
Phantom Types

Marcin Kaczmarek

University of Wroc law
Institute of Computer Science

March 18, 2015

Introduction

Definition

A phantom type is a parametrized type whose parameters don’t all
appear on the left-hand side of its definition.

Example

type ’a foo = Foo | Bar of int

Introduction

Definition

A phantom type is a parametrized type whose parameters don’t all
appear on the left-hand side of its definition.

Example

type ’a foo = Foo | Bar of int

Sanitable string builder

Toy Example

String builder supporting a custom cleanup routine.

module type STRING_BUILDER =

sig

type t

val init : (string -> string) -> t

val append : t -> string -> t

val clean : t -> t

val get : t -> string

end

Sanitable string builder

Toy Example

String builder supporting a custom cleanup routine.

module type STRING_BUILDER =

sig

type t

val init : (string -> string) -> t

val append : t -> string -> t

val clean : t -> t

val get : t -> string

end

Sanitable string builder – 1st approach

module StringBuilder : STRING_BUILDER =

struct

type t = {

str : string;

cleaner : string -> string;

dirty : bool;

}

let init cleaner = {

str = "";

cleaner = cleaner;

dirty = true;

}

(* . . . *)

end

Sanitable string builder – 1st approach

let append str sb = { sb with

str = sb.str ^ str;

dirty = true

}

let clean sb = { sb with

str = sb.clean sb.str;

dirty = false

}

let get sb =

if sb.dirty then failwith "Dirty!"

else sb.str

Sanitable string builder – 1st approach – drawbacks

I errors discovered at runtime,

I so we need a fallback code,

I performance overhead,

I explicit state maintanance.

Sanitable string builder – 1st approach – drawbacks

I errors discovered at runtime,

I so we need a fallback code,

I performance overhead,

I explicit state maintanance.

Sanitable string builder – 1st approach – drawbacks

I errors discovered at runtime,

I so we need a fallback code,

I performance overhead,

I explicit state maintanance.

Sanitable string builder – 1st approach – drawbacks

I errors discovered at runtime,

I so we need a fallback code,

I performance overhead,

I explicit state maintanance.

Sanitable string builder – 1st approach – drawbacks

I errors discovered at runtime,

I so we need a fallback code,

I performance overhead,

I explicit state maintanance.

Sanitable string builder – 2nd approach

module type STRING_BUILDER =

sig

type ’a t

type clean

type dirty

val init : (string -> string) -> dirty t

val append : string -> ’a t -> dirty t

val clean : ’a t -> clean t

val get : clean t -> string

end

Sanitable string builder – 2nd approach

module StringBuilder : STRING_BUILDER =

struct

type ’a t = {

str : string;

cleaner : string -> string;

}

type clean

type dirty

let init cleaner = { str = ""; cleaner; }

let append str sb = { sb with str = sb.str ^ str }

let clean sb = { sb with str = sb.cleaner sb.str }

let get sb = sb.str

end

Sanitable string builder – 2nd approach

let open StringBuilder in

init (fun x -> x)

|> append "foo"

|> append "bar"

|> get

Error:

This expression has type clean t -> bytes

but an expression was expected of type dirty t -> ’a

Type clean is not compatible with type dirty

Sanitable string builder – 2nd approach

let open StringBuilder in

init (fun x -> x)

|> append "foo"

|> append "bar"

|> get

Error:

This expression has type clean t -> bytes

but an expression was expected of type dirty t -> ’a

Type clean is not compatible with type dirty

GADT

Definition

A generalized algebraic data type (GADT) is an extension of
parametrized algebraic data type. With this extension, one can
freely choose the parameters of the return type of data
constructor.

OCaml syntax

type ’a foo =

| Foo : ’a foo

| Bar : int foo

| Baz : int * ’a foo -> (int * ’a) foo

GADT

Definition

A generalized algebraic data type (GADT) is an extension of
parametrized algebraic data type. With this extension, one can
freely choose the parameters of the return type of data
constructor.

