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Why?



Static typing

If it compiles, it runs.
– some Haskell guy

It’s a lie.
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The night is dark and full of terrors

import System.IO.Unsafe

unsafePerformIO :: IO a -> a

Not that bad.

head :: [a] -> a

tail :: [a] -> [a]

(!!) :: Int -> [a] -> a

Dreadful.
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The night is dark and full of terrors

import System.IO.Unsafe

unsafePerformIO :: IO a -> a

Not that bad.

head :: [a] -> Maybe a

tail :: [a] -> Maybe [a]

(!!) :: Int -> [a] -> Maybe a

Useless.



Previously. . .



Tagged lists

data Empty

data NonEmpty

data List t a where

Nil :: List Empty a

Cons :: a -> List t a -> List NonEmpty a

head :: List NonEmpty a -> a

head (Cons x _) = x

tail :: List NonEmpty a -> ???

tail (Cons _ t) = t
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Vectors (first attempt)

{-# LANGUAGE GADTs #-}

data Zero

data Succ n where

Succ :: Succ n

data Vect n a where

Nil :: Vect Zero a

Cons :: a -> Vect n a -> Vect (Succ n) a

head :: Vector (Succ n) a -> a

head (Cons x xs) = x

tail :: Vector (Succ n) a -> Vector n a

tail (Cons x xs) = xs

(++) :: Vector n a -> Vector m a -> ???

(++) Nil ys = ys

(++) (Cons x xs) ys = Cons x (xs ++ ys)
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Vectors (first+ attempt)

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances, FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-}

class Plus n m nm

instance Plus Zero m m

instance (Plus n m nm) => Plus (Succ n) m (Succ nm)

(++) :: Plus n m nm => Vect n a -> Vect m a -> Vect nm a

(++) Nil ys = ys

(++) (Cons x xs) ys = Cons x (xs ++ ys)

. . . but it doesn’t work.
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Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}

data Nat = Zero | Succ Nat

type family Plus (n :: Nat) (m :: Nat) :: Nat

type instance Plus Zero m = m

type instance Plus (Succ n) m = Succ (Plus n m)

data Vect n a where

Nil :: Vect Zero a

Cons :: a -> Vect n a -> Vect (Succ n) a

(++) :: Vect n a -> Vect m a -> Vect (Plus n m) a

(++) Nil ys = ys

(++) (Cons x xs) ys = Cons x (xs ++ ys)
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Idris

It is a general purpose pure functional programming language with
dependent types, featuring:

I Haskell-like syntax

I totality checking
I eager evaluation
I foreign function interface (C, JavaScript)
I type classes
I function overloading
I a lot of sugar
I modules, namespaces
I . . . a lot more
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Dependent types

What does it mean to be functional?

To have functions as first class values.

What does it mean to be dependently typed?

To have types as first class values.
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Haskell

type Foo = [Int]

Idris

Foo : Type

Foo = List Int

foo : Bool -> Type

foo True = Int

foo False = String
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Peano numbers

data Nat : Type where

Z : Nat

S : Nat -> Nat

(+) : Nat -> Nat -> Nat

(+) Z m = m

(+) (S n) m = S (n + m)
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Vectors (finally, the right way!)

data Vect : Nat -> Type -> Type where

Nil : Vect Z a

(::) : Vect n a -> Vect (S n) a

head : Vect (S n) a -> a

head (x :: _) = x

tail : Vect (S n) a -> Vect n a

tail (_ :: xs) = xs

(heavy breathing)

(++) : Vect n a -> Vect m a -> Vect (n + m) a

(++) Nil ys = ys

(++) (x :: xs) ys = x :: (xs ++ ys)
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A new roadblock. . .

index : Nat -> Vect n a -> a

index Z (x :: _) = x

index (S n) (_ :: xs) = index n xs

index (S n) Nil = ???



