Towards internet of code

tukasz Dabek

May 27, 2015

This was supposed to be about lens library!

Yes, but...

This was supposed to be about lens library!

Foldsa Setterstab
folded : Foldable 1 => Fold fa) a sesi(a 220 Seerata
f0lcMapO :: Monoid r => Fold 58> (2 > 1) > 8 > mepped er fa) (fb)ab
f0IrOf : Fold $a-> (a > 1> 1) > 1> 8 > 1 ovr () Setlrs Lab-> () > 81

toListOf :: Fold s 2 -> s -> [a] iSeterstab>p->
anyOr : Fold sa > (a-> Bool) > §
traverseOf_ : Applicative f=> Fold sa > (a-> 1) > > 1()

L
3 Numa = Seters 1 > a5 851
(%) Monoid r=>s > Fold sr->

View (onadReader s m. Monod 1) => Fold 1>t (5 : oragSiate s m = Setterss ab-> (@) >m ()
use :: (MonadState s m, Foldsr->mr (-),Mnnadstamsmcsel\ersszbcbc)
(2 Num 2, Moadiats s m) 2> S Seter 2> > m
23 (Num . onaStte m) > Simpl Seter 3> 8-> m
(Num a MonagStle s m) = Smple Seter s a5 &)
stemn
Getters a Traversalstab
107 (s> 2)> Getter sa traverse :: Traversable { => Traversal (fa) (fb)ab.
foaNapOr Geters3-> a1 > 51 oo Traversas L3 = ol . Al = 6>) >3 > 1
. ‘mapMOf :: Monad m => Traversal sta)mb}-)sem(
(A)z:s->Gettersa->a mapACoUmRO : Tuvmllub-)(m > (aco, b)) -> aco > 5 > (ace,)
View MonadReadsr s => Getlorsa->m a S Lab (a00 > 8-> (ace,) > acs > 5 > (s)
onadSias 5 > Geter .5 VansposeOr . Traverse (22> 5 11
15 ab s nt > Traver
‘elementsOf :: Traversal s ta b -> (Int-> Bool) -> Traversal stab
3% : Applcative > Traversal s 1ab > (a> 1) >
(0 (Eradsiate o Maned 1 Travenal o525 (3 () > mr
s=temn
Reviewsa
Lensstab o’ (5>)> Revews tab
roRodows a5 > Gatr ot
Self o bl MonadReads: om = Revewstao-> m1
2 Fled2stab = Lenss tab e Momdsmtbm->ﬁmswntb~> mt
“s.: Fisdos tab = Lens stab stann
Tnide - Lens s ta 6> Lans (6->5) (6->1) (6->3) (¢ D)
outads : Prim s a b -> Lons (551 (121 (85 (o> 1) Priemstan
tps i ot =t = 0>)25 e T
Fincor 155 Lois 5 120 > 3.5 15) > 33 1t
HonacStae =5 Lans s 5 0> (a5 1 0) > m Lot Prsm (Ether) (Ether 00 ab

ZRight : Prism (Either c) (Either cb)a b

Isostab

505 (s>a)> (o> 1) > lsostab
m:isostab->lsoabst
wapping; Wispped s3> s >2) > 505538
enum : Enum a => Simple s
simle : Simple 1s0a a
clor = ls03120.> 50 19) 1) () (1)
curied : 5o ((ab) >) (d€)->) (a-> b >
uncurried : curted : uaxa.)u.>:)(aoe-)m(nbwc}ude)e'!
:ls05tabo> ((s>3) > e->b)>0->
s0s ho((r)z}oecb)\’ﬂ!&s)\?ec«
+15051ab > (t>8) >

Why internet is awesome?

Because every device connected to it speaks the same language. This is
what enabled its fast growth.

Why programming is awesome?

Because every programmer uses different language, libraries, data
representations, all incompatible witch each other.

Why programming is awesome?

Because every programmer uses different language, libraries, data
representations, all incompatible witch each other.

Take any useful piece of code and chances are that the same functionality
is reimplemented in many languages.

The problem

Suppose we are writing a website in Haskell. Example: customized gift
store.

The problem

Suppose we are writing a website in Haskell. Example: customized gift
store.

price :: Product -> [Addons] -> Address -> Money

The problem

Suppose we are writing a website in Haskell. Example: customized gift
store.

price :: Product -> [Addons] -> Address -> Money

function price(product, addons, address) { ... }

The problem

Client needs to know total cost of order. It is not just a sum of prices!
» Many shipping options = different prices.
» Shipping discount for big orders.
» Buy two Combulbulators and get third FOR FREE!

