of the typing and reduction rules for context application, if we allow for

non-plain programs, our language enjoys only weak type soundness, i.e., well-typed

programs reduce to well-typed programs, but the type may not be preserved. The

reason for the violation of the subject reduction property is the abortive character

of the expression E′ ←↩ v in the reduction rule 〈E′ ←↩ v,E〉 →v 〈v,E′〉. In general,

the answer types of E and E′ do not have to be the same. 5 Nevertheless, since the

language satisfies the unique-decomposition property and weak type soundness (the

proofs of both properties are routine), we can state the following proposition:

Proposition 3.1 (Progress) For each program p, p either is a value or it reduces

uniquely to another program p′ such that if Γ; ∆ ` p : A, then Γ; ∆ ` p′ : B for

some type B.

Though it is impossible to prove a stronger type soundness property in the

general case, we can obtain such a property if we consider only plain programs.

As we will see, plain programs can be shown to satisfy the strong type soundness

5 The answer type of a context is the top-level type of the program obtained by pairing the context with
any term of the correct type.
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property stating that the type of a plain program and of its final value are the same,

which in general is sufficiently strong and together with the termination theorem of

Section 3.1.3 ensures that any well-typed plain program evaluates to a unique value

of the same type. However, even in the case of plain programs, we cannot hope for

a standard subject reduction property of our type system, since, in the course of

computation, contexts get captured and are substituted for continuation variables,

which leads to non-plain programs.

We shall prove strong type soundness for the above type system by relating it to

a more restrictive one, namely an annotated type system that allows for applications

of contexts of one fixed answer type. In the annotated type system the annotation

on the turnstyle specifies the type of the entire program, of which the given phrase

can be a part. Only contexts of that answer type are allowed to be captured and

applied later on.

Γ, x : A; ∆ `B x : A

Γ, x : A; ∆ `C t : B

Γ; ∆ `C λx.t : A→ B

Γ; ∆ `C t0 : A→ B Γ; ∆ `C t1 : A

Γ; ∆ `C t0 t1 : B

Γ; ∆, k : contA `B t : A

Γ; ∆ `B Kk.t : A

Γ; ∆ `C E : contA Γ; ∆ `C t : A

Γ; ∆ `C E←↩ t : B

Γ; ∆, k : contA `C t : A

Γ; ∆, k : contA `C k ←↩ t : B

The contexts are typed as follows:

Γ; ∆ `A • : contA

Γ; ∆ `C v : A→ B Γ; ∆ `C E : contB

Γ; ∆ `C v E : contA

Γ; ∆ `C t : A Γ; ∆ `C E : contB

Γ; ∆ `C E t : cont (A→ B)

Γ; ∆ `C E′ : contA Γ; ∆ `C E : contB

Γ; ∆ `C E′ ←↩ E : contA

The type annotation is introduced by the rule for typing programs:

Γ; ∆ `A E[t] : A

Γ; ∆ `A 〈t,E〉

Since all the contexts occurring in a program as terms must have the same answer

type (given by the annotation), the subject reduction property for the annotated

type systems can be proved in the standard way [27]:

Proposition 3.2 If Γ; ∆ `A p and p→v p
′, then Γ; ∆ `A p′.

Next, we state a few lemmas that establish the relationship between the unanno-

tated and annotated type systems. First, proved by rule induction is the following

lemma:

Lemma 3.3 (i) If t is plain and Γ; ∆ ` t : A, then Γ; ∆ `C t : A for any type

C.

(ii) If E is plain and Γ; ∆ ` E : cont A, then Γ; ∆ `C E : cont A for some type

C.
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As a direct corollary from Lemma 3.3 we obtain:

Lemma 3.4 If p is plain and Γ; ∆ ` p : A, then Γ; ∆ `A p.

From Lemma 3.4 and Proposition 3.2, we can see that plain programs capture

and subsequently apply contexts only of one fixed answer type.

Conversely, by rule induction, we obtain that we can erase type annotations

from typing judgments for terms and contexts:

Lemma 3.5 (i) If Γ; ∆ `C t : A then Γ; ∆ ` t : A.

(ii) If Γ; ∆ `C E : contA, then Γ; ∆ ` E : contA.

