
Zipper

Dariusz Bukowski

10.06.2015

Dariusz Bukowski Zipper

Problem definition

In a purely functional setting we are unable to edit tree-shaped
data efficiently. Everytime we want to modify a node we need to
copy its path from the root of the tree.

Dariusz Bukowski Zipper

Basic idea

We want to have a "pointer" to the node of interest. We will
keep the value in this point and the context of this value, which
will allow us to move around the tree structure.
There are many variations on the basic idea. First let us take a
look at a version which pertains to trees with variadic arity
anonymous tree nodes, and tree leaves injecting values from
an unspecified item type.

Dariusz Bukowski Zipper

Variadic arity

We assume a type parameter item of the elements we want to
manipulate hierarchically. The tree structure is just hierarchical
lists grouping trees in a section. For instance, in the UNIX file
system, items would be files and sections would be directories:

1 type tree =
2 Item of item
3 | Section of tree list;;

The path in the tree would look as follows:

1 type path =
2 Top
3 | Node of tree list * path * tree list;;

Dariusz Bukowski Zipper

Variadic arity

We assume a type parameter item of the elements we want to
manipulate hierarchically. The tree structure is just hierarchical
lists grouping trees in a section. For instance, in the UNIX file
system, items would be files and sections would be directories:

1 type tree =
2 Item of item
3 | Section of tree list;;

The path in the tree would look as follows:

1 type path =
2 Top
3 | Node of tree list * path * tree list;;

Dariusz Bukowski Zipper

Variadic arity

A Node(l ,p, r) contains its the reversed list l of its left siblings,
its father path p, and its list r of right siblings.

A location in the tree adresses a subtree, together with its path.

1 type location = Loc of tree * path;;

A location consists of a distinguished tree, the current focus of
attention and its path, representing its surrounding context.

Dariusz Bukowski Zipper

Variadic arity

A Node(l ,p, r) contains its the reversed list l of its left siblings,
its father path p, and its list r of right siblings.
A location in the tree adresses a subtree, together with its path.

1 type location = Loc of tree * path;;

A location consists of a distinguished tree, the current focus of
attention and its path, representing its surrounding context.

Dariusz Bukowski Zipper

Example

Assume that we consider the parse tree of arithmetic
expressions, with string items. The expression a× b + c × d
parses as the tree:

1 Section[Section[Item "a"; Item "*"; Item "b"];
2 Item "+";
3 Section[Item "c"; Item "*"; Item "d"]];;

The location of the second multiplication sign in the tree is:

1 Loc(Item "*",
2 Node([Item "c"],
3 Node([Item "+"; Section [Item "a"; Item "*"; Item "b"]],
4 Top,
5 []),
6 [Item "d"]))

Dariusz Bukowski Zipper

Example

Assume that we consider the parse tree of arithmetic
expressions, with string items. The expression a× b + c × d
parses as the tree:

1 Section[Section[Item "a"; Item "*"; Item "b"];
2 Item "+";
3 Section[Item "c"; Item "*"; Item "d"]];;

The location of the second multiplication sign in the tree is:

1 Loc(Item "*",
2 Node([Item "c"],
3 Node([Item "+"; Section [Item "a"; Item "*"; Item "b"]],
4 Top,
5 []),
6 [Item "d"]))

Dariusz Bukowski Zipper

Navigation

Navigation in such a structure is really simple:

1 let go_left (Loc(t,p)) = match p with
2 Top -> failwith "left of top"
3 | Node(l::left,up,right) -> Loc(l,Node(left,up,t::right))
4 | Node([],up,right) -> failwith "left of first";;
5

6 let go_right (Loc(t,p)) = match p with
7 Top -> failwith "right of top"
8 | Node(left,up,r::right) -> Loc(r,Node(t::left,up,right))
9 | _ -> failwith "right of last";;

Dariusz Bukowski Zipper

Navigation

Going up and down the tree is slightly more complicated:

1 let go_up (Loc(t,p)) = match p with
2 Top -> failwith "up of top"
3 | Node(left,up,right) ->
4 Loc(Section((rev left) @ (t::right)),up);;
5

6 let go_down (Loc(t,p)) = match t with
7 Item(_) -> failwith "down of item"
8 | Section(t1::trees) -> Loc(t1,Node([],p,trees))
9 | _ -> failwith "down of empty";;

Note that all the navigation primitives take a constant time,
except go_up, which is proportional to the length of the list of
the left siblings of the current term.