Non-solutions

» Make a request to server after each state change

Non-solutions

» Make a request to server after each state change (kills performance).

Non-solutions

» Make a request to server after each state change (kills performance).

» Implement logic in Haskell and JavaScript

Non-solutions

» Make a request to server after each state change (kills performance).

> Implement logic in Haskell and JavaScript (maintenance nightmare).

Non-solutions

» Make a request to server after each state change (kills performance).
> Implement logic in Haskell and JavaScript (maintenance nightmare).

» Write in JavaScript on the servers

Non-solutions

» Make a request to server after each state change (kills performance).
> Implement logic in Haskell and JavaScript (maintenance nightmare).

» Write in JavaScript on the servers (don't even get me started on
this).

Non-solutions

Make a request to server after each state change (kills performance).

v

v

Implement logic in Haskell and JavaScript (maintenance nightmare).

v

Write in JavaScript on the servers (don't even get me started on
this).
Embedding Haskell interpreter in JavaScript

v

Non-solutions

Make a request to server after each state change (kills performance).

v

v

Implement logic in Haskell and JavaScript (maintenance nightmare).

v

Write in JavaScript on the servers (don't even get me started on
this).
Embedding Haskell interpreter in JavaScript (cumbersome).

v

Non-solutions

» Make a request to server after each state change (kills performance).

> Implement logic in Haskell and JavaScript (maintenance nightmare).

» Write in JavaScript on the servers (don't even get me started on
this).

» Embedding Haskell interpreter in JavaScript (cumbersome).

» Use language compiled to native code and JavaScript (think
js_of ocaml)

Non-solutions

» Make a request to server after each state change (kills performance).

> Implement logic in Haskell and JavaScript (maintenance nightmare).

» Write in JavaScript on the servers (don't even get me started on
this).

» Embedding Haskell interpreter in JavaScript (cumbersome).

» Use language compiled to native code and JavaScript (think
js_of ocaml) (not a bad solution really!).

Core of the problem

We have shared logic, operating on shared data structures.

In most use cases the functions implementing shared logic are pure.

The problem #2

We are writing social media client for Android and iOS. User interface
code is completely separate, but code for data fetching should be almost
the same.

The problem #2

We are writing social media client for Android and iOS. User interface
code is completely separate, but code for data fetching should be almost
the same.

Sometimes we are interested in sharing little more than pure functions.

The idea

Small language as a target for compilation and decompilation. Think of
high level assembly language.

The idea

Small language as a target for compilation and decompilation. Think of
high level assembly language.

It should be:
> pure,
» functional,
» simple, but expressive,
| 4

typed, maybe even dependently typed.

Integration

From practical point of view interaction with shared language should be
hassle free. This is wrong:

var ctx = new Morte.Context();
ctx.loadFile(...);
ctx.callFunction("price", Morte.ADT.List(...), ...);

This is better:

import ’/my/awesome/library/prices’;
price([productl], [], shipping_address);

This is better:

import ’/my/awesome/library/prices’;
price([productl], [], shipping_address);

After importing code it should be indistinguishable from JavaScript code
in use.

In practice the system will do more interesting things, like mapping data
types to representation idiomatic in host language. We will talk about
this at the end.

The language

We will construct desired language. Let's start with simply typed lambda
calculus:

E=x|Xx:T).E|EE
T=X|T—>T

The language

We will construct desired language. Let's start with simply typed lambda
calculus:

E=x|Xx:T).E|EE
T=X|T—>T

| will use another syntax: (fun (x:A) => x) y

The language

We will construct desired language. Let's start with simply typed lambda
calculus:

E=x|Xx:T).E|EE
T=X|T—>T

| will use another syntax: (fun (x:A) => x) y

What can we express in this language?

Booleans

true = fun (x:A) (b:A) => x

false = fun (x:A4) (b:A) =>y

Booleans

true = fun (x:A) (b:A) => x
false = fun (x:A4) (b:A) =>y

ifbxy=bxy

Natural numbers

zero = fun (f:A -> A) (z:A) => z

one = fun (f:A -> A) (z:A) => f z

Natural numbers

zero = fun (f:A -> A) (z:A) => z
one = fun (f:A -> A) (z:A) => f z

succ n = fun (f:A > A) (z:A) => f (n f z)

Natural numbers

zero = fun (f:A -> A) (z:A) => z
one = fun (f:A -> A) (z:A) => f z

succ n = fun (f:A > A) (z:A) => f (n f z)

add nm = fun (f:A -> A) (z:A) =>n f (m f 2)

fun (f:A -> A) (z:A) =>n (m f) z

mul n m

Does it look like a fold?