As a corollary, we can remove the type annotations from typing judgments for

programs:

Lemma 3.6 If Γ; ∆ `A p, then Γ; ∆ ` p : A.

Combining Lemmas 3.4 and 3.6 and Proposition 3.2, we obtain strong type

soundness for the unannotated type system [27]:

Proposition 3.7 (Preservation) If p is plain, Γ; ∆ ` p : A and p →∗v pv, then
Γ; ∆ ` pv : A.

3.1.3 Termination

Our goal in this section is to prove termination of call-by-value evaluation of well-

typed plain programs (hence, of well-typed plain terms). The logical predicates

for the language with callcc are exactly the same as for the simply typed lambda

calculus and we state a termination theorem analogous to that of Section 2.2.3.

In the statement of the theorem we have to keep track not only of the terms

that are to be substituted for free object variables, but also of the contexts to be

substituted for free continuation variables.

Lemma 3.8 Let x1 : B1, . . . , xn : Bn; k1 : cont C1, . . . , km : cont Cm ` t : A and t

be a plain term. Next, let ~v be a sequence of closed well-typed value terms such that

` vi : Bi and RBi(vi) for 1 ≤ i ≤ n, and let ~E be a sequence of closed well-typed

contexts such that ` Ei : cont Ci and Ccont Ci(Ei) for 1 ≤ i ≤ m. Then for all

closed well-typed reduction contexts E such that ` E : cont A and CcontA(E), the

program 〈t{~v/~x}{~E/~k},E〉 normalizes, i.e., N (〈t{~v/~x}{~E/~k},E〉) holds.

Proof. The proof proceeds exactly as in Section 2.2.3, by induction on the structure

of terms. We will show only the two cases for the two new syntactic constructs.

Case Kk.t. Because Kk.t is well typed, k is of type cont A and t is of type A.

Taking t′ = t{~v/~x}{~E/~k}, we have (Kk.t){~v/~x}{~E/~k} = Kk.t′. We have to

show that N (〈Kk.t′,E〉) holds. But this program reduces in one step to program

〈t′{E/k},E〉. In turn, this program normalizes by induction hypothesis, because

t is a subterm of Kk.t and we know by assumption that E is well typed and that

CcontA(E), so we can use it for substitution in t in the induction step.

Case ki ←↩ t. By assumption, ki is a continuation variable of type cont Ci and

(ki ←↩ t){~v/~x}{~E/~k} = Ei ←↩ t{~v/~x}{~E/~k}. Let t′ = t{~v/~x}{~E/~k}. We have
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to show that N (〈Ei ←↩ t′,E〉) holds. But the program 〈Ei ←↩ t′,E〉 can be

represented also as 〈t′,Ei ←↩ E〉. We can now apply the induction hypothesis for

t provided that the context Ei ←↩ E is well typed and that Ccont (Ci→A)(Ei ←↩ E)

holds. The former is easy to see, and for the latter we unfold the definition of

Ccont (Ci→A). Let v be a value of type Ci → A and such that RCi→A(v) holds.

We need to show that N (〈v,Ei ←↩ E〉) holds. The program 〈v,Ei ←↩ E〉 can be

represented by 〈v ←↩ Ei,E〉 and this program reduces in one step to program

〈v,Ei〉. But we know that N (〈v,Ei〉) by the assumption that Ccont Ci(Ei) which

concludes the proof in this case.

2

Theorem 3.9 (Termination of CBV evaluation) If t is a plain, closed, well-

typed term, then N (〈t, •〉) holds.

Proof. Since the empty context satisfies CcontA for any type A, the theorem follows

from Lemma 3.8. 2

3.1.4 Extracted evaluator

The computational content of the proof of Lemma 3.8 can be written as follows:

eval~x,
~k xi = λ~v~u~E~κEκ.κ vi ui

eval~x,
~k λx.t = λ~v~u~E~κEκ.κ (λx.t′) (λvuEκ.eval~xx,

~k t (~vv) (~uu)~E~κ Eκ)

eval~x,
~k t0 t1 = λ~v~u~E~κEκ.eval~x,

~k t0 ~v~u~E~κ(E t′1)

(λv0u0.eval
~x,~k t1 ~v~u~E~κ(v0 E) (λv1u1.u0 v1 u1 E κ))

eval~x,
~k Kk.t = λ~v~u~E~κEκ.eval~x,

~kk t ~v~u(~EE)(~κκ)Eκ

eval~x,
~k ki ←↩ t = λ~v~u~E~κEκ.eval~x,

~k t ~v~u~E~κ(Ei ←↩ E)(λvu.κi vu)

where λx.t′ = (λx.t){~v/~x}{~E/~k} and t′1 = t1{~v/~x}{~E/~k}.

