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The night is dark and full of terrors

import System.IO0.Unsafe
unsafePerformI0 :: I0 a -> a
Not that bad.

head :: [a]l] -> Maybe a

tail :: [a] -> Maybe [a]

(1) :: Int -> [a] -> Maybe a

Useless.



Previously. . .
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Tagged lists

data Empty
data NonEmpty

data List t a where
Nil :: List Empty a
Cons :: a -> List t a -> List NonEmpty a

head :: List NonEmpty a -> a
head (Cons x _) = x

tail :: List NonEmpty a -> 777
tail (Cons _ t) =t
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Vectors (first attempt)
{-# LANGUAGE GADTs #-}

data Zero
data Succ n where
Succ :: Succ n

data Vect n a where

Nil :: Vect Zero a
Cons :: a —> Vect n a —> Vect (Succ n) a
head :: Vector (Succ n) a -> a

head (Cons x xs) = x

tail :: Vector (Succ n) a —-> Vector n a
tail (Cons x xs) = xS

(++) :: Vector n a -> Vector m a -> 777
(++) Nil ys = ys
(++) (Cons x xs) ys = Cons x (xs ++ ys)
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Vectors (first+ attempt)

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances, FlexibleContexts #-}
{-# LANGUAGE UndecidableInstances #-}

class Plus n m nm
instance Plus Zero m m
instance (Plus n m nm) => Plus (Succ n) m (Succ nm)

(#+) :: Plus nm nm => Vect n a -> Vect m a -> Vect nm a
(++) Nil ys = ys

(++) (Cons x xs) ys = Cons x (xs ++ ys)

. but it doesn't work.



Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}



Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}

data Nat = Zero | Succ Nat



Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}

data Nat = Zero | Succ Nat
type family Plus (n :: Nat) (m :: Nat) :: Nat

type instance Plus Zerom =m
type instance Plus (Succ n) m = Succ (Plus n m)



Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}

data Nat = Zero | Succ Nat

type family Plus (n :: Nat) (m :: Nat) :: Nat
type instance Plus Zerom =m
type instance Plus (Succ n) m = Succ (Plus n m)

data Vect n a where
Nil :: Vect Zero a
Cons :: a -> Vect n a -> Vect (Succ n) a



Vectors (second attempt)

{-# LANGUAGE GADTs, DataKinds #-}
{-# LANGUAGE TypeFamilies, TypeOperators #-}

data Nat = Zero | Succ Nat
type family Plus (n :: Nat) (m :: Nat) :: Nat
type instance Plus Zerom =m

type instance Plus (Succ n) m = Succ (Plus n m)

data Vect n a where
Nil :: Vect Zero a

Cons :: a -> Vect n a -> Vect (Succ n) a
(+4+) :: Vect n a > Vect m a -> Vect (Plus n m) a
(++) Nil ys = ys

(++) (Cons x xs) ys = Cons x (xs ++ ys)
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Idris

It is a general purpose pure functional programming language with
dependent types, featuring:

> Haskell-like syntax

> totality checking

> eager evaluation

» foreign function interface (C, JavaScript)
> type classes

» function overloading

> a lot of sugar

» modules, namespaces

> ... alot more
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What does it mean to be functional?

To have functions as first class values.

What does it mean to be dependently typed?

To have types as first class values.
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Types as first class values

Haskell

type Foo = [Int]

[dris

Foo : Type
Foo = List Int

foo : Bool -> Type
foo True = Int
foo False = String



Peano numbers

data Nat : Type where
Z : Nat
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Peano numbers

data Nat
Z : Nat
S : Nat

(+) : Nat
(+) Z m
(+) Sn)m

: Type where

-> Nat

-> Nat

-> Nat
m
S (n + m)
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Vectors (finally, the right way!)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : Vect n a -> Vect (S n) a

head : Vect (S n) a -> a
head (x :: _) =x

tail : Vect (S n) a -> Vect n a
tail (_ :: xs) = Xs

(heavy breathing)
(+4) : Vect na > Vect ma -> Vect (n + m) a

(++) Nil ys = ys
(#+) (x :: x8) ys = x :: (xs ++ ys)



A new roadblock. . .

index : Nat -> Vect n -> a
index Z (x :: ) =x
index (S n) (_ :: xs)

index (S n) Nil

)

index n xs
7?7



and a solution

data Fin : Nat -> Type where
FZ : Fin (S n)
FS : Fin n -> Fin (S n)



and a solution

data Fin : Nat -> Type where
FZ : Fin (S n)
FS : Fin n -> Fin (S n)

index : Fin n -> Vect n a -> a
index FZ (x :: ) =x
index (FS n) (_ :: xs) = index n xs
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Pairs
Boring ones. ..
data Pair a b = MkPair a b

foo : (String, Int)
foo = ("Foo", 42)

. and dependent ones

data Sigma : (A : Type) -> (P : A -> Type) -> Type where
MkSigma : {A : Type} -> {P : A -> Type}
-> (a : A) > P a ->Sigma AP

bar : (n ** Vect n String)
bar = (_ * % [nau, “b"])