OCaml syntax

type ’a foo =

| Foo : ’a foo

| Bar : int foo

| Baz : int * ’a foo -> (int * ’a) foo

Statically typed abstract syntax

With GADT we can embed a programming language in a type-safe
fashion.

type _ term =

| Zero : int term

| Succ : int term -> int term

| Pred : int term -> int term

| IsZero : int term -> bool term

| If : bool term * ’a term * ’a term -> ’a term

Statically typed abstract syntax

With GADT we can embed a programming language in a type-safe
fashion.

type _ term =

| Zero : int term

| Succ : int term -> int term

| Pred : int term -> int term

| IsZero : int term -> bool term

| If : bool term * ’a term * ’a term -> ’a term

Statically typed abstract syntax

With GADT we can embed a programming language in a type-safe
fashion.

type _ term =

| Zero : int term

| Succ : int term -> int term

| Pred : int term -> int term

| IsZero : int term -> bool term

| If : bool term * ’a term * ’a term -> ’a term

Statically typed abstract syntax

let rec eval : type a . a term -> a = function

| Zero -> 0

| Succ expr -> eval expr + 1

| Pred expr -> eval expr - 1

| IsZero expr -> eval expr = 0

| If (cexpr, texpr, fexpr) ->

if eval cexpr then eval texpr

else eval fexpr

I We take advantage of an important feature of GADTs –
pattern matching causes type refinement.

I This interpreter is notably tag free.

Note on syntax: type a declares a locally abstract type a.

Statically typed abstract syntax

let rec eval : type a . a term -> a = function

| Zero -> 0

| Succ expr -> eval expr + 1

| Pred expr -> eval expr - 1

| IsZero expr -> eval expr = 0

| If (cexpr, texpr, fexpr) ->

if eval cexpr then eval texpr

else eval fexpr

I We take advantage of an important feature of GADTs –
pattern matching causes type refinement.

I This interpreter is notably tag free.

Note on syntax: type a declares a locally abstract type a.

Statically typed abstract syntax

let rec eval : type a . a term -> a = function

| Zero -> 0

| Succ expr -> eval expr + 1

| Pred expr -> eval expr - 1

| IsZero expr -> eval expr = 0

| If (cexpr, texpr, fexpr) ->

if eval cexpr then eval texpr

else eval fexpr

I We take advantage of an important feature of GADTs –
pattern matching causes type refinement.

I This interpreter is notably tag free.

Note on syntax: type a declares a locally abstract type a.

Statically typed abstract syntax

let rec eval : type a . a term -> a = function

| Zero -> 0

| Succ expr -> eval expr + 1

| Pred expr -> eval expr - 1

| IsZero expr -> eval expr = 0

| If (cexpr, texpr, fexpr) ->

if eval cexpr then eval texpr

else eval fexpr

I We take advantage of an important feature of GADTs –
pattern matching causes type refinement.

I This interpreter is notably tag free.

Note on syntax: type a declares a locally abstract type a.

Statically typed abstract syntax

> let one = Succ Zero

val one : int term = Succ Zero

> eval one

- : int = 1

> eval (If (IsZero one, one, Zero))

- : int = 0

> Pred (IsZero Zero)

Error:

This expression has type bool term

but an expression was expected of type int term

Type bool is not compatible with type int

Statically typed abstract syntax

The type ’a term is quite unusual.

I term is not a container type. An element of int term is an
expression that evaluates to an integer – not a data stucture
that contains integers.

I We cannot define a mapping function
(’a -> ’b) -> ’a term -> ’b term

as for many other data types.

I The type ’b term may not event be inhabited. There are, for
instance, no terms of type string term.

The type argument of term is not related to any component,
therefore we also call term a phantom type.

Statically typed abstract syntax

The type ’a term is quite unusual.

I term is not a container type. An element of int term is an
expression that evaluates to an integer – not a data stucture
that contains integers.

I We cannot define a mapping function
(’a -> ’b) -> ’a term -> ’b term

as for many other data types.

I The type ’b term may not event be inhabited. There are, for
instance, no terms of type string term.

The type argument of term is not related to any component,
therefore we also call term a phantom type.

Statically typed abstract syntax

The type ’a term is quite unusual.

I term is not a container type. An element of int term is an
expression that evaluates to an integer – not a data stucture
that contains integers.

I We cannot define a mapping function
(’a -> ’b) -> ’a term -> ’b term

as for many other data types.

I The type ’b term may not event be inhabited. There are, for
instance, no terms of type string term.

The type argument of term is not related to any component,
therefore we also call term a phantom type.

