
Functional Reactive Programming (Elm)

Mateusz Kołaczek

Seminarium: Zaawansowane programowanie funkcyjne

13.05.2015

Mateusz Kołaczek Functional Reactive Programming (Elm)

Bibliography

Evan Czaplicki
Elm: Concurrent FRP for functional GUIs, 2012

Evan Czaplicki
Controlling Time and Space: understanding the many
formulations of FRP, 2014.

Mateusz Kołaczek Functional Reactive Programming (Elm)

About FRP

Placeholder for FRP definition.

It’s not easy to find a definition of FRP. It’s even harder to find a
meaningful one.

Mateusz Kołaczek Functional Reactive Programming (Elm)

About FRP

Placeholder for FRP definition.

It’s not easy to find a definition of FRP. It’s even harder to find a
meaningful one.

Mateusz Kołaczek Functional Reactive Programming (Elm)

What I consider as FRP

A way to:

express time varying values in a declarative way

react to real world events in structured manner

Mateusz Kołaczek Functional Reactive Programming (Elm)

What I consider as FRP

A way to:

express time varying values in a declarative way

react to real world events in structured manner

Mateusz Kołaczek Functional Reactive Programming (Elm)

GUI programming is not easy

$("#target").click(function() {
...
});

$("#target").blur(function() {
...
});

$("#target").mousemove(function(event) {
...
});

Mateusz Kołaczek Functional Reactive Programming (Elm)

Base building block - a signal

Signal is a value, that changes over time. That’s all.

But...

we don’t have to update it explicitly, it just always has the
most recent value

change in a signal’s value propagates automatically to
dependent signals

it represents a mutable value in a functional world

When combined with pureness and immutability, it produces clean
and simple reactive code. It’s an escape hatch from callback hell.
Or event listener hell.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Base building block - a signal

Signal is a value, that changes over time. That’s all.

But...

we don’t have to update it explicitly, it just always has the
most recent value

change in a signal’s value propagates automatically to
dependent signals

it represents a mutable value in a functional world

When combined with pureness and immutability, it produces clean
and simple reactive code. It’s an escape hatch from callback hell.
Or event listener hell.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Base building block - a signal

Signal is a value, that changes over time. That’s all.

But...

we don’t have to update it explicitly, it just always has the
most recent value

change in a signal’s value propagates automatically to
dependent signals

it represents a mutable value in a functional world

When combined with pureness and immutability, it produces clean
and simple reactive code. It’s an escape hatch from callback hell.
Or event listener hell.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Base building block - a signal

Signal is a value, that changes over time. That’s all.

But...

we don’t have to update it explicitly, it just always has the
most recent value

change in a signal’s value propagates automatically to
dependent signals

it represents a mutable value in a functional world

When combined with pureness and immutability, it produces clean
and simple reactive code. It’s an escape hatch from callback hell.
Or event listener hell.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Base building block - a signal

Signal is a value, that changes over time. That’s all.

But...

we don’t have to update it explicitly, it just always has the
most recent value

change in a signal’s value propagates automatically to
dependent signals

it represents a mutable value in a functional world

When combined with pureness and immutability, it produces clean
and simple reactive code. It’s an escape hatch from callback hell.
Or event listener hell.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Simple signals

Examples
Mouse.position

Windows.dimensions

Time.every Time.second

Time.fps 60

Signals in Elm are your program’s connection to the ‘real world‘.
Elm’s signals are discrete, not continuous. They are completely
event-driven.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Simple signals

Examples
Mouse.position

Windows.dimensions

Time.every Time.second

Time.fps 60

Signals in Elm are your program’s connection to the ‘real world‘.
Elm’s signals are discrete, not continuous. They are completely
event-driven.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Signal graph

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm crash course

Goal: sketch an implementation of a simple snake game. It will:

show how a typical Elm program looks like

familiarize us with signals

We’ll visit all parts of the diagram from the previous slide in order
of their execution.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Program inputs

keys = Mouse.arrows
timer = Time.fps 10

But...

keys : Signal { x:Int, y:Int }
∗ ‘{ x = 0, y = 0 }‘ no arrows.
∗ ‘{ x =-1, y = 0 }‘ left arrow.
∗ ‘{ x = 1, y = 1 }‘ up and right arrows.
∗ ‘{ x = 0, y =-1 }‘ down, left, and right arrows.

