
Dependent types homework

Exercise 1 (2 points)

During the seminar we defined pairs by declaring new data type:

data Pair : Type -> Type -> Type where
MkPair : a -> b -> Pair a b

Use dependent pairs to create an equivalent definition but without using data
keyword, i.e. provide implementations for following type annotations:

Pair' : Type -> Type -> Type
MkPair' : a -> b -> Pair' a b

Exercise 2 (10 points)

Recall the Fin n type we used to define safe vector indexing:

data Fin : Nat -> Type where
FZ : Fin (S n)
FS : Fin n -> Fin (S n)

However, usually we work with Nat type. Provide implementations for following
functions:

fin2Nat : Fin n -> Nat -- 1 point
nat2Fin : Nat -> (n : Nat) -> Maybe (Fin n) -- 3 points

Last part of this exercises requires you to prove injectiveness of fin2Nat:

fin2NatInjective : (m : Fin k) -> (n : Fin k) ->
(fin2Nat m) = (fin2Nat n) -> m = n -- 6 points

You may find the following lemmas useful (they are avaliable as part of Idris
prelude so you don’t have to declare them):

succInjective : (n : Nat) -> (m : Nat) ->
S n = S m -> n = m

succInjective _ _ Refl = Refl

cong : {a : Type} -> {b : Type} ->
{x : a} -> {y : a} -> {f : a -> b} ->
x = y -> f x = f y

cong Refl = Refl

1



Exercise 3 (10 points)

Fixed-point expressions (5 points)

We showed factorial function as an example of valid expression of our statically
checked lambda calculus. However, in order to achieve that we used Idris-level
recursion (which might loop infinitely - try compiling it with totality checking
enabled). Extend STLC and its interpreter to support fixed-point operator and
use it to define factorial function (this will make interpreter not total but a
man’s gotta do what a man’s gotta do).

Let expressions (5 points)

Extend STLC and its interpreter to support let expressions (non-recursive).

Exercise 4 (12 points)

Implement red-black trees (just insertion operation) and use dependent types
to ensure that tree invariants are mantained. We are only interested in static
checking of tree structural invariants (i.e. each path has the same number of
black nodes and no red node has red child) so you may skip ordering correctness
of tree labels.

You are free to choose the way to achieve that but I suggest the approach discussed
in this presentation: http://www.cis.upenn.edu/~sweirich/talks/icfp14.pdf.

2

http://www.cis.upenn.edu/~sweirich/talks/icfp14.pdf

	Dependent types homework
	Exercise 1 (2 points)
	Exercise 2 (10 points)
	Exercise 3 (10 points)
	Fixed-point expressions (5 points)
	Let expressions (5 points)

	Exercise 4 (12 points)


