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Motivation

In 1972, that is at the time of Reynolds’ research, there was no or
very few methods to express the semantics of a given language.

Most of the languages were usually defined by interpreters written in
a programming language based on lambda calculus, that was
hopefully better understood.

One can see a problem that by writing such an interpreter some of
the features of the defining language could be implicitely incorporated
by the defined language (e.g. strategy of evaluation).

The idea is to make somehow the defined language independent of
the nature of the defining language.
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The roadmap

A simple applicative language

Description of the defined language

First and simple meta-cyclic interpreter

Introducing CPS and defunctionalization

A try to get rid of higher-order functions

Independence from the strategy of evaluation – continuations

A glimpse at some imperative features
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Terminology

The defining language

The language our interpreters are written in.

The defined language

The language defined by those interpreters.
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The defining language – variables and constants

Variables

Set of symbols that is evaluated to some value specified in the given
environment – a mapping between variables and values.

Constants

We will not specify the set of constants precisely, but it should contain at
least integers and Boolean true and false. Their evaluation gives the same
value regardless of the environment.
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The defining language – syntax

Lambda abstraction

λ(r1, . . . , rn).rbody

Application

rf (r1, . . . , rn)

Simple conditional expression

if rp then rc else ra

Multiple conditional expression

(rp1 → rc1, . . . , rpn → rcn) is equivalent to
if rp1 then rc1 else . . . if rpn then rcn else error
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The defining language – syntax

Let expression

let x1 = r1 and . . . and xn = rn in rb

Recursive let expression

letrec x1 = r1 and . . . and xn = rn in rb
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The defined language

Functions will be limited to a single argument. Thus all applicative
expressions will have a single operand, and all lambda expressions will
have a single formal parameter.

Only call by value will be used.

Only simple conditional expressions will be used.

Nonrecursive let expressions will be excluded.

All recursive let expressions will contain a single declaration and their
declaring expressions can be only in a form of a lambda expression.

Values will be integers, boolean, and functions (actually closures).

Basic operations will be succ (returns the successor of an integer n)
and equal (tests integer equality).
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Abstract syntax of the defined language

Since this is beyond the scope of this talk, we won’t be bothering about
lexing and parsing the program. Instead, we will consider a program to be
already in a form of a abstract syntax tree.

The nodes in that tree will be represented as records together with some
adequate accessors, constructors, and classifiers. Consider a set S0 of all
records of the same ”type”. We will write:

S0 = [a1 : S1, . . . , an : Sn]

where fields of these records are elements of respective set Si and ai
denotes an accessor to the ith field. Moreover, implicitly we declare here a
constructor mk-s0 of n arguments and a classifier s0? that test whether its
argument belongs to S0.
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Abstract syntax of the defined language

Right now we are ready to define the data structures that will be used by
the interpreter.

EXP = CONST ∪ VAR ∪ APPL ∪ LAMBDA ∪ COND ∪ LETREC

APPL = [opr : EXP, opnd : EXP]
LAMBDA = [fp: VAR, body : EXP]
COND = [prem : EXP, conc : EXP, altr : EXP]
LETREC = [dvar : VAR, dexp: LAMBDA, body : EXP]

VAL = INTEGER ∪ BOOLEAN ∪ FUNVAL
FUNVAL = VAL → VAL

ENV = VAR → VAL
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Finally... a meta-circular interpreter

eval = λ(r , e).

(const?(r)→ evcon(r),

var?(r)→ e(r),

appl?(r)→ (eval(opr(r), e))(eval(opnd(r), e)),

lambda?(r)→ evlambda(r , e),

cond?(r)→ if eval(prem(r), e)

then eval(conc(r), e) else eval(altr(r), e),

letrec?(r)→ letrec e ′ =

λx . if x = dvar(r) then evlambda(dexp(r), e ′) else e(x)

in eval(body(r), e ′))
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Finally... a meta-circular interpreter

evlambda = λ(l , e).λa.eval(body(l), ext(fp(l), a, e))

ext = λ(z , a, e).λx . if x = z then a else e(x)

interpret = λr .eval(r , initenv)

initenv = λx .(x = ′′succ′′ → λa.succ(a),

x = ′′equal′′ → λa.λb.equal(a, b))
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Before we proceed... CPS

On the next slides we will use two techniques: converting to CPS and
defunctionalization. It would be good to begin with some simple examples.
We will start with converting a simple factorial function to CPS.