What we want to get is:

type Direction = Up | Down | Left | Right
pressedKey : Signal Maybe Direction

Mateusz Kołaczek Functional Reactive Programming (Elm)

Program inputs

keys = Mouse.arrows
timer = Time.fps 10

But...

keys : Signal { x:Int, y:Int }
∗ ‘{ x = 0, y = 0 }‘ no arrows.
∗ ‘{ x =-1, y = 0 }‘ left arrow.
∗ ‘{ x = 1, y = 1 }‘ up and right arrows.
∗ ‘{ x = 0, y =-1 }‘ down, left, and right arrows.

What we want to get is:

type Direction = Up | Down | Left | Right
pressedKey : Signal Maybe Direction

Mateusz Kołaczek Functional Reactive Programming (Elm)

Program inputs

keys = Mouse.arrows
timer = Time.fps 10

But...

keys : Signal { x:Int, y:Int }
∗ ‘{ x = 0, y = 0 }‘ no arrows.
∗ ‘{ x =-1, y = 0 }‘ left arrow.
∗ ‘{ x = 1, y = 1 }‘ up and right arrows.
∗ ‘{ x = 0, y =-1 }‘ down, left, and right arrows.

What we want to get is:

type Direction = Up | Down | Left | Right
pressedKey : Signal Maybe Direction

Mateusz Kołaczek Functional Reactive Programming (Elm)

Mapping signals

Transforming record to single direction is straightforward:

direction dir =
if | (dir.x==1) && (dir.y==0) → Just Right

| (dir.x== -1) && (dir.y==0) → Just Left
| (dir.x==0) && (dir.y==1) → Just Up
| (dir.x==0) && (dir.y== -1) → Just Down
| otherwise → Nothing

And
we’ll use a handy and well-known function:

map : (a → b) → Signal a → Signal b

pressedKey : Signal Maybe Direction
pressedKey = Signal.map direction Keyboard.arrows

Mateusz Kołaczek Functional Reactive Programming (Elm)

Mapping signals

Transforming record to single direction is straightforward:

direction dir =
if | (dir.x==1) && (dir.y==0) → Just Right

| (dir.x== -1) && (dir.y==0) → Just Left
| (dir.x==0) && (dir.y==1) → Just Up
| (dir.x==0) && (dir.y== -1) → Just Down
| otherwise → Nothing

And
we’ll use a handy and well-known function:

map : (a → b) → Signal a → Signal b

pressedKey : Signal Maybe Direction
pressedKey = Signal.map direction Keyboard.arrows

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

So we have two sources of input, and want to update the state
basing on them:

timer = Time.fds
pressedKey = Signal.map direction Keyboard.arrows

We need a signal carrying both those values at once.

Signal.map2 : (a → b → c) →
Signal a → Signal b → Signal c

Signal.map2 (,) pressedKey timer

But... We lose the way to distinguish what caused the update
= TurboSnake.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

So we have two sources of input, and want to update the state
basing on them:

timer = Time.fds
pressedKey = Signal.map direction Keyboard.arrows

We need a signal carrying both those values at once.

Signal.map2 : (a → b → c) →
Signal a → Signal b → Signal c

Signal.map2 (,) pressedKey timer

But... We lose the way to distinguish what caused the update
= TurboSnake.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

So we have two sources of input, and want to update the state
basing on them:

timer = Time.fds
pressedKey = Signal.map direction Keyboard.arrows

We need a signal carrying both those values at once.

Signal.map2 : (a → b → c) →
Signal a → Signal b → Signal c

Signal.map2 (,) pressedKey timer

But... We lose the way to distinguish what caused the update
= TurboSnake.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

Solution: union type.

type Update = Arrows (Maybe Direction) | Timer Float

timer and pressedKey become:

timer : Signal Update
timer = Signal.map Timer Time.fps

pressedKey : Signal Update
pressedKey = Signal.map (Arrows << direction) Keyboard.arrows

(<<) is just a function composition.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

Solution: union type.

type Update = Arrows (Maybe Direction) | Timer Float

timer and pressedKey become:

timer : Signal Update
timer = Signal.map Timer Time.fps

pressedKey : Signal Update
pressedKey = Signal.map (Arrows << direction) Keyboard.arrows

(<<) is just a function composition.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

Still having two signals and no means to merge them? Merge to
the rescue!

merge : Signal a → Signal a → Signal a

Merge interleaves two given signals producing merged one.

inputs : Signal Update
inputs = Signal.merge timer pressedKey

This signal carries the most recent update, either timer or
keyboard update.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Merging signals