Dariusz Bukowski Zipper

Tree modification

As we can see on the previous slides, the navigation primitives
are fast and easy. We may also want to mutate the structure at
the current location:

1 let change (Loc(_,p)) t = Loc(t,p);;

Dariusz Bukowski Zipper

Tree modification

Inserting new nodes:

1 let insert_right (Loc(t,p)) r = match p with
2 Top -> failwith "insert of top"
3 | Node(left,up,right) -> Loc(t,Node(left,up,r::right));;
4

5 let insert_left (Loc(t,p)) l = match p with
6 Top -> failwith "insert of top"
7 | Node(left,up,right) -> Loc(t,Node(l::left,up,right));;
8

9 let insert_down (Loc(t,p)) t1 = match t with
10 Item(_) -> failwith "down of item"
11 | Section(sons) -> Loc(t1,Node([],p,sons));;

Dariusz Bukowski Zipper

Tree modification

We may also want to implement a deletion primitive. We may
choose to move right, if possible, otherwise left, and up in case
of an empty list.

1 let delete (Loc(_,p)) = match p with
2 Top -> failwith "delete of top"
3 | Node(left,up,r::right) -> Loc(r,Node(left,up,right))
4 | Node(l::left,up,[]) -> Loc(l,Node(left,up,[]))
5 | Node([],up,[]) -> Loc(Section[],up);;

Dariusz Bukowski Zipper

First-order terms

So far, our structures are completely untyped – our tree nodes
are not even labelled. If we want to implement a
tree-manipulation editor for abstract-syntax trees, we have to
label our tree nodes with operator names.

Dariusz Bukowski Zipper

First-order terms

If we use items for this purpose, this suggests the usual LISP
encoding of first-order terms: F (T1, . . . ,Tn) being coded as the
tree Section[Item(F);T1; . . .Tn].
This solution does not respect arity of operators.

Dariusz Bukowski Zipper

First-order terms

We shall not pursue details of such generic variations any
more, but rather consider how to adapt the idea to a specific
given signature of operators given with their arities, in such a
way that tree edition maintains well-formedness of the tree
according to arities.
Basically, to each constructor F of the signature with arity n we
associate n path operators Node(F , i), with 1 ≤ i ≤ n, each of
arity n, used when going down the i-th subtree of an F -term.
More precisely, Node(F , i) has one path argument and n − 1
tree arguments holding the current siblings.

Dariusz Bukowski Zipper

Example

Consider the abstract syntax tree for a hypothetical language:

data Term
= Var S t r i n g
| Lambda S t r i n g Term
| App Term Term
| If Term Term Term

Dariusz Bukowski Zipper

Example

A zipper for this type is a pairing of a Term that is the hole value
with a TermContext that is the one-hole context. As stated
before, for each recursive child of each constructor in Term, the
TermContext type needs a constructor with that child missing
and replaced by a reference to a parent context.

Dariusz Bukowski Zipper

Example

type TermZipper = (Term , TermContext)
data TermContext
= RootTerm
| Lambda1 S t r i n g TermContext
| App1 TermContext Term
| App2 Term TermContext
| If1 TermContext Term Term
| If2 Term TermContext Term
| If3 Term Term TermContext

Dariusz Bukowski Zipper

Movement operations for Term

We need to provide the movement operations for all
constuctors of TermContext .