The extracted function eval is parameterized by a vector of free object variables

(~x) and by a vector of free continuation variables (~k). It uses two additional en-

vironments: one for keeping track of contexts to be substituted in the final value

(~E) and one for storing continuations associated with these contexts (~κ)—these

continuations are waiting to be activated by a throw construct.

The first three clauses of the function eval are similar to those of the call-by-value

evaluator for the plain lambda calculus (cf. Section 2.2) except that they thread

the two new context environments and the current context (E). Evaluation of Kk.t
consists in capturing the current context E and its functional representation κ in the

appropriate environments and then evaluating t in the current context, using the

modified environments. Whenever a captured context is thrown a value using the

throw construct κi ←↩ t, the right context Ei is fetched from the environment ~E and

its functional representation κi becomes the continuation with which evaluation of

t is invoked. Syntactic representations of contexts E are only used in substitutions

for free continuation variables in the final value.

17



Biernacka and Biernacki

The complete evaluator, extracted from the proof of Theorem 3.9, can be written

as follows:

norm t = evalε,ε t εεεε • κinit
where κinit = λvu.v.

3.2 The call-by-name reduction strategy

In the call-by-name reduction strategy, reduction contexts and values coincide with

those in the call-by-name language without control operators considered in Sec-

tion 2.3. The types of terms and contexts as well as the typing rules for terms

are identical with the call-by-value case of Section 3.1, whereas the typing rules for

contexts take into account the environment ∆, but are otherwise the same as those

for the standard call-by-name contexts. The reduction rules ensure that arguments

to functions and continuations are not evaluated:

〈(λx.r) t,E〉 →n 〈r{t/x},E〉

〈Kk.t,E〉 →n 〈t{E/k},E〉

〈E′ ←↩ t,E〉 →n 〈t,E′〉

Analogously to the call-by-value case, it can be shown that the plain language

with the call-by-name reduction strategy satisfies both the weak and strong type

soundness properties. Moreover, using the logical predicates defined for the simply

typed call-by-name lambda calculus in Section 2.3.2, we prove termination of call-

by-name evaluation for the language augmented with callcc.

Lemma 3.10 Let x1 : B1, . . . , xn : Bn; k1 : contC1, . . . , km : contCm ` t : A and t

be a plain term. Next, let ~t be a sequence of closed well-typed value terms such that

` vi : Bi and QBi(ti) for 1 ≤ i ≤ n, and let ~E be a sequence of closed well-typed

contexts such that ` Ei : cont Ci and Ccont Ci(Ei) for 1 ≤ i ≤ m. Then for all

closed well-typed reduction contexts E such that ` E : cont A and CcontA(E), the

program 〈t{~t/~x}{~E/~k},E〉 normalizes, i.e., N (〈t{~t/~x}{~E/~k},E〉) holds.

The proof proceeds in the expected way, and the evaluator we extract from it is

analogous of that in Section 3.1.4, except it uses the call-by-name strategy:

eval~x,
~k xi = λ~t~u~E~κEκ.ui E κ

eval~x,
~k λx.t = λ~t~u~E~κEκ.κ (λx.t′) (λsuEκ.eval~xx,

~k t (~ts) (~uu)~E~κ Eκ)

eval~x,
~k t0 t1 = λ~t~u~E~κEκ.eval~x,

~k t0 ~t~u~E~κ(E t′1)

(λvu.u t′1 (λEκ.eval~x,
~k t1 ~t~u~E~κ Eκ) E κ)

eval~x,
~k Kk.t = λ~t~u~E~κEκ.eval~x,

~kk t ~t~u(~EE)(~κκ)Eκ

eval~x,
~k ki ←↩ t = λ~t~u~E~κEκ.eval~x,

~k t ~t~u~E~κEiκi

where λx.t′ = (λx.t){~v/~x}{~E/~k} and t′1 = t1{~v/~x}{~E/~k}.
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Operationally, callcc and throw are handled in the same way under call by name

and call by value (cf. Section 3.1.4). The only significant difference is that under

call by value a new form of context (Ei ←↩ E) is created and passed when evaluating

the throw construct—this context representation is then used only in substitutions

for the appropriate continuation variable in the final value of the program.

