APPLICATIVE FUNCTORS

Sebastian Cielemecki
June 13, 2015

FUNCTORS

FUNCTOR CLASS

Functor is a class for types which can be mapped over. It lets us
generalize the well-known map function.

The class is defined in Prelude as follows:

class Functor f where
fmap :: (a ->b) ->fa->fb

Where f represents a type of kind * -> *

THE FUNCTOR LAWS

A proper instance of functor shoud define fmap in such a way that it
satisfies the following laws:

fmap id == id
fmap (f . g) == fmap f . fmap g

The laws are quite intuitive. Mapping the identity function over a
functor should not change it in any way, and it should not be relevant
whether we map two functions composed or one after the other.

We say that fmap, when applied to a function working on given
types, so that it operates on functors over the same types.

FUNCTOR EXAMPLES: LIST AND MAYBE

Lists are naturally functors:

instance Functor [] where
fmap = map

Making Maybe a functor is quite obvious too:

instance Functor Maybe where
fmap f (Just x) = Just $ f x
fmap _ Nothing = Nothing

FUNCTOR EXAMPLES: EITHER A

For the Either datatype, wich takes two type parameters, the functor
instance is defined as below:

data Either a b = Left a | Right b

instance Functor (Either a) where
fmap f (Right x) = Right $ f x
fmap f (Left x) = Left x

We map over the second parameter. Left is analoguous to Nothing in
Maybe.

FUNCTOR EXAMPLES: 10

I/O actions can be mapped as well:

instance Functor IO where
fmap f action = do
result <- action
return $ f result

For example, one might want to change input value directly before
binding

main = do
line <- fmap (”"You said” ++) getline
print line

FUNCTOR EXAMPLES: (->) R

Functions are functors too. Consider the type r->a. It can be written
as: (->) ra. Then (->) is simply a type constructor of kind * -> * -> *I
Thus we define:

instance Functor ((->) r) where
fmap f g = (\x -> f (g x))

The mapping function changes a value of type a - which is the result
of the mapped function. In other words, fmap is function
compisition in this context.

FUNCTORS - WHAT THEY LACK

So far, we can map functions over functors to get modified ones but
what if we want to use functions like (+) to combine two functors?
We need additional tools!

APPLICATIVE FUNCTORS

FUNCTORS AND MULTIPARAMETER FUNCTIONS

Applicative functors are beefed up functors. Consider the code:

plusTwo :: Maybe (Double -> Double)
plusTwo = fmap (+) (Just 2.5)

The (+) operator is partially applied to content of the Just value. If
we want to ‘apply’ it to another Just value, it is clear we need a
function of a type:

Maybe (Double -> Double) -> Maybe Double -> Maybe Double

Applicative introduces special ap(ply) operator for this purpose.

APPLICATIVE CLASS

The Applicative class is defined as follows:

class (Functor f) => Applicative f where
pure :: a -> f a
(¢<*>) :: f (a->b) ->fa->fhb

The Applicative allowes us to embed pure computations into pure
fragments of an effectful world in convenient style, like

pure f <*> ul <*> u2 <*> ... <*> uk

1

APPLICATIVE FUNCTORS - LAWS

We require the following laws for applicative functors:

pure id <*> u == u

pure (.) <*> u <*> v <*> w == U <*> (v <*> w)
pure f <*> pure x = pure (f x)

u <*> pure y = pure ($ y) <*> u

APPLICATIVE FUNCTORS - SOME ADVANTAGES

Applicative functors have more structure than functors, but less
than monads.

- We often don't need to use monadic style. Code using only the

Applicative interface is more general than code using the Monad
interface.

- With Applicative programming has a more applicative/functional
feel, whereas monadic style encourages more sequential and
imperative style

APPLICATIVE FUNCTORS - FMAP OPERATOR

Control.Applicative provides fmap operator:

(<$>) :: (Functor f) => (a ->b) ->f a ->fb
f <$> x = fmap f x

So these two lines of code are equivalent:

pure f <*> X <*> y <*> ...
f <$> x <*> y <x> ...

14

APPLICATIVE FUNCTORS - LIFTA2

Another useful function is liftA2, which applies a function between
two applicatives, hiding the applicative style:

1iftA2 :: (a -=>b ->c¢c) ->fa->fb->fc
1iftA2 f a b = f <$> a <*> b

For example:

ghci> 1TiftA2 (:) (Just 2) (Just [1])
Just [2,1]

APPLICATIVE FUNCTORS - IO

Making an applicative instance for 10 is easy:

instance Applicative IO where
pure = return
a <*> b = do
f <- a
X <- b
return (f x)

E.g. one can perform a sequence of |0 operations and process them
with a function

main = do
print "Type Your name:”
name <- ((++).(++” 7)) <$> getlLine <*> getlLine

rint "Your name 1s " ++ name
16

APPLICATIVE FUNCTORS - SEQUENCING (MONADIC)

Consider the following example of sequencing 10 operations:

sequence :: [I0O a] -> I0 [al]
sequence [] = return []
sequence (c : cs) = do

X <= C

XS <- sequence cs

return (x : xs)

We collect values of effectful computations, but we don’t use them
until (:) is applied.