downTerm : : TermZipper −> Maybe TermZipper
downTerm (Var s , c) = Nothing
downTerm (Lambda s t1 , c) = Just (t1 , Lambda1 s c)
downTerm (App t1 t2 , c) = Just (t1 , App1 c t2)
downTerm (If t1 t2 t3 , c) = Just (t1 , If1 c t2 t3)

upTerm : : TermZipper −> Maybe TermZipper
upTerm (t1 , RootTerm) = Nothing
upTerm (t1 , Lambda1 s c) = Just (Lambda s t1 , c)
upTerm (t1 , App1 c t2) = Just (App t1 t2 , c)
upTerm (t2 , App2 t1 c) = Just (App t1 t2 , c)
upTerm (t1 , If1 c t2 t3) = Just (If t1 t2 t3 , c)
upTerm (t2 , If2 t1 c t3) = Just (If t1 t2 t3 , c)
upTerm (t3 , If3 t1 t2 c) = Just (If t1 t2 t3 , c)

Dariusz Bukowski Zipper

Movement operations for Term

leftTerm : : TermZipper −> Maybe TermZipper
leftTerm (t1 , RootTerm) = Nothing
leftTerm (t1 , Lambda1 s c) = Nothing
leftTerm (t1 , App1 c t2) = Nothing
leftTerm (t2 , App2 t1 c) = Just (t1 , App1 c t2)
leftTerm (t1 , If1 c t2 t3) = Nothing
leftTerm (t2 , If2 t1 c t3) = Just (t1 , If1 c t2 t3)
leftTerm (t3 , If3 t1 t2 c) = Just (t2 , If2 t1 c t3)

rightTerm : : TermZipper −> Maybe TermZipper
rightTerm (t1 , RootTerm) = Nothing
rightTerm (t1 , Lambda1 s c) = Nothing
rightTerm (t1 , App1 c t2) = Just (t2 , App2 t1 c)
rightTerm (t2 , App2 t1 c) = Nothing
rightTerm (t1 , If1 c t2 t3) = Just (t2 , If2 t1 c t3)
rightTerm (t2 , If2 t1 c t3) = Just (t3 , If3 t1 t2 c)
rightTerm (t3 , If3 t1 t2 c) = Nothing

Dariusz Bukowski Zipper

Non-movement operations for Term

fromZipperTerm : : TermZipper −> Term
fromZipperTerm z = f z where
f : : TermZipper −> Term
f (t1 , RootTerm) = t1
f (t1 , Lambda1 s c) = f (Lambda s t1 , c)
f (t1 , App1 c t2) = f (App t1 t2 , c)
f (t2 , App2 t1 c) = f (App t1 t2 , c)
f (t1 , If1 c t2 t3) = f (If t1 t2 t3 , c)
f (t2 , If2 t1 c t3) = f (If t1 t2 t3 , c)
f (t3 , If3 t1 t2 c) = f (If t1 t2 t3 , c)

toZipperTerm : : Term −> TermZipper
toZipperTerm t = (t , RootTerm)

getHoleTerm : : TermZipper −> Term
getHoleTerm (t , _) = t

setHoleTerm : : Term −> TermZipper −> TermZipper
setHoleTerm h (_ , c) = (h , c)

Dariusz Bukowski Zipper

Non-movement operations for Term

With the exception of fromZipperTerm, these are trivial wrapper
functions manipulating the pair that forms a zipper. The
fromZipperTerm function moves all the way to the root context
before returning the resulting value.

Dariusz Bukowski Zipper

Limitations

All the operations are really simple. However, we have two
major issues:

traditional zipper is bound to a single type. For example we
can’t define a zipper for this type representing a
department:

data Dept = D Manager [Employee]
d e r i v i n g (Show, Typeable , Data)
data Employee = E Name Salary
d e r i v i n g (Show, Typeable , Data)
type Salary = F loa t
type Manager = Employee
type Name = S t r i n g

for each new type the traditional zipper requires a complete
rewrite of the boilerplate code from previous slides

Dariusz Bukowski Zipper

Generic Zipper

We want to address those limitations. We want a generic zipper
that operates on nonhomogeneous types like Dept and
Employee just as well as on homogeneous types like Term.
Finally, we would like the generic zipper to require no
boilerplate code on the user’s part.