Still having two signals and no means to merge them? Merge to
the rescue!

merge : Signal a → Signal a → Signal a

Merge interleaves two given signals producing merged one.

inputs : Signal Update
inputs = Signal.merge timer pressedKey

This signal carries the most recent update, either timer or
keyboard update.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Folding signals

Goal: a signal that reflects the whole state of an application during
execution.
Problem: this signal’s value not only depends on other signals, but
also on it’s previous value

We must fold from the past:

foldp : (a → state → state) →
state → Signal a → Signal state

Simple example:

clickCount : Signal Int
clickCount =
foldp (λclick total → total + 1) 0 Mouse.clicks

Real life (snake) example:

loop = Signal.foldp update initialState inputs

Mateusz Kołaczek Functional Reactive Programming (Elm)

Folding signals

Goal: a signal that reflects the whole state of an application during
execution.
Problem: this signal’s value not only depends on other signals, but
also on it’s previous value
We must fold from the past:

foldp : (a → state → state) →
state → Signal a → Signal state

Simple example:

clickCount : Signal Int
clickCount =
foldp (λclick total → total + 1) 0 Mouse.clicks

Real life (snake) example:

loop = Signal.foldp update initialState inputs

Mateusz Kołaczek Functional Reactive Programming (Elm)

Folding signals

Goal: a signal that reflects the whole state of an application during
execution.
Problem: this signal’s value not only depends on other signals, but
also on it’s previous value
We must fold from the past:

foldp : (a → state → state) →
state → Signal a → Signal state

Simple example:

clickCount : Signal Int
clickCount =
foldp (λclick total → total + 1) 0 Mouse.clicks

Real life (snake) example:

loop = Signal.foldp update initialState inputs

Mateusz Kołaczek Functional Reactive Programming (Elm)

Folding signals

Goal: a signal that reflects the whole state of an application during
execution.
Problem: this signal’s value not only depends on other signals, but
also on it’s previous value
We must fold from the past:

foldp : (a → state → state) →
state → Signal a → Signal state

Simple example:

clickCount : Signal Int
clickCount =
foldp (λclick total → total + 1) 0 Mouse.clicks

Real life (snake) example:

loop = Signal.foldp update initialState inputs

Mateusz Kołaczek Functional Reactive Programming (Elm)

What is a state?

State is just a value. A record, that encompasses whole state of
application.

type alias Model =
{ snake : Snake,
direction : Direction,
pressedKey : Maybe Direction,
gameOver : Bool,
fruit : Maybe Position,
seed : Random.Seed
}

type alias Snake =
{ body : Queue.Queue Position,
head : Position
}

Mateusz Kołaczek Functional Reactive Programming (Elm)

Time for lamentation

‘But hey, one global state? Where’s the modularity? ‘
Nothing prevents you from dividing model into smaller submodels,
dividing inputs into subinputs, update into subupdates.

The upside is, whole knowledge about the program is concentrated
in one place.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Time for lamentation

‘But hey, one global state? Where’s the modularity? ‘

Nothing prevents you from dividing model into smaller submodels,
dividing inputs into subinputs, update into subupdates.

The upside is, whole knowledge about the program is concentrated
in one place.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Time for lamentation

‘But hey, one global state? Where’s the modularity? ‘
Nothing prevents you from dividing model into smaller submodels,
dividing inputs into subinputs, update into subupdates.

The upside is, whole knowledge about the program is concentrated
in one place.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Update and below

loop : Signal Model
loop = Signal.foldp update initialState inputs

inputs : Signal Update

initialState : Model

foldp : (a → state → state) →
state → Signal a → Signal state

The type of foldp requires, that:

update : Update → Model → Model

Function? What about the signals? FRP? Anything?

Mateusz Kołaczek Functional Reactive Programming (Elm)

Update and below

loop : Signal Model
loop = Signal.foldp update initialState inputs

inputs : Signal Update

initialState : Model

foldp : (a → state → state) →
state → Signal a → Signal state

The type of foldp requires, that:

update : Update → Model → Model

Function? What about the signals? FRP? Anything?

Mateusz Kołaczek Functional Reactive Programming (Elm)

For the curious

Game logic doesn’t contain any signals! We just get the inputs and
previous state, and feed it to pure function for a new state.
Unfortunately, that implies, that it’s not really interesting for us.

