
Algebraic theories and monads

Homework

Equational theories

Let X = {x, y, z, . . .} be a countably infinite set. A signature Σ is a non-empty
finite set of function symbols with arities (which we write in superscript). A set
of all Σ-terms with variables from X is denoted TΣX .

An equational theory T is a pair 〈Σ, E〉, where Σ is a signature, and E ⊆
TΣX × TΣX is a finite set of pairs of Σ-terms with variables from X , which
we intuitively interpret as equations, and denote as t0 = t1. For example, the
theory of monoids Mon = 〈ΣMon, EMon〉 can be given as follows:

ΣMon = {·(2), ε(0)}
EMon = {(x · y) · z = x · (y · z), ε · x = x, x · ε = x}

This reads that Mon consists of a binary symbol · and a nullary symbol ε, such
that · is associative, and ε is both a left and a right unit of ·.

For an equational theory T = 〈Σ, E〉, we define a relation ≈T ⊆ TΣX × TΣX
(‘equality in one step’) as the smallest relation generated by the following
rules:

t0θ ≈T t1θ
for any substitution θ if (t0 = t1) ∈ E or (t1 = t0) ∈ E

tk ≈T t′k
f(t1, . . . , tk, . . . , tn) ≈T f(t1, . . . , t′k, . . . , tn)

for f (n) ∈ Σ and k ∈ {1 . . . n}

By≈∗T ⊆ TΣX ×TΣX we denote the reflexive and transitive closure of≈T .

Problem 1

Consider the following theory Cut:

ΣCut = ΣMon ∪ {-∗(1)}
ECut = EMon ∪ {x• · y = x•, x · y• = (x · y)•}
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Show that -• is idempotent, that is, for all x ∈X , it is the case that

(x•)• ≈∗Cut x
•

Rewriting

A term-rewriting system is similar to an equational theory, but we interpret the
‘equations’ as directed rewrite rules. In detail, a term-rewriting system is a pair
W = 〈Σ, R〉, where Σ is a signature, and R is a finite set of pairs of Σ-terms,
written as t0 7→ t1. For example:

ΣRMon = {·(2), ε(0)}
RRMon = {(x · y) · z 7→ x · (y · z), ε · x 7→ x, x · ε 7→ x}

We define a relation W ⊆ TΣX ×TΣX (‘one step of rewriting’) as the smallest
relation generated by the following rules:

t0θ  W t1θ
for any substitution θ if (t0 7→ t1) ∈ R

tk  W t′k
f(t1, . . . , tk, . . . , tn) W f(t1, . . . , t′k, . . . , tn)

for f (n) ∈ Σ and k ∈ {1 . . . n}

By  ∗W ⊆ TΣX × TΣX we denote the reflexive and transitive closure of
 W .

A term t is a normal form if there exists no term t′ such that t W t′.

A term-rewriting system is confluent if for all terms t0, t1, and t2 such that
t0  W t1 and t0  W t2, there exists a term t3 such that t1  ∗W t3 and
t2  ∗W t3.

We say that a system is normalising if it is confluent and every term has a
normal form. Note that in a normalising system, every term t has exactly one
corresponding normal form, which we denote [t].

Given an equational theory T = 〈ΣT , ET 〉 and a term-rewriting system W =
〈ΣW , RW 〉, we say that W is a directionalisation of T if ΣW = ΣT and (t0 =
t1) ∈ ET if and only if either (t0 7→ t1) ∈ RW or (t1 7→ t0) ∈ RW (but not
both).

Problem 2

Let W = 〈Σ, R〉 be a normalising directionalisation of an equational theory
T = 〈Σ, E〉. Show that t0 ≈∗W t1 if and only if [t0] = [t1]. (The latter is the
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usual equality on terms. Intuitively: to check that two terms are equal in a
theory, it is enough to normalise them and syntactically compare the normal
forms.)

Models and free models

Let T = 〈Σ, E〉 be an equational theory. A Σ-structure A consists of the follow-
ing elements:

• a set A,

• for each f (n) ∈ Σ, a function [[f ]]A : An → A.

We write A = 〈A, [[-]]A〉.

Given a Σ-structure A as above and a function σ : X → A (‘valuation of
variables’), we define the valuation of Σ-terms as follows:

• [[x]]Aσ = σ(x),

• [[f(t1, . . . , tn)]]Aσ = [[f ]]A([[t1]]Aσ , . . . , [[tn]]Aσ ) for each f (n) ∈ Σ.

A model of T is a Σ-structure A such that for all valuations σ and (t0 = t1) ∈ E,
it is the case that [[t0]]Aσ = [[t1]]Aσ .

A homomorphism between models A = 〈A, [[-]]A〉 and B = 〈B, [[-]]B〉 is a function
h : A → B such that for all f (n) ∈ Σ and a1, . . . , an ∈ A, it is the case
that:

h([[f ]]A(a1, . . . , an)) = [[f ]]B(h(a1), . . . , h(an))

A free model consists of the following elements:

• For each set X (the set of ‘generators’), a model of T , which we denote
FX = 〈FX, [[-]]FX〉,

• A family of functions ηX : X → FX,

such that for any model A = 〈A, [[-]]A〉 and a function g : X → A, there exists a
unique homomorphism ĝ : FX → A between FX and A such that

g = ĝ ◦ ηX

Note that a free model gives us a monad. In detail:

• The assignment X 7→ FX is functorial. The action on morphisms is given

as (f : X → Y ) 7→ η̂Y · f : FX → FY .

• The unit of the monad (‘return’ in Haskell) is given by η.

• The multiplication (‘join’ in Haskell) is given by îdFX : FFX → FX.
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Problem 3

For n ∈ N, we define n = {1, . . . , n}. We define the following equational theory,
which models mutable memory cell with n possible values:

ΣSt = {get(n), put
(1)
1 , . . . , put(1)

n }
ESt = {get(x1, . . . , xk−1, get(y1, . . . , yk, . . . , yn), xk+1, . . . , xn)

= get(x1, . . . , xk−1, yk, xk+1, . . . , xn),

putk(putj(x)) = putj(x),

putk(get(x1, . . . , xk, . . . xn)) = putk(xk),

get(x1, . . . , xk−1, putk(xk), xk+1, . . . , xn)

= get(x1, . . . , xk−1, xk, xk+1, . . . , xn)}

(Note that the above definition of ESt contains schemes of equations. Each
entry should be interpreted as a set of equations for j, k ∈ n.)

Prove that the following is the free model of St:

• A 7→ (A× n)n

• [[get]](f1, . . . , fn) = λ(s ∈ n).fs(s)

• [[putk]](f) = λ(s ∈ n).f(k)

• ηA(a) = λ(s ∈ n).〈a, s〉

Show that the monad given by the free model of St is the state monad as known
from Haskell.
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