We will take a look at the Haskell library from the HackageDB
repository at http://hackage.haskell.org/package/syz
(Scrap your zipper)

Dariusz Bukowski Zipper

Generic Zipper

We want to address those limitations. We want a generic zipper
that operates on nonhomogeneous types like Dept and
Employee just as well as on homogeneous types like Term.
Finally, we would like the generic zipper to require no
boilerplate code on the user’s part.
We will take a look at the Haskell library from the HackageDB
repository at http://hackage.haskell.org/package/syz
(Scrap your zipper)

Dariusz Bukowski Zipper

Generic Zipper

The only restriction is that the type that the zipper traverses
must be an instance of the Data class. The Data class is
provided by the standard libraries packaged with GHC and
GHC can automatically derive instances of Data for user
defined types.

Dariusz Bukowski Zipper

Generic Zipper Interface

Injection and Projection

toZipper : : (Data a) => a −> Zipper a
fromZipper : : Zipper a −> a

Movement

up : : Zipper a −> Maybe (Zipper a)
down : : Zipper a −> Maybe (Zipper a)
left : : Zipper a −> Maybe (Zipper a)
right : : Zipper a −> Maybe (Zipper a)

Hole manipulation

query : : GenericQ b −> Zipper a −> b
trans : : GenericT −> Zipper a −> Zipper a
transM : : (Monad m) => GenericM m −> Zipper a −> m (Zipper a)

Dariusz Bukowski Zipper

Using generic zipper

dept : : Dept
dept = D agamemnon [menelaus , achilles , odysseus]

agamemnon , menelaus , achilles , odysseus : : Employee
agamemnon = E "Agamemnon" 5000
menelaus = E " Menelaus " 3000
achilles = E " A c h i l l e s " 2000
odysseus = E " Odysseus " 2000

*Main> let g1 = toZipper dept

*Main> :type g1

g1 : : Zipper Dept

Dariusz Bukowski Zipper

Using generic zipper

dept : : Dept
dept = D agamemnon [menelaus , achilles , odysseus]

agamemnon , menelaus , achilles , odysseus : : Employee
agamemnon = E "Agamemnon" 5000
menelaus = E " Menelaus " 3000
achilles = E " A c h i l l e s " 2000
odysseus = E " Odysseus " 2000

*Main> let g1 = toZipper dept

*Main> :type g1

g1 : : Zipper Dept

Dariusz Bukowski Zipper

Getting Hole Value

With a traditional zipper, the type of the hole is fixed. For
example, getHoleTerm always returns a Term. But with a
generic zipper, the type of the hole changes as the focus of the
zipper moves around.
The compiler knows only the type of the zipper (for example
Dept), which doesn’t expose the type of the hole.

Dariusz Bukowski Zipper

Getting Hole Value

This is resolved by the hole-manipulation functions, query ,
trans, and transM.

type GenericQ r = forall a . (Data a) => a −> r
type GenericT = forall a . (Data a) => a −> a
type GenericM m = forall a . (Data a) => a −> m a

Each is defined in terms of a user-supplied generic function
that operates on any argument type (e.g., the universally
quantified a) provided the type is an instance of the Data class.

Dariusz Bukowski Zipper

Getting Hole Value

To retrieve the contents of the hole, we supply to query a
generic query function of type forall a.(Data a) => a→ r .

We will use type-safe cast function:

cast : : (Typeable a , Typeable b) => a −> Maybe b

Typeable class is a superclass of the Data class.

Dariusz Bukowski Zipper

Getting Hole Value

To retrieve the contents of the hole, we supply to query a
generic query function of type forall a.(Data a) => a→ r .
We will use type-safe cast function:

cast : : (Typeable a , Typeable b) => a −> Maybe b

Typeable class is a superclass of the Data class.

Dariusz Bukowski Zipper

Getting Hole Value

As expected the hole contains the original object:

*Main> query cast g1 : : Maybe Dept
Just (D (E "Agamemnon" 5000.0)
[E " Menelaus " 3000.0 ,
E " A c h i l l e s " 2000.0 ,
E " Odysseus " 2000 .0])

Since in this example we will be retrieving the contents of the
hole several times, we might want to define a helper for it:

getHole : : (Typeable b) => Zipper a −> Maybe b
getHole = query cast

Dariusz Bukowski Zipper

Getting Hole Value

None of the core generic zipper functions involve any casts. It
is up to the user when a cast is used.