Filtering

filter : (a -> Bool) -> Vect n a -> 777
filter _ [1 = [

filter p (x :: xs) =
let xs’

filter p xs
in if p x then x :: xs8’ else xs’



Filtering

filter : (a -> Bool) -> Vect n a -> (m ** Vect m a)

filter _ [J = (0 ** [1)

filter p (x :: xs)
let (m ** xs’) = filter p xs

in if p x then (S m ** x :: xs’) else (m ** xs’)



Filtering

filter : (a -> Bool) -> Vect n a -> (m *x Vect m a)

filter _ [1 = (_ *x [1)

filter p (x :: xs)
let (_ ** xs’) = filter p xs

in if p x then (_ *x x :: xs’) else (_ ** xs’)
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Predicates

Program is a proof of its type.

data Elem : a -> Vect n a -> Type where
Here : Elem x (x :: xs)
There : Elem x xs -> Elem x (y :: xs)

numbers : Vect 6 Int
numbers = [4, 8, 15, 16, 23, 42]

test : Elem 15 numbers
test = There (There Here)



Predicates

mapEl : {xs : Vect n a} -> {f : a -> b}

-> Elem x xs
mapEl Here =
mapEl (There e)

-> Elem (f x) (map f xs)
Here
There (mapEl e)
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mapEl (There e) = There (mapEl e)

numbers’ : Vect 6 Int
numbers’ = map (* 2) numbers
test’ : Elem 30 numbers’

test’ = mapEl test { £ = (x 2) }



Predicates

mapEl : {xs : Vect n a} -> {f : a -> b}

-> Elem x xs -> Elem (f x) (map f xs)
mapEl Here = Here
mapEl (There e) = There (mapEl e)

numbers’ : Vect 6 Int
numbers’ = map (* 2) numbers
test’ : Elem 30 numbers’

test’ = mapEl test { £ = (x 2) }

replaceEl : (xs : Vect k t) -> Elem x xs -> (y : t)
-> (ys : Vect k t ** Elem y ys)
replaceEl (_ :: xs) Here y = (y :: xs %% Here)
replaceEl (x :: xs) (There ex) y
let (ys ** ey) = replaceEl xs ex y
in (x :: ys ** There ey)



Lambda calculus interpreter



Goals

simple types (integers, booleans and functions)
variables
if-then-else construct

vV v v Yy

compile-time rejection of ill-typed expressions
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TyFun : Ty -> Ty -> Ty
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Types

data Ty : Type where
TyInt : Ty
TyBool : Ty
TyFun : Ty -> Ty -> Ty

data HasType : Fin n -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: _) t
Pop : HasType i G t -> HasType (FS i) (_ :: G) t

interpTy : Ty -> Type

interpTy TyInt = Int

interpTy TyBool = Bool

interpTy (TyFun a r) = interpTy a -> interpTy r



Expressions

data Expr : Vect n Ty -> Ty -> Type where

Var : HasType i Gt -> Expr G t

Val : Int -> Expr G TyInt

Lam : Expr (a :: G) r -> Expr G (TyFun a r)

App : Expr G (TyFun a r) -> Expr G a -> Expr G r

Op : (interpTy a -> interpTy b -> interpTy c)
-> Expr G a -> Expr G b -> Expr G c

If : Expr G TyBool
-> Lazy (Expr G t) -> Lazy (Expr G t)
-> Expr G t



Expression examples

plus : Expr G (TyFun TyInt (TyFun TyInt TyInt))
plus = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))



Expression examples

plus : Expr G (TyFun TyInt (TyFun TyInt TyInt))
plus = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

fact : Expr G (TyFun TyInt TyInt)

fact = (Lam (If (Op (==) (Var Stop) (Val 0))
(Val 1)
(Op (*) (App fact (Op (=) (Var Stop)

(Val 1)))
(Var Stop))))



Environment

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy t -> Env G -> Env (¢t :: G)



Environment

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy t -> Env G -> Env (¢t :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup Stop (t :: ) =t
lookup (Pop i) (_ :: ts) = lookup i ts



Interpreter

interp :

interp
interp
interp
interp
interp
interp

env
env
env
env
env
env

(Var x)
(Val c)
(Lam e)
(App £ e)
(Op £ 1 1)
(If c t f)

Env G -> Expr G t -> interpTy t

lookup x env

c

\a => interp (a :: env) e
(interp env f) (interp env e)

f (interp env 1) (interp env r)
if interp env c

then interp env t

else interp env £



Interpreter

interp :

interp
interp
interp
interp
interp
interp

interp’
interp’

env
env
env
env
env
env

Env G -> Expr G t -> interpTy t

(Var x) = lookup x env

(Val ¢) =c

(Lam e) = \a => interp (a :: env) e

(App £ e) = (interp env f) (interp env e)
(Op £ 1 r) = f (interp env 1) (interp env r)