Direct style

fact = λn. if n = 0 then 1 else n ∗ fact(n − 1)

Continuation-passing style

fact-c = λ(n, c). if n = 0 then c(1) else fact-c(n − 1, λm.c(n ∗m))
fact = λn.fact-c(n, λx .x)
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Before we proceed... CPS

Another example of converting a program to CPS. We will write a function
that multiplies all elements in a given list. In order to do that we have to
extend our language with functions empty?(l), head(l) and tail(l).

Direct style

mult = λl . if empty?(l) then 1 else head(l) ∗mult(tail(l))

Continuation-passing style

mult-c = λ(l , c). if empty?(l) then c(1)
else if equal(head(l), 0) then 0
else mult-c(tail(l), λm.c(head(l) ∗m))

mult = λn.mult-c(n, λx .x)
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Before we proceed... Defunctionalization

The aim of defunctionalization is to get rid of use of higher-order features
of our language. This means that we don’t want any function either to be
an argument of another function or to be returned by a function. Recall
the example with factorial function.

fact-c = λ(n, c). if n = 0 then c(1) else fact-c(n − 1, λm.c(n ∗m))

fact = λn.fact-c(n, λx .x)

Two underlined lambdas are here passed as an argument of a function.
Obviously, we initially we wanted them to be functions since they are
continuations. But maybe there is a way to represent them.
Indeed, there is.
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Before we proceed... Defunctionalization

Closure

Evaluation of a lambda expression which binds all occurences of free
variables to their values in a given environment.

We will represent that two lambda expressions as records which contain
values of their global variables at the time of definition. Let’s make use of
already mentioned record equations.

MULT = [arg : INTEGER, next: CONT] will represent λm.n ∗ c(m)
INIT = [] will represent λx .x

CONT = MULT ∪ INIT
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Before we proceed... Defunctionalization

Since right now our continuations are records, we cannot simply apply
them to an integer. We will make the following transformation:

c(n)→ cont(n, c)

Now we can define the final transformed version of the factorial function.

fact-c = λ(n, c). if n = 0 then cont(1, c)

else fact-c(n − 1,mk-mult(n, c))

fact = λn.fact-c(n,mk-init())

cont = λ(a, c).(init?→ a,

mult?→ cont(arg(c) ∗ a, next(c)))
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Defunctionalizing the meta-cyclic interpreter

Recall the meta-cyclic interpreter. Some of the structures used in it were
represented with functions. These were:

functional values / closures (FUNVAL),

environment (ENV).

We will try to defunctionalize them to records.

(eval(opr(r), e))(eval(opnd(r), e))→
apply(eval(opr(r), r), eval(opnd(r), e))

e(r)→ get(e, r)

Let’s start with the set FUNVAL.
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Defunctionalizing FUNVAL

In the code of the interpreter elements of the set FUNVAL were underlined
with solid line. There were four of them and for each we define a seperate
record equation.

λa.eval(body(l), ext(fp(l), a, e)) CLOSR = [lam : LAMBDA, en : ENV]
λa.succ(a) SC = []
λa.λb.equal(a, b) EQ1 = []
λb.equal(a, b) EQ2 = [arg1 : VAL]

FUNVAL = CLOSR ∪ SC ∪ EQ1 ∪ EQ2
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Defunctionalizing FUNVAL

evlambda = λ(l , e).mk-closr(l , e)

initenv = λx .(x = ′′succ′′ → mk-sc(),

x = ′′equal′′ → mk-eq1())

apply = λ(f , a).

(closr?(f )→ let l = lam(f ) and e = en(f )

in eval(body(l), ext(fp(l), a, e)),

sc?(f )→ succ(a),

eq1?(f )→ mk-eq2(a),

eq2?(f )→ let b = a and a = arg1(f ) in equal(a, b))
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Defunctionalizing ENV

Similary, in the interpreter elements of set ENV were underlined with
dashed line. There were three of them and again, we have three record
equations.

An initial environment:
INIT = []

A simple extension of an environment:
SIMP = [bvar : VAR, bval : VAL, old : ENV]

A letrec extension of an environment:
REC = [letx : LETREC, old : ENV, new : ENV]

ENV = INIT ∪ SIMP ∪ REC

Krzysztof Wróbel (II UWr) Definitional interpreters 11 March, 2015 21 / 41



Defunctionalizing ENV

Replacement of the three environment-producing lambda expression gives:

letrec?(r)→ letrec e ′ = mk-rec(r , e) . . .

ext = λ(z , a, e).mk-simpl(z , a, e)

initenv = mk-init()
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Defunctionalizing ENV

. . . and the environment producing function is:

get = λ(e, x).