Dariusz Bukowski Zipper

Setting Hole Value

Let’s say we want to change the name of the Manager from
Agamemnon to King Agamemnon.

To change the king’s title, the zipper must navigate to the
proper position. The first step is to move down:

*Main> let Just g2 = down g1

*Main> getHole g2 : : Maybe [Employee]
Just [E " Menelaus " 3000.0 ,
E " A c h i l l e s " 2000.0 ,
E " Odysseus " 2000.0]

Dariusz Bukowski Zipper

Setting Hole Value

Let’s say we want to change the name of the Manager from
Agamemnon to King Agamemnon.
To change the king’s title, the zipper must navigate to the
proper position. The first step is to move down:

*Main> let Just g2 = down g1

*Main> getHole g2 : : Maybe [Employee]
Just [E " Menelaus " 3000.0 ,
E " A c h i l l e s " 2000.0 ,
E " Odysseus " 2000.0]

Dariusz Bukowski Zipper

Setting Hole Value

The zipper descends to the right-most child instead of the
leftmost child. The generic zipper’s down function always does
this for reasons that are explained later in the implementation
section. For now this means that Agamemnon’s record is the
left sibling of where the zipper is currently focused, so the next
thing to do is move left:

*Main> let Just g3 = left g2

*Main> getHole g3 : : Maybe Employee
Just (E "Agamemnon" 5000.0)

Dariusz Bukowski Zipper

Setting Hole Value

Now the current hole is Agamemnon’s Employee record, and
there is one [Employee] sibling to the right. Moving down once
more and to the left will get us to the Name in his record:

*Main> let Just g4 = down g3

*Main> getHole g4 : : Maybe Salary
Just 5000.0
*Main> let Just g5 = left g4

*Main> getHole g5 : : Maybe Name
Just "Agamemnon"

Dariusz Bukowski Zipper

Setting Hole Value

We came to the right position in the tree. All we have to do now
is set the new value. To do it we will use the trans function,
which applies a generic transformer to the hole.

This time we will use mkT function:

mkT : : (Typeable a , Typeable b) => (b −> b) −> a −> a

It takes as an argument a function that transforms one type of
object and lifts that function to be a generic transformer for any
type of object.

Dariusz Bukowski Zipper

Setting Hole Value

We came to the right position in the tree. All we have to do now
is set the new value. To do it we will use the trans function,
which applies a generic transformer to the hole.
This time we will use mkT function:

mkT : : (Typeable a , Typeable b) => (b −> b) −> a −> a

It takes as an argument a function that transforms one type of
object and lifts that function to be a generic transformer for any
type of object.

Dariusz Bukowski Zipper

Setting Hole Value

Like before with getHole, we can implement the helper function
setHole with mkT :

setHole : : (Typeable a) => a −> Zipper b −> Zipper b
setHole h z = trans (mkT (const h)) z

This function leaves the hole unchanged if it is not of type a.

Dariusz Bukowski Zipper

Setting Hole Value

Now that we provided a function to set the hole value we can
use it to change the Name of the Manager .

*Main> let g6 = setHole " King Agamemnon" g5

Since we are already here lets also give him a raise:

*Main> let Just g7 = right g6

*Main> let g8 = setHole (8000.0 : : Float) g7

If we traverse up the zipper, we can verify that the changes we
made had the proper effect:

*Main> let Just g9 = up g8

*Main> getHole g9 : : Maybe Employee
Just (E " King Agamemnon" 8000.0)

Dariusz Bukowski Zipper

Setting Hole Value

Now that we provided a function to set the hole value we can
use it to change the Name of the Manager .

*Main> let g6 = setHole " King Agamemnon" g5

Since we are already here lets also give him a raise:

*Main> let Just g7 = right g6

*Main> let g8 = setHole (8000.0 : : Float) g7

If we traverse up the zipper, we can verify that the changes we
made had the proper effect:

*Main> let Just g9 = up g8

*Main> getHole g9 : : Maybe Employee
Just (E " King Agamemnon" 8000.0)

Dariusz Bukowski Zipper

Generic Zipper

there are no type casts or dynamic type checks except
those that are part of the user-supplied generic functions
at worst, the movement operations may fail by returning
Nothing when the user tries an illegal movement (like in
traditional zipper). Of course we can instead ignore such
movements.