. . . and a solution

data Fin : Nat -> Type where

FZ : Fin (S n)

FS : Fin n -> Fin (S n)

index : Fin n -> Vect n a -> a

index FZ (x :: _) = x

index (FS n) (_ :: xs) = index n xs
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index (FS n) (_ :: xs) = index n xs



Pairs

Boring ones. . .

data Pair a b = MkPair a b

foo : (String, Int)

foo = ("Foo", 42)

. . . and dependent ones

data Sigma : (A : Type) -> (P : A -> Type) -> Type where

MkSigma : {A : Type} -> {P : A -> Type}
-> (a : A) -> P a -> Sigma A P

bar : Sigma Nat (\n => Vect n String)

bar = MkSigma 2 ["a", "b"]
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Pairs

Boring ones. . .

data Pair a b = MkPair a b

foo : (String, Int)

foo = ("Foo", 42)

. . . and dependent ones

data Sigma : (A : Type) -> (P : A -> Type) -> Type where

MkSigma : {A : Type} -> {P : A -> Type}
-> (a : A) -> P a -> Sigma A P

bar : (n ** Vect n String)

bar = (_ ** ["a", "b"])



Filtering

filter : (a -> Bool) -> Vect n a -> ???

filter _ [] = []

filter p (x :: xs) =

let xs’ = filter p xs

in if p x then x :: xs’ else xs’



Filtering

filter : (a -> Bool) -> Vect n a -> (m ** Vect m a)

filter _ [] = (0 ** [])

filter p (x :: xs) =

let (m ** xs’) = filter p xs

in if p x then (S m ** x :: xs’) else (m ** xs’)



Filtering

filter : (a -> Bool) -> Vect n a -> (m ** Vect m a)

filter _ [] = (_ ** [])

filter p (x :: xs) =

let (_ ** xs’) = filter p xs

in if p x then (_ ** x :: xs’) else (_ ** xs’)



Predicates

Program is a proof of its type.

data Elem : a -> Vect n a -> Type where

Here : Elem x (x :: xs)

There : Elem x xs -> Elem x (y :: xs)

numbers : Vect 6 Int

numbers = [4, 8, 15, 16, 23, 42]

test : Elem 15 numbers

test = There (There Here)
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Predicates

mapEl : {xs : Vect n a} -> {f : a -> b}
-> Elem x xs -> Elem (f x) (map f xs)

mapEl Here = Here

mapEl (There e) = There (mapEl e)

numbers’ : Vect 6 Int

numbers’ = map (* 2) numbers

test’ : Elem 30 numbers’

test’ = mapEl test { f = (* 2) }

replaceEl : (xs : Vect k t) -> Elem x xs -> (y : t)

-> (ys : Vect k t ** Elem y ys)

replaceEl (_ :: xs) Here y = (y :: xs ** Here)

replaceEl (x :: xs) (There ex) y =

let (ys ** ey) = replaceEl xs ex y

in (x :: ys ** There ey)
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Lambda calculus interpreter



Goals

I simple types (integers, booleans and functions)
I variables
I if-then-else construct
I compile-time rejection of ill-typed expressions



Types

data Ty : Type where

TyInt : Ty

TyBool : Ty

TyFun : Ty -> Ty -> Ty

data HasType : Fin n -> Vect n Ty -> Ty -> Type where

Stop : HasType FZ (t :: _) t

Pop : HasType i G t -> HasType (FS i) (_ :: G) t

interpTy : Ty -> Type

interpTy TyInt = Int

interpTy TyBool = Bool

interpTy (TyFun a r) = interpTy a -> interpTy r
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Expressions

data Expr : Vect n Ty -> Ty -> Type where

Var : HasType i G t -> Expr G t

Val : Int -> Expr G TyInt

Lam : Expr (a :: G) r -> Expr G (TyFun a r)

App : Expr G (TyFun a r) -> Expr G a -> Expr G r

Op : (interpTy a -> interpTy b -> interpTy c)

-> Expr G a -> Expr G b -> Expr G c

If : Expr G TyBool

-> Lazy (Expr G t) -> Lazy (Expr G t)

-> Expr G t



Expression examples

plus : Expr G (TyFun TyInt (TyFun TyInt TyInt))

plus = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

fact : Expr G (TyFun TyInt TyInt)

fact = (Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1)

(Op (*) (App fact (Op (-) (Var Stop)

(Val 1)))

(Var Stop))))
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plus : Expr G (TyFun TyInt (TyFun TyInt TyInt))

plus = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

fact : Expr G (TyFun TyInt TyInt)

fact = (Lam (If (Op (==) (Var Stop) (Val 0))

(Val 1)