APPLICATIVE FUNCTORS - SEQUENCING (APPLICATIVE)

With applicative style we avoid the need for names of the
intermediate values:

sequence :: [IO0 a] -> IO [a]
sequence [] = pure []
sequence (c : cs) = pure (:) <*> c <*> (sequence cs)

E.g. reading multiple values:

main = do
print "How many values do You want to input?”
k <- getLine
print $ "Type values”
seqs <- sequence (replicate (read k) getline)
print "The values are:”
print segs

”n ”n

++ k ++

APPLICATIVE FUNCTORS - (->) R

For (->) r), we define Applicative instance as follows:

instance Applicative ((->) r) where
pure x = (_ -> x)
f<x>g=\x ->f x (g x)

pure should take a pure value and put it in minimum context that
still yields that value - in this case it is a function, which always
returns the same value x. The ap(ply) here is more tricky, but an
example makes it clearer:

ghci> let f = (+) <$> (+#5) <*> (*100)
ghci> :t f

f :: Integer -> Integer

ghci> f 5

510 19

APPLICATIVE FUNCTORS - EVALUATOR

Let's take a look at a simple evaluator:

data Exp v = Var v
| val Int
| Add (Exp v) (Exp v)
eval :: Exp v -> Env v -> Int
eval (Var x) e = fetch x e
eval (val i) e = i

eval (Add p q) e = eval p e + eval q e

Threading environment explicitliy makes this code a bit messy, so we
can define special functions to avoid it

20

APPLICATIVE FUNCTORS - EVALUATOR (APPLICATIVE-LIKE)

eval :: Exp v -> Env v -> Int

eval (var x) = fetch x

eval (val i) = K i

eval (Add p q) = K (+) 'S’ (eval p) 'S’ (eval q)

K::a ->env ->a
K xe=x

S :: (env -> a -> b) -> (env -> a) -> (env -> b)
S ef es e = (ef e) (es e)

Fairly applicative style, but...

21

APPLICATIVE FUNCTORS - EVALUATOR - APPLICATIVE STYLE

S and K are actually the same as monadic return and ap, which
correspond to pure and <*> in Applicative.

Note that the type of S can be written as
S :: ((->) env (a -> b)) -> ((->) env a) -> ((->) env b)

Which is the exact type of <*>. We can rewrite eval using real
Applicative syntax:

eval :: Exp v -> Env v -> Int

eval (Var x) = fetch x

eval (val i) = pure i

eval (Add p q) = pure (+) <*> (eval p) <*> (eval q)

When we now apply evaluation to environment, all sub-evaluations

will be feeded with it and the results will eventually be combined.
22

APPLICATIVE FUNCTORS - TRANSPOSE - WITH ZIPWITH

If we represent matrices by list of lists, we can define transposition
as follows:

transpose :: [[al]l -> [[a]l]
transpose [] = repeat []
transpose (xs : xss) = zipWith (:) xs (transpose xss)

We simply zip all the rows and obtain columns (which correspond to
rows in the transposed matrix)

23

APPLICATIVE FUNCTORS - TRANSPOSE (APPLICATIVE-LIKE)

The binary zipWith function can be generalized like this:

zipN :: (al ->...-> an -> b) -> [al] ->...-> [an] -> [b]
zipN f xsl...xsn = repeat f 'zapp’' xsl ’'zapp'...’'zapp’' xsn

zapp :: [a -> bl -> [a] -> [b]
zapp (f : fs) (x : xs) = f x : zapp fs xs
zapp _ _ =[]

With zapp, we can do tansposition as follows:

transp :: [[al]l -> [[all
transp [] = repeat []
transp (xs:xss) = repeat (:) 'zapp’' xs 'zapp' transp xss

With infinite list of conses and recursion we can "zapp” arbitrary

number of lists of different length!
24

APPLICATIVE FUNCTORS - TRANSPOSE - APPLICATIVE STYLE

Finally, the definition of transp in applicative style:

transp :: [[al] -> [[a]l]
transp [] = pure []
transp (xs:xss) = pure (:) <*> xs <*> (transp xXss)

Here, pure == repeat and <*> == zapp.

In reality, Applicative [] is implemented in a different way (we
associate lists with nondeterministic computations). Applicatives
like ZipList would be more suitable in this case.

25

FINAL REMARKS

- Monads are more powerful than functors. The bind operator gives
a possibility to choose next computation depending on the value
returned from the previous one

- Using functions from Control.Monad, we can define pure and <*>
as return and ap. Thus we can make a monad an instance of
Applicative

- It was a historical accident that Applicative is not a superclass of
Monad in Haskell. This is simply because Monads where
discovered and popularized earlier. This will change in GHC 710
under Applicative-Monad Proposal - any instance of Monad will
also have to be an instance of Applicative

26

SUMMARY

A few useful links:
staff.city.ac.uk/~ross/papers/Applicative.pdf

learnyouahaskell.com/
functors-applicative-functors-and-monoids

en.wikibooks.org/wiki/Haskell/Applicative_Functors

wiki.haskell.org/Applicative_functor

©@®O

27

staff.city.ac.uk/~ross/papers/Applicative.pdf
learnyouahaskell.com/functors-applicative-functors-and-monoids
learnyouahaskell.com/functors-applicative-functors-and-monoids
en.wikibooks.org/wiki/Haskell/Applicative_Functors
wiki.haskell.org/Applicative_functor

QUESTIONS?

	Functors
	Applicative functors