Statically typed abstract syntax

The type ’a term is quite unusual.

I term is not a container type. An element of int term is an
expression that evaluates to an integer – not a data stucture
that contains integers.

I We cannot define a mapping function
(’a -> ’b) -> ’a term -> ’b term

as for many other data types.

I The type ’b term may not event be inhabited. There are, for
instance, no terms of type string term.

The type argument of term is not related to any component,
therefore we also call term a phantom type.

Statically typed abstract syntax

The type ’a term is quite unusual.

I term is not a container type. An element of int term is an
expression that evaluates to an integer – not a data stucture
that contains integers.

I We cannot define a mapping function
(’a -> ’b) -> ’a term -> ’b term

as for many other data types.

I The type ’b term may not event be inhabited. There are, for
instance, no terms of type string term.

The type argument of term is not related to any component,
therefore we also call term a phantom type.

Generic programming

We can use phantom types to implement generic functions, i.e.,
functions that work for a family of types.

type _ typ =

| Int : int typ

| Bool : bool typ

| String : string typ

| List : ’a typ -> ’a list typ

| Pair : ’a typ * ’b typ -> (’a * ’b) typ

> List Int

- : int list typ = List Int

> Pair (Int, Bool)

- : (int * bool) typ = Pair (Int, Bool)

Generic programming

We can use phantom types to implement generic functions, i.e.,
functions that work for a family of types.

type _ typ =

| Int : int typ

| Bool : bool typ

| String : string typ

| List : ’a typ -> ’a list typ

| Pair : ’a typ * ’b typ -> (’a * ’b) typ

> List Int

- : int list typ = List Int

> Pair (Int, Bool)

- : (int * bool) typ = Pair (Int, Bool)

Generic programming

We can use phantom types to implement generic functions, i.e.,
functions that work for a family of types.

type _ typ =

| Int : int typ

| Bool : bool typ

| String : string typ

| List : ’a typ -> ’a list typ

| Pair : ’a typ * ’b typ -> (’a * ’b) typ

> List Int

- : int list typ = List Int

> Pair (Int, Bool)

- : (int * bool) typ = Pair (Int, Bool)

Generic programming

Now we can implement a generic show function.

let rec show : type a . a typ -> a -> string =

fun t x -> match t with

| Int -> string_of_int x

| Bool -> string_of_bool x

| String -> "’" ^ x ^ "’"

| List t’ ->

let aux s y = s ^ show t’ y ^ " " in

fold_left aux "[" x ^ "]"

| Pair (ta, tb) ->

"(" ^ show ta (fst x) ^ ", " ^ show tb (snd x) ^ ")"

But we still have to explicitly provide the type using an instance of
typ.

Generic programming

Now we can implement a generic show function.

let rec show : type a . a typ -> a -> string =

fun t x -> match t with

| Int -> string_of_int x

| Bool -> string_of_bool x

| String -> "’" ^ x ^ "’"

| List t’ ->

let aux s y = s ^ show t’ y ^ " " in

fold_left aux "[" x ^ "]"

| Pair (ta, tb) ->

"(" ^ show ta (fst x) ^ ", " ^ show tb (snd x) ^ ")"

But we still have to explicitly provide the type using an instance of
typ.

Generic programming

> show Int

- : int -> string = <fun>

> show (Pair (Int, Bool))

- : int * bool -> string = <fun>

> show (List Int) [1; 2; 3]

- : string = "[1 2 3]"

Dynamic values

Using the typ type we can introduce a universal type which we
call dyn. It bundles a value with the representation of its type.

type dyn = Dyn : ’a typ * ’a -> dyn

and _ typ =

(* . . . *)

| Dynamic : dyn typ

I We also injected the representation of dyn into typ in order
to allow for dynamic collections of dynamic values.

I The polymorphic parameter of the Dyn constructor is
existentially quantified. This is another feature added by
GADTs.

Dynamic values

Using the typ type we can introduce a universal type which we
call dyn. It bundles a value with the representation of its type.

type dyn = Dyn : ’a typ * ’a -> dyn

and _ typ =

(* . . . *)

| Dynamic : dyn typ

I We also injected the representation of dyn into typ in order
to allow for dynamic collections of dynamic values.