STLC — problem

How to express identity function?

fun (x:A) => xis not polymorphic! We need richer type system.

System F

Polymorphic lambda calculus. We can quantify over types:

id = fun (A:*) (x:A) => x - polymorphic identity.

System F

Polymorphic lambda calculus. We can quantify over types:
id = fun (A:*) (x:A) => x - polymorphic identity.

The type of identity function is:
id : forall (A:*). A > A

Pairs

Pair A B = forall (R:*x). (A -> B -> R) —> R

fst : forall (A B:x).
(forall (R:*). (A ->B ->R) -> R) —> A

In pseudonotation: fst: forall (A B:*). Pair A B -> A.

Pairs

Pair A B = forall (R:*x). (A -> B -> R) —> R

fst : forall (A B:x).
(forall (R:*). (A ->B ->R) -> R) —> A

In pseudonotation: fst: forall (A B:*). Pair A B -> A.

fst ABp
snd A B p

p A (fun (x:A) (y:B) => x)
p B (fun (x:A) (y:B) =>y)

Natural number, honestly

Nat = forall (R:*x). R -> (R -> R) > R

Implementation of common functions are same as in STLC.

Lists

List A = forall (R:*x). R > (A -> R -> R) —> R

nil : forall (A:%). List A
cons : forall (A:*). A -> List A -> List A
map : forall(A B:*). (A -> B) -> List A -> List B

Lists

List A = forall (R:*x). R > (A -> R -> R) —> R

nil : forall (A:%). List A
cons : forall (A:*). A -> List A -> List A
map : forall(A B:*). (A -> B) -> List A -> List B

map A B f xs = xs (List B) (nil B xs)
(fun (x:A) (ys:List B) => comns B (f x) ys)

We can represent algebraic data types in System F.

We can represent algebraic data types in System F. What else can we do?

Existential types

Suppose that we have a module with hidden type S and functions £ : S
-> S, g : S -> Nat and constant ¢ : S. How to express it in System
F?

Existential types

Suppose that we have a module with hidden type S and functions £ : S
-> S, g : S -> Nat and constant ¢ : S. How to express it in System
F?

forall (R:%).
(forall (S:*). S -> (S -> S) -> (S -> Nat) -> R) > R

Existential types

Suppose that we have a module with hidden type S and functions £ : S
-> S, g : S -> Nat and constant ¢ : S. How to express it in System
F?

forall (R:%).
(forall (S:*). S -> (S -> S) -> (S -> Nat) -> R) > R

System Fw

To get rid of pseudonotation for polymorphic list we need another, richer
type system called Fw.

In a nutshell: we are introducing higher kinded types, also known as type
constructors.

Lists, honestly

List : * -> x

List = fun (A:%) => forall (R:* -> *).
RA->((A->RA->RA) ->RA

Nothing else changed much.

Calculus of Constructions

Dependently typed version of Fw, basis for Coq (Calculus of Inductive
Constructions).

Strong normalization

All of the mentioned languages are strongly normalizing.

What about the Android/iOS problem?

Possibly infinite behaviors

We can use streams for that! That was one of the first versions of Haskell

1/0.

Possibly infinite behaviors

We can use streams for that! That was one of the first versions of Haskell

1/0.

And because of strong normalization property we have progress guarantee
for free.

If we have time left, we shall take a look at free monads.

Implementation — Morte and Annah

Morte is core language — currently something between CoC and System
Fw.

Implementation — Morte and Annah

Morte is core language — currently something between CoC and System
Fw.

Annabh is higher level language compiled to and from Morte. Imports over
network works now.

Most interesting feature — translating Morte data definitions into
inductive definitions, GADT style.

Implementation — Morte and Annah

Morte is core language — currently something between CoC and System
Fw.

Annabh is higher level language compiled to and from Morte. Imports over
network works now.

Most interesting feature — translating Morte data definitions into
inductive definitions, GADT style.

Work in progress — decompilation of Annah to Haskell.

Implementation — Morte and Annah

The author is Garbriel Gonzalez, author of ,Haskell for all" blog.

You can check out his Github profile and dive into the code!

Other solutions? LLVM? asm.js? One language to rule them all?

Thank you. Any questions?