From Lemma 3.10, we have:

Theorem 3.11 (Termination of CBN evaluation) If t is a plain, closed, well-

typed term, then N (〈t, •〉) holds.

From the proof of Theorem 3.11, we obtain a complete call-by-name evaluator:

norm t = evalε,ε t εεεε • κinit
where κinit = λvu.v.

3.3 Other control operators

Besides the well known abortive control operator callcc, several others have been

considered in the literature on continuations. One of them is abort (A) [27], which

discards the current continuation and can be defined in our setting by the following

reduction (here, in call by value) and typing rules:

〈A t,E〉 →v 〈t, •〉
Γ; ∆ ` t : B

Γ; ∆ ` A t : A

Another control operator widely studied in the literature is Felleisen’s variant of

callcc—the control operator C [15] (contrary to callcc, it captures and discards the

current continuation), for the uniformity of the presentation accompanied here by

the throw construct, whose dynamic and static semantics are as in Section 3.1.2.

The reduction semantics of C and its type assignment are defined by the rules:

〈Ck.t,E〉 →v 〈t{E/k}, •〉
Γ; ∆, k : contA ` t : B

Γ; ∆ ` Ck.t : A

It is a matter of some minor adjustments in the proofs of termination for the

language with callcc under call by value or call by name, in order to obtain the same

result for abort and C. For example, in the call-by-value setting the extracted evalua-

tor contains the following clauses defining normalization of the A and C expressions:

eval~x,
~k At = λ~v~u~E~κEκ.eval~x,

~k t ~v~u~E~κ • kinit

eval~x,
~k Ck.t = λ~v~u~E~κEκ.eval~x,

~kk t ~v~u(~EE)(~κκ) • kinit

It is easy to see that the presented typing rules for A and C are too liberal to ensure

type preservation by reduction (because of the completely unconstrained type B in

the premises). So even though the evaluation in the simply typed language with A
and/or C always terminates, the type of the program may change in the course of

computation. If we wanted to ensure type preservation under the given reduction
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rules (which are standard), we could use a more restrictive type system that is an

extension of the annotated type system of Section 3.1.2 with the rules:

Γ; ∆ `B t : B

Γ; ∆ `B A t : A

Γ; ∆, k : contA `B t : B

Γ; ∆ `B Ck.t : A

4 Conclusion and future work

We have shown an approach to proving termination of evaluation in reduction se-

mantics using context-based reducibility predicates à la Tait. In particular, we have

presented short and direct proofs of termination of evaluation for the simply typed

lambda calculus extended with control operators callcc, abort and Felleisen’s C for

the call-by-value and the call-by-name reduction strategies. We have also presented

evaluators extracted from each of the proofs. These evaluators are instances of nor-

malization by evaluation. Moreover, they are in continuation-passing style and the

continuations arise as the computational content of the reducibility predicates for

reduction contexts. This latter fact shows a logical connection between continua-

tions and contexts; the correspondence between them has previously been observed

and investigated by Danvy in the setting of program transformations [11,12].