I The polymorphic parameter of the Dyn constructor is
existentially quantified. This is another feature added by
GADTs.

Dynamic values

Using the typ type we can introduce a universal type which we
call dyn. It bundles a value with the representation of its type.

type dyn = Dyn : ’a typ * ’a -> dyn

and _ typ =

(* . . . *)

| Dynamic : dyn typ

I We also injected the representation of dyn into typ in order
to allow for dynamic collections of dynamic values.

I The polymorphic parameter of the Dyn constructor is
existentially quantified. This is another feature added by
GADTs.

Dynamic values

Using the typ type we can introduce a universal type which we
call dyn. It bundles a value with the representation of its type.

type dyn = Dyn : ’a typ * ’a -> dyn

and _ typ =

(* . . . *)

| Dynamic : dyn typ

I We also injected the representation of dyn into typ in order
to allow for dynamic collections of dynamic values.

I The polymorphic parameter of the Dyn constructor is
existentially quantified. This is another feature added by
GADTs.

Dynamic values

Using the typ type we can introduce a universal type which we
call dyn. It bundles a value with the representation of its type.

type dyn = Dyn : ’a typ * ’a -> dyn

and _ typ =

(* . . . *)

| Dynamic : dyn typ

I We also injected the representation of dyn into typ in order
to allow for dynamic collections of dynamic values.

I The polymorphic parameter of the Dyn constructor is
existentially quantified. This is another feature added by
GADTs.

Dynamic values

I Checking for type equality, which we clearly need to perform a
safe dynamic cast, is a little tricky since we cannot just
compare two instances of typ.

I Even if we could, and the types would match; how can we
convince the compiler that the bundled value is indeed of the
specified type? Existentially quantified type variables always
instantiate as a fresh locally abstract type when matched.

Dynamic values

I Checking for type equality, which we clearly need to perform a
safe dynamic cast, is a little tricky since we cannot just
compare two instances of typ.

I Even if we could, and the types would match; how can we
convince the compiler that the bundled value is indeed of the
specified type? Existentially quantified type variables always
instantiate as a fresh locally abstract type when matched.

Dynamic values

let rec tequal

: type a b . a typ -> b typ -> (a -> b) option =

fun t1 t2 -> match t1, t2 with

| Int, Int -> Some id

| Bool, Bool -> Some id

| String, String -> Some id

| List t1’, List t2’ -> (

match tequal t1’ t2’ with

| Some f -> Some (map f)

| None -> None)

| Pair (ta1, tb1), Pair (ta2, tb2) -> (

match tequal ta1 ta2, tequal tb1 tb2 with

| Some f, Some g -> Some (fun (x, y) -> (f x, g y))

| _ -> None)

| _ -> None

Dynamic values

let cast : type a . a typ -> dyn -> a option =

fun t2 (Dyn (t1, x)) -> match tequal t1 t2 with

| Some f -> Some (f x)

| None -> None

Note: a significant drawback of tequal is that the casting
function produced is performing a deep copy of the passed value.
A part of Your homework is to fix this.

Dynamic values

let cast : type a . a typ -> dyn -> a option =

fun t2 (Dyn (t1, x)) -> match tequal t1 t2 with

| Some f -> Some (f x)

| None -> None

Note: a significant drawback of tequal is that the casting
function produced is performing a deep copy of the passed value.
A part of Your homework is to fix this.

Dynamic values

> let d = Dyn (Int, 60)

val d : dyn = Dyn (Int, <poly>)

> cast Int d

- : int option = Some 60

> cast Bool d

- : bool option = None

> let ds = Dyn (List Int, [1; 2; 3])

val ds : dyn = Dyn (List Int, <poly>)

> cast (List Int) ds

- : int list option = Some [1; 2; 3]

Functional unparsing

Is it possible to implement a printf-like functionality in a
statically typed language?

We can tackle it with dedicated format directives. Here’s our
desired result:

> format (Lit "Richard")

- : string = "Richard"

> format Int

- : int -> string = <fun>

> format Int 60

- : string = "60"

> format (String ++ Lit " is " ++ Int)

- : string -> int -> string = <fun>

> format (String ++ Lit " is " ++ Int) "Richard" 60

- : string = "Richard is 60"

Functional unparsing

Is it possible to implement a printf-like functionality in a
statically typed language?