Dariusz Bukowski Zipper

Implementation

Just as with the traditional zipper, the generic zipper is made up
of a hole and a context. However, while the type of the hole is
fixed in a traditional zipper, in a generic zipper it may change as
the focus moves.
Thus we must construct a type that expresses this variability in
a type-safe way. This is done by the Zipper type. It contains an
existentially quantified hole and a context that matches both the
hole and the zipper’s root type:

data Zipper root =
forall hole . (Data hole) => Zipper hole (Context hole root)

Dariusz Bukowski Zipper

Implementation

As with a traditional zipper, the Context type keeps track of the
siblings and parents of the current hole and ensures that they
are of appropriate types. From a high-level perspective, a
Context represents a one-hole context that contains a hole of
type hole and a top-most node of type root . Except when it is
the top-most context represented by NullCtxt , it contains a set
of left siblings, a set of right siblings, and its parent context:

data Context hole root where
NullCtxt : : Context a a
ConsCtxt : : L e f t (???) −> Right (???) −> Context (???)
−> Context hole root

How should we fill the blanks?

Dariusz Bukowski Zipper

Implementation

As with a traditional zipper, the Context type keeps track of the
siblings and parents of the current hole and ensures that they
are of appropriate types. From a high-level perspective, a
Context represents a one-hole context that contains a hole of
type hole and a top-most node of type root . Except when it is
the top-most context represented by NullCtxt , it contains a set
of left siblings, a set of right siblings, and its parent context:

data Context hole root where
NullCtxt : : Context a a
ConsCtxt : : L e f t (???) −> Right (???) −> Context (???)
−> Context hole root

How should we fill the blanks?

Dariusz Bukowski Zipper

Implementation

Lets first take a look at the Left and Right siblings types.

data L e f t expects
= LeftUnit expects
| forall b . (Data b) => LeftCons (L e f t (b −> expects)) b

The first argument of ConsLeft is a Left that represents a
partially applied constructor of type b → expects. This is
packaged up with a second argument of type b. This packaging
represents the application of the former to the latter to construct
an object of type expects.
Multiple virtual applications are chained together to supply
each of the arguments for a multi-argument constructor. The
base case for this is a raw constructor that is not applied to
anything and is represented with UnitLeft .

Dariusz Bukowski Zipper

Implementation

Lets take a look at the example. Suppose for the moment that
we want to use Left to represent constructor applications for the
type Foo:

data Foo = Bar I n t Char | Baz F loa t

To build a Foo object we start with the Bar constructor. This is
represented by the value UnitLeft Bar . The type of this value is:

UnitLeft Bar : : L e f t (I n t −> Char −> Foo)

Dariusz Bukowski Zipper

Implementation

The arguments that Bar is expecting are manifest in the type of
the resulting Left object. We can add those arguments with
ConsLeft , and the way ConsLeft is defined ensures that those
arguments are of the proper type.

*Main> :type UnitLeft Bar
'ConsLeft ' 1
it : : Left (Char −> Foo)
*Main> :type UnitLeft Bar
'ConsLeft ' 1
'ConsLeft ' 'a '
it : : Left Foo

*Main> :type UnitLeft Baz
it : : Left (Float −> Foo)
*Main> :type UnitLeft Baz
'ConsLeft ' 1 .0
it : : Left Foo

Left contains a value of existentially quantified type b provided
b matches the argument type expected by the constructor.

Dariusz Bukowski Zipper

Implementation

The representation of right siblings is very similar to that of left
siblings. The major difference is that instead of encoding what
children the partial constructor application expects, the type
needs to encode what children it provides.

Dariusz Bukowski Zipper

Implementation

data Right provides parent where
NullRight : : R ight parent parent
ConsRight : : (Data b) => b −> Right a t −> Right (b −> a) t

The NullRight constructor represents when there are no
siblings to the right of the current hole. When there are siblings
to the right, they are represented with ConsRight . The parent
parameter to this type is used later when we combine Left and
Right into a Context , where it ensures that context types
properly match.