But... Here’s the code:

update : Update → Model → Model
update u state =
if state.gameOver
then state
else
case u of
Timer _ → state |> updateFruit >> updateDirection >>

updateSnake >> updateGameOver
Arrows a → updatePressedKey a state

Mateusz Kołaczek Functional Reactive Programming (Elm)

For the curious

Game logic doesn’t contain any signals! We just get the inputs and
previous state, and feed it to pure function for a new state.
Unfortunately, that implies, that it’s not really interesting for us.
But... Here’s the code:

update : Update → Model → Model
update u state =
if state.gameOver
then state
else
case u of
Timer _ → state |> updateFruit >> updateDirection >>

updateSnake >> updateGameOver
Arrows a → updatePressedKey a state

Mateusz Kołaczek Functional Reactive Programming (Elm)

Main (view)

main : Signal Element

Element is an Elm representation of HTML element to display. We
close the loop - after reacting to user input (declaratively), we
produce the output (also declaratively).

main = Signal.map2 view Window.dimensions loop

view : (Int, Int) → Model → Element
view (w’,h’) state = magical elm view code

View code is interesting on its own, as Elm has its own API for
drawing things on HTML page, but it’s not the topic of this
presentation.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Main (view)

main : Signal Element

Element is an Elm representation of HTML element to display. We
close the loop - after reacting to user input (declaratively), we
produce the output (also declaratively).

main = Signal.map2 view Window.dimensions loop

view : (Int, Int) → Model → Element
view (w’,h’) state = magical elm view code

View code is interesting on its own, as Elm has its own API for
drawing things on HTML page, but it’s not the topic of this
presentation.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Main (view)

main : Signal Element

Element is an Elm representation of HTML element to display. We
close the loop - after reacting to user input (declaratively), we
produce the output (also declaratively).

main = Signal.map2 view Window.dimensions loop

view : (Int, Int) → Model → Element
view (w’,h’) state = magical elm view code

View code is interesting on its own, as Elm has its own API for
drawing things on HTML page, but it’s not the topic of this
presentation.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Typical program overview

A typical Elm program consists of:

a model

a view

inputs - signals are mainly here

state update logic

It’s not forced in any way, but it emerges naturally from the way
Elm is structured.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm is not the end of FRP

There are many implementations of FRP available. They can be
roughly categorized:

first order FRP (Elm is here!)

higher order FRP (Fran)

asynchronous data flow (FRP libraries in imperative
languages)

arrowized FRP (Netwire, brrrr...)

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

First order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are static

Synchronous by default - events are processed in order they
came, you can’t (by default) finish processing later event
before the earlier

This gives a few nice properties

Simplicity and efficiency

Good architecture emerges naturally

Hot swapping

Time travel debugging

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are dynamic

Synchronous by default

We can create new signals, delete signals, reconnect them in
different ways at runtime.

join :Signal (Signal a) → Signal a

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher order FRP

Signals are connected to the world

Signals are infinite

Signal graphs are dynamic

Synchronous by default

We can create new signals, delete signals, reconnect them in
different ways at runtime.

join :Signal (Signal a) → Signal a

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher is better?

clickCount : Signal Int
clickCount = count Mouse.clicks

Innocent, isn’t it?

clicksOrZero : Bool → Signal Int
clicksOrZero b = if b then count Mouse.clicks else constant 0

True: Click, click. False: Click, Click. True: what is the value now?
Because count Mouse.clicks = clickCount, the value must be
4. Imagine a program running for a year without restarting, where
suddenly such signal is switched on.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher is better?

clickCount : Signal Int
clickCount = count Mouse.clicks

Innocent, isn’t it?

clicksOrZero : Bool → Signal Int
clicksOrZero b = if b then count Mouse.clicks else constant 0

True: Click, click. False: Click, Click. True: what is the value now?
Because count Mouse.clicks = clickCount, the value must be
4. Imagine a program running for a year without restarting, where
suddenly such signal is switched on.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher is better?

clickCount : Signal Int
clickCount = count Mouse.clicks

Innocent, isn’t it?

clicksOrZero : Bool → Signal Int
clicksOrZero b = if b then count Mouse.clicks else constant 0

True: Click, click. False: Click, Click. True: what is the value now?

Because count Mouse.clicks = clickCount, the value must be
4. Imagine a program running for a year without restarting, where
suddenly such signal is switched on.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher is better?

clickCount : Signal Int
clickCount = count Mouse.clicks

Innocent, isn’t it?

clicksOrZero : Bool → Signal Int
clicksOrZero b = if b then count Mouse.clicks else constant 0

True: Click, click. False: Click, Click. True: what is the value now?
Because count Mouse.clicks = clickCount, the value must be
4.