We can tackle it with dedicated format directives. Here’s our
desired result:

> format (Lit "Richard")

- : string = "Richard"

> format Int

- : int -> string = <fun>

> format Int 60

- : string = "60"

> format (String ++ Lit " is " ++ Int)

- : string -> int -> string = <fun>

> format (String ++ Lit " is " ++ Int) "Richard" 60

- : string = "Richard is 60"

Functional unparsing

Is it possible to implement a printf-like functionality in a
statically typed language?

We can tackle it with dedicated format directives. Here’s our
desired result:

> format (Lit "Richard")

- : string = "Richard"

> format Int

- : int -> string = <fun>

> format Int 60

- : string = "60"

> format (String ++ Lit " is " ++ Int)

- : string -> int -> string = <fun>

> format (String ++ Lit " is " ++ Int) "Richard" 60

- : string = "Richard is 60"

Functional unparsing

Ideally we would like to have a parametrized type ’a dir and a
function format of type ’a dir -> ’a.

A directive can be seen as a binary tree with (++)-es as inner
nodes and simple directives, i.e., Lit, String and Int, as leaves.

type _ dir =

| Lit : string -> string dir

| String : (string -> string) dir

| Int : (int -> string) dir

| Node : ’a dir * ’b dir -> (* ?? *) dir

But we cannot express concatenation of functional types.

Functional unparsing

Ideally we would like to have a parametrized type ’a dir and a
function format of type ’a dir -> ’a.

A directive can be seen as a binary tree with (++)-es as inner
nodes and simple directives, i.e., Lit, String and Int, as leaves.

type _ dir =

| Lit : string -> string dir

| String : (string -> string) dir

| Int : (int -> string) dir

| Node : ’a dir * ’b dir -> (* ?? *) dir

But we cannot express concatenation of functional types.

Functional unparsing

Ideally we would like to have a parametrized type ’a dir and a
function format of type ’a dir -> ’a.

A directive can be seen as a binary tree with (++)-es as inner
nodes and simple directives, i.e., Lit, String and Int, as leaves.

type _ dir =

| Lit : string -> string dir

| String : (string -> string) dir

| Int : (int -> string) dir

| Node : ’a dir * ’b dir -> (* ?? *) dir

But we cannot express concatenation of functional types.

Functional unparsing

Ideally we would like to have a parametrized type ’a dir and a
function format of type ’a dir -> ’a.

A directive can be seen as a binary tree with (++)-es as inner
nodes and simple directives, i.e., Lit, String and Int, as leaves.

type _ dir =

| Lit : string -> string dir

| String : (string -> string) dir

| Int : (int -> string) dir

| Node : ’a dir * ’b dir -> (* ?? *) dir

But we cannot express concatenation of functional types.

Functional unparsing

A clever technique resembling type level difference lists solves this
one.

type (_, _) dir =

| Lit : string -> (’a, ’a) dir

| String : (string -> ’a, ’a) dir

| Int : (int -> ’a, ’a) dir

| Node : (’a, ’b) dir * (’b, ’c) dir -> (’a, ’c) dir

let (++) d1 d2 = Node (d1, d2)

Functional unparsing

let format : type a . (a, string) dir -> a = function

| Lit s -> s

| String -> id

| Int -> string_of_int

| Node (d1, d2) -> (* ?? *)

We suffer the same defficiency as with the naive approach for the
dir type.

This time we are saved by continuations. →

Functional unparsing

let format : type a . (a, string) dir -> a = function

| Lit s -> s

| String -> id

| Int -> string_of_int

| Node (d1, d2) -> (* ?? *)

We suffer the same defficiency as with the naive approach for the
dir type.

This time we are saved by continuations. →

Functional unparsing

let format : type a . (a, string) dir -> a = function

| Lit s -> s

| String -> id

| Int -> string_of_int

| Node (d1, d2) -> (* ?? *)

We suffer the same defficiency as with the naive approach for the
dir type.

This time we are saved by continuations. →

Functional unparsing

let rec format_aux

: type a b . (a, b) dir -> (string -> b)

-> string -> a =

fun d k r -> match d with

| Lit s -> k (r ^ s)

| String -> fun s -> k (r ^ s)

| Int -> fun n -> k (r ^ string_of_int n)

| Node (d1, d2) -> format_aux d1 (format_aux d2 k) r

I d is the directive slice. By the difference list analogy, we have
to handle what’s contained in a - b.