(init?(e)→ (x = ′′succ′′ → mk-sc(), x = ′′equal′′ → mk-eq1()),

simp?(e)→ let z = bvar(e) and a = bval(e) and e = old(e)

in if x = z then a else get(e, x),

rec?(e)→ let r = letx(e) and e = old(e) and e ′ = e

in if x = dvar(r) then evlambda(dexp(r), e ′) else get(e, x))
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Finally... the second interpreter

interpret = λr .eval(r ,mk-init())

eval = λ(r , e).

(const?(r)→ evcon(r),

var?(r)→ get(e, r),

appl?(r)→ apply(eval(opr(r), r), eval(opnd(r), e)),

lambda?(r)→ mk-closr(r , e),

cond?(r)→ if eval(prem(r), e)

then eval(conc(r), e) else eval(altr(r), e),

letrec?(r)→ eval(body(r),mk-rec(r , e)))
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Finally... the second interpreter

apply = λ(f , a).

(closr?(f )→
eval(body(lam(f )), ext(fp(lam(f )), a, en(f ))),

sc?(f )→ succ(a),

eq1?(f )→ mk-eq2(a),

eq2?(f )→ equal(arg1(f ), a))

get = λ(e, x).

(init?(e)→ (x = ′′succ′′ → mk-sc(), x = ′′equal′′ → mk-eq1()),

simp?(e)→ if x = bvar(e) then bval(e) else get(old(e), x),

rec?(e)→ if x = dvar(letx(e))

then mk-closr(dexp(letx(e)), e) else get(old(e), x))
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Non-terminating expressions and evaluation-strategy
dependence

Consider an example where exp is non-termination and f terminates, and
doesn’t need the value of expression exp. Then the answer for a question
whether the following expression terminates depends on the strategy of
evaluation of the defining language.

apply(eval(opr(r), e), eval(opnd(r), e))

However, we wanted our defined language to incorporate call-by-value
strategy and because of this, in our interpreter that expression should
never terminate.
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Continuations

To deal with this problem we will introduce continuations

CONT = VAL → VAL,

and change functions interpret, eval and apply to have the following form:

interpret = λr .eval(r ,mk-init(), λa.a)
eval = λ(r , e, c). . . .
apply = λ(f , a, c). . . .

We will think our further actions to perform will be embdeded into those
continuations. This will allow us to have the control of order of execution.
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Continuations

For all of the trivial functions (i.e. definitely terminating) we will simply
pass the result of their application to the current continuation.

eval = λ(r , e, c).

(const?(r)→ c(evcon(r)),

var?(r)→ c(get(e, r)),

...

lambda?(r)→ c(mk-closr(r , e)), . . .)

apply = λ(f , a, c).(. . . ,

sc?(f )→ c(succ(a)),

eq1?(f )→ c(mk-eq2(a)),

eq2?(f )→ c(equal(arg1(f ), a)))
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Continuations

In the following instructions we would like to pass the current continuation
(i.e. actions we have to perform later) as an argument of eval .

letrec?(r)→ (eval(body(r),mk-rec(r , e), c))

...

(closr?(f )→
eval(body(lam(f )),mk-simp(fp(lam(f )), a, en(f )), c)
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Continuations

We are left with two statements where are would like to force the order
and strategy of evaluation(left-to-right and call-by-value).

appl?(r)→ eval(opr(r), e, λf .eval(opnd(r), e, λa.apply(f , a, c)))

cond?(r)→ eval(prem(r), e,

λb. if b then eval(conc(r), e, c) else eval(altr(r), e, c))
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The almost ready third interpreter

interpret = λr .eval(r ,mk-init(), λa.a)

eval = λ(r , e, c).

(const?(r)→ c(evcon(r)),

var?(r)→ c(get(e, r)),

appl?(r)→ eval(opr(r), e, λf .eval(opnd(r), e, λa.apply(f , a, c))),

lambda?(r)→ c(mk-closr(r , e)),

cond?(r)→ eval(prem(r), e,

λb. if b then eval(conc(r), e, c) else eval(altr(r), e, c))

letrec?(r)→ eval(body(r),mk-rec(r , e), c))
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The almost ready third interpreter

apply = λ(f , a, c).