Imagine a program running for a year without restarting, where
suddenly such signal is switched on.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Higher is better?

clickCount : Signal Int
clickCount = count Mouse.clicks

Innocent, isn’t it?

clicksOrZero : Bool → Signal Int
clicksOrZero b = if b then count Mouse.clicks else constant 0

True: Click, click. False: Click, Click. True: what is the value now?
Because count Mouse.clicks = clickCount, the value must be
4. Imagine a program running for a year without restarting, where
suddenly such signal is switched on.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.

Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.
Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.
Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.

Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.
Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.
Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.
Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.
Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.
Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.
Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Problem and solution

Switching the signal on (creating a new signal) may need looking
back through whole history. That means, memory usage grows
linearly over time.
Possible solution: restrict signals with complicated types (linear
types) to allow only safe signals.
Pros:

we can reconfigure the graph!

Drawbacks:

not simple at all

possibly no hot-swapping and time travel debugger

program architecture might get messier

Mateusz Kołaczek Functional Reactive Programming (Elm)

Asynchronous data flow

Examples: ReactiveCocoa, ReactiveExtensions, bacon.js

Signals are connected to the world

Signals are finite

Signal graphs are dynamic

Asynchronous by default

If your FRP is in imperative language, it probably falls into this
category.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Asynchronous data flow

Examples: ReactiveCocoa, ReactiveExtensions, bacon.js

Signals are connected to the world

Signals are finite

Signal graphs are dynamic

Asynchronous by default

If your FRP is in imperative language, it probably falls into this
category.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Asynchronous data flow

Examples: ReactiveCocoa, ReactiveExtensions, bacon.js

Signals are connected to the world

Signals are finite

Signal graphs are dynamic

Asynchronous by default

If your FRP is in imperative language, it probably falls into this
category.

Mateusz Kołaczek Functional Reactive Programming (Elm)

How does it avoid the problem?

Asynchronous data flow is FRP for imperative languages. There is
no requirement, that two same expressions yield same values.
When we create new signal, we just start counting from zero.

Another problem is what to do with signals, which is no one
listening to. Some libraries (for example ReactiveExtensions)
provide a distinction to hot and cold signals. The first always
update, the second just stop.

Mateusz Kołaczek Functional Reactive Programming (Elm)

How does it avoid the problem?

Asynchronous data flow is FRP for imperative languages. There is
no requirement, that two same expressions yield same values.
When we create new signal, we just start counting from zero.
Another problem is what to do with signals, which is no one
listening to. Some libraries (for example ReactiveExtensions)
provide a distinction to hot and cold signals. The first always
update, the second just stop.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Arrowized FRP

Signals are not connected to the world

Signals are infinite

Signal graphs are dynamic

Synchronous by default

AFRP can be embedded in first order FRP as a library. In Elm it’s
Automaton.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Arrowized FRP

Signals are not connected to the world

Signals are infinite

Signal graphs are dynamic

Synchronous by default

AFRP can be embedded in first order FRP as a library. In Elm it’s
Automaton.

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

Elm’s automaton API

pure : (a → b) → Automaton a b

plus1 = pure (λn → n + 1)

(>>>) : Automaton a b → Automaton b c → Automaton a c

plus2 = plus1 >>> plus1

state : s → (a → s → s) → Automaton a s

count : Automaton a Int
count = state 0 (λa total → total + 1)

Mateusz Kołaczek Functional Reactive Programming (Elm)

What gives...

An automaton can have state, that gets updated every time it
receives input. When you switch the automaton of the signal
graph, it doesn’t receive any input, so its state doesn’t change.
That eliminates the lookback problem.

In general, when you build program in ‘standard‘ Elm, the main
building block are still functions, signal are somewhere at the top.
When using Arrowized FRP, whole logic is expressed in terms of
signals.

Mateusz Kołaczek Functional Reactive Programming (Elm)

What gives...

An automaton can have state, that gets updated every time it
receives input. When you switch the automaton of the signal
graph, it doesn’t receive any input, so its state doesn’t change.
That eliminates the lookback problem.
In general, when you build program in ‘standard‘ Elm, the main
building block are still functions, signal are somewhere at the top.
When using Arrowized FRP, whole logic is expressed in terms of
signals.

Mateusz Kołaczek Functional Reactive Programming (Elm)

The tour is over

Questions?

Mateusz Kołaczek Functional Reactive Programming (Elm)