The method of proof developed in this paper relies on the formalism of reduction

semantics and is therefore fitted for languages with context-sensitive notion of re-

duction. In such languages a single computation step takes into account the redex as

well as its surrounding context; this context may be captured and discarded or oth-

erwise changed by the reduction step. Hence, the way of representing and reducing

programs proposed in this article seems to be particularly useful in the context-

sensitive world. We have shown one example of such a language: the simply typed

lambda calculus with abortive control operators. Another prominent example are

delimited-control operators where—unlike for abortive control operators—captured

contexts are delimited and can be composed [7,13,14]. For example, the delimited-

control operators shift and reset admit a context-sensitive reduction semantics with

two layers of reduction contexts. It is possible to adapt the method of reducibility

predicates to this more general reduction semantics and the authors are currently

working on this problem. Furthermore, it is interesting to investigate how the pro-

posed approach can be adapted to other context-sensitive languages [8] as well as

to proofs of strong normalization and to languages with a form of polymorphism.
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A An implementation of the evaluators

Below we present example OCaml implementations of the evaluators from Sec-

tion 3.1.4 and Section 3.2. These implementations can be seen as desired effects of

20



Biernacka and Biernacki

a program extraction tool but they have not been obtained in that way (in fact,

automatic tools usually produce much less readable code).

In the code, we use a function lookup that fetches an item from an environment

and a function subst all that performs substitutions of values for object variables

and substitutions of contexts for continuation variables. (This function may produce

non-plain terms with the constructor Throw’.) We state only signatures of these

two functions and omit their implementations:

lookup : ’a -> (’a * ’b) list -> ’b
subst_all : term -> (ide_v * term) list -> (ide_k * ctxt) list -> term

A.1 Call by value

type term =
| Var of ide_v
| Lam of ide_k * term
| App of term * term
| Callcc of ide_k * term
| Throw of ide_k * term
| Throw’ of ctxt * term

and ctxt =
| Mt_c
| App_c of ctxt * term
| Val_c of term * ctxt
| Ctx_c of ctxt * ctxt

type func = F of (term -> func -> ctxt -> cont -> term)
and cont = term -> func -> term

(*
eval : term ->

(ide_v * term) list -> (ide_v * func) list ->
(ide_k * ctxt) list -> (ide_k * cont) list ->
ctxt -> cont -> term

*)

let rec eval t vs us cs ks c k =
match t with

| Var x ->
k (lookup x vs) (lookup x us)

| Lam(x, t) ->
k (subst_all (Lam(x,t)) vs cs)

(F (fun v u c k -> eval t ((x,v)::vs) ((x,u)::us) cs ks c k))
| App(t0, t1) ->

eval t0 vs us cs ks (App_c(c, subst_all t1 vs cs))
(fun v0 u0 -> eval t1 vs us cs ks (Val_c(v0, c))

(fun v1 u1 -> match u0 with F f -> f v1 u1 c k))
| Callcc(xk, t) ->

eval t vs us ((xk,c)::cs) ((xk,k)::ks) c k
| Throw(xk, t) ->

eval t vs us cs ks (Ctx_c(lookup xk cs, c)) (lookup xk ks)

(*
norm : term -> term

*)

let norm t = eval t [] [] [] [] Mt_c (fun v u -> v)

A.2 Call by name

type term =
| Var of ide_v
| Lam of ide_v * term
| App of term * term
| Callcc of ide_k * term
| Throw of ide_k * term
| Throw’ of ctxt * term

and ctxt =
| Mt_c
| App_c of ctxt * term

type func = F of (term -> thunk -> ctxt -> cont -> term)
and thunk = ctxt -> cont -> term
and cont = term -> func -> term
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(*
eval : term ->

(ide_v * term) list -> (ide_v * thunk) list ->
(ide_k * ctxt) list -> (ide_k * cont) list ->
ctxt -> cont -> term

*)

let rec eval t ts us cs ks c k =
match t with

| Var x ->
(lookup x us) c k

| Lam(x, t) ->
k (subst_all (Lam(x,t)) ts cs)

(F (fun s u c k -> eval t ((x,s)::ts) ((x,u)::us) cs ks c k))
| App(t0, t1) ->

let t1’ = subst_all t1 ts cs
in eval t0 ts us cs ks (App_c(c, t1’))

(fun v u -> match u with
F f -> f t1’ (fun c k -> eval t1 ts us cs ks c k) c k)

| Callcc(xk, t) ->
eval t ts us ((xk,c)::cs) ((xk,k)::ks) c k

| Throw(xk, t) ->
eval t ts us cs ks (lookup xk cs) (lookup xk ks)

(*
norm : term -> term

*)

let norm t =
eval t [] [] [] [] Mt_c (fun v u -> v)
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