I r is the result produced by the preceding part of the directive.

I k is the continuation that handles what’s to the right of b.

Functional unparsing

let rec format_aux

: type a b . (a, b) dir -> (string -> b)

-> string -> a =

fun d k r -> match d with

| Lit s -> k (r ^ s)

| String -> fun s -> k (r ^ s)

| Int -> fun n -> k (r ^ string_of_int n)

| Node (d1, d2) -> format_aux d1 (format_aux d2 k) r

I d is the directive slice. By the difference list analogy, we have
to handle what’s contained in a - b.

I r is the result produced by the preceding part of the directive.

I k is the continuation that handles what’s to the right of b.

Functional unparsing

let rec format_aux

: type a b . (a, b) dir -> (string -> b)

-> string -> a =

fun d k r -> match d with

| Lit s -> k (r ^ s)

| String -> fun s -> k (r ^ s)

| Int -> fun n -> k (r ^ string_of_int n)

| Node (d1, d2) -> format_aux d1 (format_aux d2 k) r

I d is the directive slice. By the difference list analogy, we have
to handle what’s contained in a - b.

I r is the result produced by the preceding part of the directive.

I k is the continuation that handles what’s to the right of b.

Functional unparsing

let rec format_aux

: type a b . (a, b) dir -> (string -> b)

-> string -> a =

fun d k r -> match d with

| Lit s -> k (r ^ s)

| String -> fun s -> k (r ^ s)

| Int -> fun n -> k (r ^ string_of_int n)

| Node (d1, d2) -> format_aux d1 (format_aux d2 k) r

I d is the directive slice. By the difference list analogy, we have
to handle what’s contained in a - b.

I r is the result produced by the preceding part of the directive.

I k is the continuation that handles what’s to the right of b.

Functional unparsing

Therefore let format d = format_aux d id "".

That’s a nice quadratic procedure we have here...

Functional unparsing

Therefore let format d = format_aux d id "".

That’s a nice quadratic procedure we have here...

Generic traversals and queries

Suppose we have to write a function that traverses a complex data
structure, e.g., representing a company’s organizational structure,
and acts upon the data, say, increases the age of each employee by
one.

We would like the boilerplate part, that is responsible for
traversing, to be generic and reusable with different data
structures.

Generic traversals and queries

Suppose we have to write a function that traverses a complex data
structure, e.g., representing a company’s organizational structure,
and acts upon the data, say, increases the age of each employee by
one.

We would like the boilerplate part, that is responsible for
traversing, to be generic and reusable with different data
structures.

Generic traversals and queries

Suppose we have to write a function that traverses a complex data
structure, e.g., representing a company’s organizational structure,
and acts upon the data, say, increases the age of each employee by
one.

We would like the boilerplate part, that is responsible for
traversing, to be generic and reusable with different data
structures.

Generic traversals and queries

Recall the type representation type.

type _ typ =

| Int : int typ

| Bool : bool typ

| String : string typ

| List : ’a typ -> ’a list typ

| Pair : ’a typ * ’b typ -> (’a * ’b) typ

Generic traversals and queries

Let’s introduce a new type for traversal objects.

type trav = ’a . ’a typ -> (’a -> ’a)

An instance of trav may be seen as a function that given a type
representation returns a mapping.

> let m = bump_ints (List (Pair (Int, Bool)))

val m : (int * bool) list -> (int * bool) list = <fun>

> m [(1, true); (2, false)]

- : (int * bool) list = [(2, true); (3, false)]

Generic traversals and queries

Let’s introduce a new type for traversal objects.

type trav = ’a . ’a typ -> (’a -> ’a)

An instance of trav may be seen as a function that given a type
representation returns a mapping.

> let m = bump_ints (List (Pair (Int, Bool)))

val m : (int * bool) list -> (int * bool) list = <fun>

> m [(1, true); (2, false)]

- : (int * bool) list = [(2, true); (3, false)]

Generic traversals and queries

Let’s introduce a new type for traversal objects.

type trav = ’a . ’a typ -> (’a -> ’a)

An instance of trav may be seen as a function that given a type
representation returns a mapping.

