Algebraic theories and monads

Homework

Equational theories

Let 2" = {z,y,z,...} be a countably infinite set. A signature ¥ is a non-empty
finite set of function symbols with arities (which we write in superscript). A set
of all ¥-terms with variables from 2" is denoted Tx 2.

An equational theory T is a pair (X, FE), where ¥ is a signature, and E C
Ts X x T Z is a finite set of pairs of X-terms with variables from £, which
we intuitively interpret as equations, and denote as ty = t;. For example, the
theory of monoids Mon = (XMon pMoen) capn he given as follows:

EMon:{.(2)7€(0)}
BNOr (o) s = (yon), sw=a, vee=a)

This reads that Mon consists of a binary symbol - and a nullary symbol ¢, such
that - is associative, and ¢ is both a left and a right unit of -.

For an equational theory T' = (3, E), we define a relation =7 C Ts 2" x Ts %
(‘equality in one step’) as the smallest relation generated by the following
rules:

————— for any substitution 6 if (tc =t;) € For (t; =tg) € F
t09 =T t19

tk =T t;f
f(tla--'atkv"'7tn) ~T f(tlv"'vt;w"'?tn)

for f™ € ¥ and k€ {1...n}

By =% C T 2 xTs Z we denote the reflexive and transitive closure of ~7.

Problem 1

Consider the following theory Cut:

ECut — EMon U {_*(1)}
ECUt:EMonU{-T.'y:'T.’ J:y.:('ry).}



Show that -® is idempotent, that is, for all x € £, it is the case that

(#%)* ~oue 2°

Rewriting

A term-rewriting system is similar to an equational theory, but we interpret the
‘equations’ as directed rewrite rules. In detail, a term-rewriting system is a pair
W = (3, R), where ¥ is a signature, and R is a finite set of pairs of Y-terms,
written as ty — t;. For example:

ERMon — {-(2),8(0)}

RBMon — (4 ). 2 x-(y-2), e-x—x, z-c+> )

We define a relation ~y C T 2" x T 2" (‘one step of rewriting’) as the smallest
relation generated by the following rules:

———— for any substitution 6 if (to — ¢1) € R
t09 MW t16

tk MW t;c
f(tl,...,tk,...,tn) MW f(tl,..., ;C,,tn)

for f™ € ¥ and k € {1...n}

By ~3 € T2 x TsZ we denote the reflexive and transitive closure of
Ww,
A term t is a normal form if there exists no term ¢’ such that ¢ ~y, t'.

A term-rewriting system is confluent if for all terms tg, 1, and ¢y such that
to ~»w t1 and to ~w to, there exists a term t3 such that ¢; ~7; t3 and
tg WT/V t3.

We say that a system is normalising if it is confluent and every term has a
normal form. Note that in a normalising system, every term ¢ has exactly one
corresponding normal form, which we denote [t].

Given an equational theory T = (X7, ET) and a term-rewriting system W =
(W RW) we say that W is a directionalisation of T if W = 7 and (¢ =
t1) € ET if and only if either (to — t1) € RV or (t; — to) € R" (but not
both).

Problem 2

Let W = (¥, R) be a normalising directionalisation of an equational theory
T = (X, E). Show that to ~}, ¢1 if and only if [to] = [t1]. (The latter is the



usual equality on terms. Intuitively: to check that two terms are equal in a
theory, it is enough to normalise them and syntactically compare the normal
forms.)

Models and free models

Let T = (X, E) be an equational theory. A X-structure 2 consists of the follow-
ing elements:

e aset A,
e for each f(™ € %, a function [f]* : A" — A.
We write 2 = (A, [-]*).

Given a Y-structure 2 as above and a function o : 2~ — A (‘valuation of
variables’), we define the valuation of ¥-terms as follows:

o [2]} = o(x),
o [f(te, ..., to)]% = [F1*([t1]2, . - ., [ta]?) for each f(™) € X

A model of T is a X-structure 2 such that for all valuations ¢ and (top = 1) € E,
it is the case that [to] = [t1]>.

A homomorphism between models A = (A, [-]*) and B = (B, [-]®) is a function
h : A — B such that for all f™ € ¥ and ay,...,a, € A, it is the case
that:

W1 (as, . an)) = L% (h(ar), ... h(an))
A free model consists of the following elements:

e For each set X (the set of ‘generators’), a model of T', which we denote
FX = <FX7 [[_HFX>7

e A family of functions nx : X — FX,
such that for any model A = (A, [-]*) and a function g : X — A, there exists a
unique homomorphism g : FX — A between FX and 2l such that
g=gonx

Note that a free model gives us a monad. In detail:

e The assignment X — F'X is functorial. The action on morphisms is given
as (f: X =>Y)—ny - f: FX - FY.

e The unit of the monad (‘return’ in Haskell) is given by 7.

e The multiplication (‘join’ in Haskell) is given by E;( :FFX — FX.



Problem 3

For n € N, we define n = {1,...,n}. We define the following equational theory,
which models mutable memory cell with n possible values:
»St — {get(™, putgl), ., puttHy
ESY = {get(z1, ..., Tr_1,86t(Y1, s Uk Yn)y Tht 1y~ -+ Tn)
=get(T1, .-, Th1, Yky Thtls - > Tn),
put (put; (x)) = put;(z),
puty (get(z1,..., Tk, ... xy)) = put,(zk),
get(z1, ..., Th—1, puty(Tr), Tha1, .-, Tn)
=get(X1, ..., The1, Thy Thgly---,Tn)}
(Note that the above definition of ESt contains schemes of equations. Each
entry should be interpreted as a set of equations for j, k € n.)
Prove that the following is the free model of St:
A (Axn)™
[get](f1,---. fn) = A(s € n).fs(s)
[put,J(f) = A(s € n).f (k)
na(a) = A(s € n).{a, s)

Show that the monad given by the free model of St is the state monad as known
from Haskell.