(If c t f)

if interp env c
then interp env t
else interp env £

: Expr [] t -> interpTy t

interp []



Theorem proving



Equality

data (=) : a -> b -> Type where
Refl : x = x



Equality

data (=) : a -> b —-> Type where
Refl : x = x

fiveIsFive : 5 =5
fivelsFive

Il
=)
[0}
Hh
=



Equality

data (=) : a -> b —-> Type where
Refl : x = x

fiveIsFive : 5 =5
fivelIsFive Refl

twoTwosIsFour : 2 + 2 = 4
twoTwosIsFour = Refl



Equality

data (=) : a -> b —-> Type where
Refl : x

X

fiveIsFive : 5 =5
fivelIsFive Refl

twoTwosIsFour : 2 + 2 = 4
twoTwosIsFour = Refl

eqVectLength : (xs : Vect n a) -> (ys : Vect m a)
-> (xs =ys) >n=n
eqVectLength _ _ Refl = Refl



Induction

cong : {f :t >u} >(a=b) >fa=£fb
cong Refl = Refl



Induction

cong : {f :t >u} >(a=b) >fa=£fb
cong Refl = Refl

plusReducesS : (n : Nat) -> (m : Nat)

> S (n+m=n+ (Sm
plusReducesS Z m = Refl
plusReducesS (S n) m = cong (plusReducesS n m)



Impossible

Usually, when particular pattern match is not possible we just omit
the clause. However, sometimes it is useful (as we will see in a
moment) to mark it explicitly - Idris provides us with impossible
keyword for such cases.



Impossible

Usually, when particular pattern match is not possible we just omit
the clause. However, sometimes it is useful (as we will see in a
moment) to mark it explicitly - Idris provides us with impossible
keyword for such cases.

foo : (n : Nat) -> Vect n a -> Nat
foo Z (_::_) impossible

foo (5 1) [1 impossible

foo n =n



Negation

data Void



Negation
data Void
Having _L everything is possible:

void : Void -> a



Negation
data Void
Having _L everything is possible:

void : Void -> a

Not : Type —-> Type
Not a = a -> Void



Negation

data Void
Having _L everything is possible:

void : Void -> a

Not : Type —-> Type
Not a = a -> Void

data IsZero : Nat -> Type where
Zero : IsZero Z

succNonZero : (n : Nat) -> IsZero (S n) -> Void
succNonZero _ Zero impossible



Negation

data Void
Having _L everything is possible:

void : Void -> a

Not : Type -> Type
Not a = a -> Void

data IsZero : Nat -> Type where
Zero : IsZero Z

succNonZero : (n : Nat) -> Not (IsZero (S n))
succNonZero _ Zero impossible



Decidability

data Dec : Type —-> Type where
Yes : {A : Type} -> A -> Dec A
No : {A : Type} -> Not A -> Dec A



Decidability

data Dec : Type —-> Type where
Yes : {A : Type} -> A -> Dec A
No : {A : Type} -> Not A -> Dec A

decIsZero : (n : Nat) -> Dec (IsZero n)
decIsZero Z
decIsZero (S n)

Yes Zero
No (succNonZero n)



Interactive proving

Idris has many facilities to help with theorem proving:

» good editor suport (Emacs and Vim)
> set of builtin syntax rules
> tactics language
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e, Ti=x|Xxe|eae|(x:Th)=>T|T

where e stands for expressions, T for types (they are the same
thing but are distinguished here for clarity), * — * for functional
type and T for type of types.



Syntax

e, Ti=x|Xxe|eae|(x:Th)=>T|T

where e stands for expressions, T for types (they are the same
thing but are distinguished here for clarity), * — * for functional
type and T for type of types.

Having something like type of types is bad but makes everything
simple.
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TET.T oPpe

]”,X:TI—X:Tvar

F,X:Tll—e:Tg Fl—TliT
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Typechecking rules

TET.T oPpe

]”,X:TI—X:Tvar

I'x:Tike: Ty, I'ETy:T
I'Xxe:(x:T1)— Tz

lambda

FI—TliT F,XZTli—TQZT
I't(x:T)—=>Ta: T

Fl—eli(XiTl)—>T2 F|—G2ZT1 app
I'ee: Tr[x— e




Examples

id:(t:T)—=(x:t)—>t
id = At.Ax.x



Examples

id:(t:T)—=(x:t)—>t
id = At.Ax.x

idid : (t:T)—=(x:t) =t
idid = id ((t: T) — (x: t) — t) id
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bool = (t:T)— (bt :t) — (bf:t) =t
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false : bool

false = At.\b;y.Abr.bs



Examples
bool : T

bool = (t:T)— (bt :t) — (bf:t) =t

true : bool

true = A\t.Aby.Abr.b;

false : bool

false = At.\b;y.Abr.bs

if :bool = (t:T)— (bt:t)— (br:t)—>t
if = Ab.b
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