> let m = bump_ints (List (Pair (Int, Bool)))

val m : (int * bool) list -> (int * bool) list = <fun>

> m [(1, true); (2, false)]

- : (int * bool) list = [(2, true); (3, false)]

Generic traversals and queries

Let’s introduce a new type for traversal objects.

type trav = { f : ’a . ’a typ -> (’a -> ’a) }

An instance of trav may be seen as a function that given a type
representation returns a mapping.

> let m = bump_ints.f (List (Pair (Int, Bool)))

val m : (int * bool) list -> (int * bool) list = <fun>

> m [(1, true); (2, false)]

- : (int * bool) list = [(2, true); (3, false)]

Generic traversals and queries

Here’s a simple traversal that increments an int.

let bump =

let aux : type a . a typ -> (a -> a) = function

| Int -> (+) 1

| _ -> id

in { f = aux }

In fact, it’s not much of a traversal. The only data structure it
supports is a sole integer.

> bump.f Int 5

- : int = 6

> bump.f (List Int) [1; 2; 3]

- : int list = [1; 2; 3]

Generic traversals and queries

Here’s a simple traversal that increments an int.

let bump =

let aux : type a . a typ -> (a -> a) = function

| Int -> (+) 1

| _ -> id

in { f = aux }

In fact, it’s not much of a traversal. The only data structure it
supports is a sole integer.

> bump.f Int 5

- : int = 6

> bump.f (List Int) [1; 2; 3]

- : int list = [1; 2; 3]

Generic traversals and queries

In order to build more general traversals we introduce a traversal
transformer imap : trav -> trav which produces a traversal
acting upon immediate children of an object.

> (imap bump).f Int 5

- : int = 5

> (imap bump).f (List Int) [1; 2; 3]

- : int list [2; 3; 4]

Generic traversals and queries

let imap { f } =

let aux : type a . a typ -> (a -> a) = function

| Int -> id

| Bool -> id

| String -> id

| List t -> map (f t)

| Pair (at, bt) -> fun (x, y) -> (f at x, f bt y)

in { f = aux }

Generic traversals and queries

Let (>>) be an opertor for sequencing traversals.

let (>>) tr1 tr2 =

let aux t x = tr2.f t (tr1.f t x)

in { f = aux }

val (>>) : trav -> trav -> trav = <fun>

The sequencing operator has copy as its identity.

let copy = { f = fun t -> id }

tr >> copy = copy >> tr = tr

Generic traversals and queries

Let (>>) be an opertor for sequencing traversals.

let (>>) tr1 tr2 =

let aux t x = tr2.f t (tr1.f t x)

in { f = aux }

val (>>) : trav -> trav -> trav = <fun>

The sequencing operator has copy as its identity.

let copy = { f = fun t -> id }

tr >> copy = copy >> tr = tr

Generic traversals and queries

We can now build a transformer allover so that

> let bump_ints = allover bump

val bump_ints : trav = {f = <fun>}

> bump_ints.f Int 5

- : int = 6

> bump_ints.f (List Int) [1; 2; 3]

- : int list = [2; 3; 4]

Generic traversals and queries

There are two flavours

let rec allover tr = tr >> imap (allover tr)

let rec allover’ tr = imap (allover tr) >> tr

But with eager evaluation the recursion will explode.

let lazy_trav ltr = { f = fun t -> (force ltr).f t }

let rec allover tr =

tr >> imap (lazy_trav (lazy (allover tr)))

Generic traversals and queries

There are two flavours

let rec allover tr = tr >> imap (allover tr)

let rec allover’ tr = imap (allover tr) >> tr

But with eager evaluation the recursion will explode.

let lazy_trav ltr = { f = fun t -> (force ltr).f t }

let rec allover tr =

tr >> imap (lazy_trav (lazy (allover tr)))

Generic traversals and queries

There are two flavours

let rec allover tr = tr >> imap (allover tr)

let rec allover’ tr = imap (allover tr) >> tr

But with eager evaluation the recursion will explode.

let lazy_trav ltr = { f = fun t -> (force ltr).f t }

let rec allover tr =

tr >> imap (lazy_trav (lazy (allover tr)))

Generic traversals and queries

For generic queries we introduce a similar type but the result of the
mapping function has a fixed type.

type ’b query = { q : ’a . ’a typ -> (’a -> ’b) }

From now on we will work only with integer queries. It will be Your
task to generalize it.