(Op (*) (App fact (Op (-) (Var Stop)
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Environment

data Env : Vect n Ty -> Type where

Nil : Env Nil

(::) : interpTy t -> Env G -> Env (t :: G)

lookup : HasType i G t -> Env G -> interpTy t

lookup Stop (t :: _) = t

lookup (Pop i) (_ :: ts) = lookup i ts



Environment

data Env : Vect n Ty -> Type where

Nil : Env Nil

(::) : interpTy t -> Env G -> Env (t :: G)

lookup : HasType i G t -> Env G -> interpTy t

lookup Stop (t :: _) = t

lookup (Pop i) (_ :: ts) = lookup i ts



Interpreter

interp : Env G -> Expr G t -> interpTy t

interp env (Var x) = lookup x env

interp env (Val c) = c

interp env (Lam e) = \a => interp (a :: env) e

interp env (App f e) = (interp env f) (interp env e)

interp env (Op f l r) = f (interp env l) (interp env r)

interp env (If c t f) = if interp env c

then interp env t

else interp env f

interp’ : Expr [] t -> interpTy t

interp’ = interp []
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Theorem proving



Equality

data (=) : a -> b -> Type where

Refl : x = x

fiveIsFive : 5 = 5

fiveIsFive = Refl

twoTwosIsFour : 2 + 2 = 4

twoTwosIsFour = Refl

eqVectLength : (xs : Vect n a) -> (ys : Vect m a)

-> (xs = ys) -> n = m

eqVectLength _ _ Refl = Refl
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Induction

cong : {f : t -> u} -> (a = b) -> f a = f b

cong Refl = Refl

plusReducesS : (n : Nat) -> (m : Nat)

-> S (n + m) = n + (S m)

plusReducesS Z m = Refl

plusReducesS (S n) m = cong (plusReducesS n m)
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Impossible

Usually, when particular pattern match is not possible we just omit
the clause. However, sometimes it is useful (as we will see in a
moment) to mark it explicitly - Idris provides us with impossible

keyword for such cases.

foo : (n : Nat) -> Vect n a -> Nat

foo Z (_::_) impossible

foo (S _) [] impossible

foo n _ = n
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Negation

data Void

Having ⊥ everything is possible:

void : Void -> a

Not : Type -> Type

Not a = a -> Void

data IsZero : Nat -> Type where

Zero : IsZero Z

succNonZero : (n : Nat) -> IsZero (S n) -> Void

succNonZero _ Zero impossible
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Negation

data Void

Having ⊥ everything is possible:

void : Void -> a

Not : Type -> Type

Not a = a -> Void

data IsZero : Nat -> Type where

Zero : IsZero Z

succNonZero : (n : Nat) -> Not (IsZero (S n))

succNonZero _ Zero impossible



Decidability

data Dec : Type -> Type where

Yes : {A : Type} -> A -> Dec A

No : {A : Type} -> Not A -> Dec A

decIsZero : (n : Nat) -> Dec (IsZero n)

decIsZero Z = Yes Zero

decIsZero (S n) = No (succNonZero n)



Decidability

data Dec : Type -> Type where

Yes : {A : Type} -> A -> Dec A

No : {A : Type} -> Not A -> Dec A

decIsZero : (n : Nat) -> Dec (IsZero n)

decIsZero Z = Yes Zero

decIsZero (S n) = No (succNonZero n)



Interactive proving

Idris has many facilities to help with theorem proving:

I good editor suport (Emacs and Vim)
I set of builtin syntax rules
I tactics language



Dependently typed lambda calculus



Syntax

e,T ::= x | λx .e | e1e2 | (x : T1)→ T2 | T

where e stands for expressions, T for types (they are the same
thing but are distinguished here for clarity), ∗ → ∗ for functional
type and T for type of types.

Having something like type of types is bad but makes everything
simple.
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Typechecking rules

Γ ` T : T type

Γ, x : T ` x : T
var

Γ, x : T1 ` e : T2 Γ ` T1 : T
Γ ` λx .e : (x : T1)→ T2

lambda

Γ ` T1 : T Γ, x : T1 ` T2 : T
Γ ` (x : T1)→ T2 : T pi

Γ ` e1 : (x : T1)→ T2 Γ ` e2 : T1

Γ ` e1e2 : T2 [x 7→ e2]
app
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Examples

id : (t : T )→ (x : t)→ t

id = λt.λx .x

idid : (t : T )→ (x : t)→ t

idid = id ((t : T )→ (x : t)→ t) id
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Examples

bool : T

bool = (t : T )→ (bt : t)→ (bf : t)→ t

true : bool

true = λt.λbt .λbf .bt

false : bool

false = λt.λbt .λbf .bf

if : bool → (t : T )→ (bt : t)→ (bf : t)→ t

if = λb.b
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