Monads in functional programming - a homework

Patryk Kajdas

Please send solutions to patry93k@gmail.com. The deadline is 29.03.2015.
You can send solutions to both 5.1 and 5.2 exercises, but you will obtain only
max(cl, c2) points, where c¢i is the number of points obtained in exercise 5.i.

Ex 1 (1 point). Write a tail-recursive function equivalent to map, i.e. to
map £ [1 = []

map f x:xs = f x:map f xs

Ex 2 (1 point). Consider the following definition of cfold:
cfold f z [] =z

cfold f z (x:xs) = £ x z (\y -> cfold f y xs)
Define foldl and foldr in terms of cfold

Ex 3 (2 points). We define the MaybeT type by

newtype MaybeT m a = MaybeT (m (Maybe a))

What if we had defined it by

newtype MaybeT m a = MaybeT (Maybe (m a))

instead? What are the semantics of such type then? Could we still have defined
a monad transformer based on it? If so, define it.

Ex 4 (2 points). Why is it that the 1ift function has to be defined seper-
ately for each monad, whereas 1iftM can be defined in a universal way?

Ex 5.1 (3 points). Define a Diagnostics monad that, like the Writer monad
(wasn’t covered during the lecture - become acquainted with it!), allow the pro-
grammer to log debug messages, but in addition provides an abort operation
that stops the program when invoked. Make sure that the log is not erased
when abort is called!

Ex 5.2 (3 points). When implementing program transformations or other sym-
bolic processing, it is often necessary to generate fresh identifiers. Define a
NameSupply monad that offers an operation gensym. Every time gensym is
used, it returns the next name form the sequence a, ..., z, al, ..., z1,
a2,

Ex 6 (4 points). Devise a continuation monad transformer — give its (infor-
mal) semantics and implement it. Then explain the characteristics of a monad
obtained from combining:

e your transformer with a list monad

e the list monad transformer/ with a continuation monad


http://hackage.haskell.org/package/transformers-0.2.2.0/docs/transformers/Control-Monad-Trans-List.html

Ex 7 (6 points). Define a function callCCexp (exp from “explicit”) that acts
just as callCC but with the difference that it never returns to the current con-
tinuation unless a value is specifically passed to that continuation (so, recalling
the example from the lecture, if we call exit ¢ ‘foo’’, then eveything works as
before — but if we never call exit and reach the end of the inner do-block, we
shouldn’t get back to the outer block (where we invoked callCCexp)). Can you
define callCC and callCCexp in terms of each other? If so, do it.