(closr?(f )→
eval(body(lam(f )),mk-simp(fp(lam(f )), a, en(f )), c),

sc?(f )→ c(succ(a)),

eq1?(f )→ c(mk-eq2(a)),

eq2?(f )→ c(equal(arg1(f ), a)))

get = λ(e, x).

(init?(e)→ (x = ′′succ′′ → mk-sc(), x = ′′equal′′ → mk-eq1()),

simp?(e)→ if x = bvar(e) then bval(e) else get(old(e), x),

rec?(e)→ if x = dvar(letx(e))

then mk-closr(dexp(letx(e)), e) else get(old(e), x))
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Why almost?

By converting our interpreter to CPS, we have once again introduced
higher-order functions. Since the conversion to first-order language is
pretty mechanical, we will just write down the new record equations and
then the fully ready, defunctionalized, strategy-of-evaluation independent
interpreter.

The initial continuation – identity
FIN = []
Evaluate-operand continuation
EVOPN = [ap : APPL, en : ENV, next : CONT]
Apply-function continuation
APFUN = [fun : VAL, next : CONT]
Branch continuation
BRANCH = [cn : COND, en : ENV, next : CONT]

CONT = FIN ∪ EVOPN ∪ APFUN ∪ BRANCH
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Finally... the third interpreter

interpret = λr .eval(r ,mk-init(),mk-fin())

eval = λ(r , e, c).

(const?(r)→ cont(c , evcon(r)),

var?(r)→ cont(c , get(e, r)),

appl?(r)→ eval(opr(r), e,mk-evopn(r , e, c)),

lambda?(r)→ cont(c ,mk-closr(r , e)),

cond?(r)→ eval(prem(r), e,mk-branch(r , e, c)),

letrec?(r)→ eval(body(r),mk-rec(r , e), c))
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Finally... the third interpreter

apply = λ(f , a, c).

(closr?(f )→
eval(body(lam(f )),mk-simp(fp(lam(f )), a, en(f )), c),

sc?(f )→ cont(c , succ(a)),

eq1?(f )→ cont(c ,mk-eq2(a)),

eq2?(f )→ cont(c , equal(arg1(f ), a)))

get = λ(e, x).

(init?(e)→ (x = ′′succ′′ → mk-sc(), x = ′′equal′′ → mk-eq1()),

simp?(e)→ if x = bvar(e) then bval(e) else get(old(e), x),

rec?(e)→ if x = dvar(letx(e))

then mk-closr(dexp(letx(e)), e) else get(old(e), x))
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Finally... the third interpreter

cont = λ(c , a).

(fin?(c)→ a,

evopn?(c)→ let f = a and r = ap(c) and

e = en(c) and c = next(c)

in eval(opnd(r), e,mk-apfun(f , c)),

apfun?(c)→ let f = fun(c) and c = next(c) in apply(f , a, c),

branch?(c)→ let b = a and r = cn(c) and

e = en(c) and c = next(c)

in if b then eval(conc(r), e, c) else eval(altr(r), e, c))
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Escape expressions

We will introduce now an imperative control mechanism.

If (in the defined language) x is a variable and r is an expression, then

escape x in r

is an escape expression. The evaluation of it in an environment e proceeds
as follows:

The body r is evaluated in the environment that is the extension of e
that binds x to a function called the escape expression.

If the escape function is never applied during the evaluation of r , then
the value of r becomes the value of the escape expression.

If the escape function is applied to an argument a, then the
evaluation of the body r is aborted, and a immediately becomes the
value of the escape function.
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Escape expressions

In order to extend our interpreters to handle escape expressions, we begin
by extending the abstract syntaxt appropriately:

EXP = . . .∪ ESCP
ESCP = [escv : VAR, body : EXP]

Since the escape variable is bound to a function, we must add to the set
FUNVAL a new kind of record that represents escape functions:

FUNVAL = . . .∪ ESCF
ESCF = [cn : CONT]
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Escape expressions

These records are created in the new branch of eval :

eval = λ(r , e, c).(. . . ,

escp?(r)→ eval(body(r),mk-simp(escv(r),mk-escf (c), e), c))

and are interpreted by a new branch of apply :

apply = λ(f , a, c).(. . . ,

escf ?(f )→ cont(cn(f ), a))
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The End
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