Generic traversals and queries

For generic queries we introduce a similar type but the result of the
mapping function has a fixed type.

type ’b query = { q : ’a . ’a typ -> (’a -> ’b) }

From now on we will work only with integer queries. It will be Your
task to generalize it.

Generic traversals and queries

In place of imap there is

let isum { q } =

let null _ = 0 in

let aux : type a . a typ -> (a -> int) = function

| Int -> null

| Bool -> null

| String -> null

| List t -> fold_left (fun a x -> a + q t x) 0

| Pair (at, bt) -> fun (x, y) -> q at x + q bt y

in { q = aux }

Generic traversals and queries

For merging the results of two queries we have

let (++) qr1 qr2 =

let aux t x = qr1.q t x + qr2.q t x

in { q = aux }

And finally

let rec total qr = qr ++ isum (total qr)

or rather

let lazy_query lqr = { q = fun t -> (force lqr).q t }

let rec total qr =

qr ++ isum (lazy_query (lazy (total qr)))

Generic traversals and queries

For merging the results of two queries we have

let (++) qr1 qr2 =

let aux t x = qr1.q t x + qr2.q t x

in { q = aux }

And finally

let rec total qr = qr ++ isum (total qr)

or rather

let lazy_query lqr = { q = fun t -> (force lqr).q t }

let rec total qr =

qr ++ isum (lazy_query (lazy (total qr)))

Generic traversals and queries

For merging the results of two queries we have

let (++) qr1 qr2 =

let aux t x = qr1.q t x + qr2.q t x

in { q = aux }

And finally

let rec total qr = qr ++ isum (total qr)

or rather

let lazy_query lqr = { q = fun t -> (force lqr).q t }

let rec total qr =

qr ++ isum (lazy_query (lazy (total qr)))

Generic traversals and queries

let sizeof =

let one _ = 1 in

let aux : type a . a typ -> (a -> int) = function

| Int -> one

| Bool -> one

| String -> String.length

| List _ -> List.length

| Pair (_, _) -> one

in { q = aux }

> (total sizeof).q (List String) ["Hello"; "World!"]

- : int = 13

Generic traversals and queries

let sizeof =

let one _ = 1 in

let aux : type a . a typ -> (a -> int) = function

| Int -> one

| Bool -> one

| String -> String.length

| List _ -> List.length

| Pair (_, _) -> one

in { q = aux }

> (total sizeof).q (List String) ["Hello"; "World!"]

- : int = 13

Phantom Types

Marcin Kaczmarek

University of Wroc law
Institute of Computer Science

March 18, 2015

Further Reading I

Ralf Hinze.
Fun with phantom types.
In Jeremy Gibbons and Oege de Moor, editors, The Fun of
Programming. Pages 245−262. Palgrave Macmillan. 2003.
http://www.cs.ox.ac.uk/ralf.hinze/talks/FOP.pdf

Ralf Hinze.
Fun with phantom types.
Slides for the talk during The Fun of Programming, A
symposium in honour of Professor Richard Bird’s 60th
birthday. 2003.
http:

//www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf

http://www.cs.ox.ac.uk/ralf.hinze/talks/FOP.pdf
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf

Further Reading II

The OCaml manual
Chapter 7 Language extensions. Sections 7.13, 7.18.
http://caml.inria.fr/pub/docs/manual-ocaml-400/

manual021.html

Existentially quantified types
Wikibooks – Haskell
http://en.wikibooks.org/wiki/Haskell/

Existentially_quantified_types

Phantom type
The Haskell Wiki
http://wiki.haskell.org/Phantom_type

http://caml.inria.fr/pub/docs/manual-ocaml-400/manual021.html
http://caml.inria.fr/pub/docs/manual-ocaml-400/manual021.html
http://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
http://en.wikibooks.org/wiki/Haskell/Existentially_quantified_types
http://wiki.haskell.org/Phantom_type

	Introduction
	Sanitable string builder
	1st approach
	2nd approach

	GADT
	Statically typed abstract syntax
	Generic programming
	Dynamic values
	Functional unparsing
	Generic traversals and queries
	Traversals
	Queries

	The End