Dariusz Bukowski Zipper

Implementation

Let’s again take a look at the example.
Consider a Right that represents right siblings to be fed to the
Bar constructor. Every Right starts off with a NullRight :

*Main> :type NullRight
it : : Right parent parent

A Right stores its values starting with the rightmost, so the first
value stored must have the type of the last argument to Bar ,
namely Char :

*Main> :type ConsRight 'a ' NullRight
it : : Right (Char −> a) a

Next the preceding argument to Bar is added:

*Main> :type ConsRight 1 (ConsRight 'a ' NullRight)
it : : Right (Int −> Char −> a) a

Dariusz Bukowski Zipper

Implementation

Except for the universally quantified a, the provides type
parameter of the resulting Right now matches the type of the
Bar constructor (i.e., Int → Char → Foo). This encodes the
fact that the Right object provides values that match what Bar
expects as arguments. The universal quantification of type a is
a bit worrisome, but we will handle it during combining the
siblings.

Dariusz Bukowski Zipper

Implementation

With a Left and Right object of the appropriate types we should
be able to reconstruct the object that they represent by first
performing the applications represented in the Left and then
applying the result to the arguments stored in the Right . A Left
and Right are of appropriate types when the expects type
parameter of the Left equals the provides parameter of the
Right .

Dariusz Bukowski Zipper

Implementation

The fromLeft helper function does the applications that are
represented by a Left , and the fromRight helper function
applies a function to the values stored in a Right .

combine : : L e f t (hole −> rights) −> hole
−> Right rights parent −> parent
combine lefts hole rights =
fromRight ((fromLeft lefts) hole) rights

fromLeft : : L e f t r −> r
fromLeft (UnitLeft a) = a
fromLeft (ConsLeft f b) = fromLeft f b

fromRight : : r −> Right r parent −> parent
fromRight f (NullRight) = f
fromRight f (ConsRight b r) = fromRight (f b) r

The combine function first uses fromLeft to apply all the values
stored in the lefts. Then it applies the result to hole. Lastly that
result is applied to the values stored in the rights using
fromRight .

Dariusz Bukowski Zipper

Implementation

Given the way Right is defined, the parent parameter always is
a suffix of the provides parameter. Furthermore, in a call to
combine, the provides parameter of the Right is rights, which is
part of the expects parameter of the Left .
This eliminates the problem with parent being universally
quantified seen in the Right example, and along with the
matching of the expects and provides type parameters, serves
a key role in the implementation of Context .

Dariusz Bukowski Zipper

Implementation

Now we are ready to fill the blanks. Given a matching Left and
Right , the only part missing is the parent context. That parent
context must have a hole that matches the type that is
constructed from the Left and Right siblings, i.e., the parent
parameter of Right . The full definitionof Context is as follows,
where both rights and parent are existentially quantified:

data Context hole root where
CtxtNull : : Context a a
CtxtCons : :
forall rights parent . (Data parent) =>
L e f t (hole −> rights)
−> Right rights parent
−> Context parent root
−> Context hole root

Dariusz Bukowski Zipper

Implementation

Now that types are defined, implementing movement for
generic zipper is easy:

left (Zipper _ NullCtxt) = Nothing
left (Zipper _ (ConsCtxt (UnitLeft _) _ _)) = Nothing
left (Zipper h (ConsCtxt (ConsLeft l h ') r c)) =
Just (Zipper h ' (ConsCtxt l (ConsRight h r) c))

right (Zipper _ NullCtxt) = Nothing
right (Zipper _ (ConsCtxt _ NullRight _)) = Nothing
right (Zipper h (ConsCtxt l (ConsRight h ' r) c)) =
Just (Zipper h ' (ConsCtxt (ConsLeft l h) r c))

up (Zipper _ NullCtxt) = Nothing
up (Zipper hole (ConsCtxt l r ctxt)) =
Just (Zipper (combine l hole r) ctxt)

Dariusz Bukowski Zipper

Non-movement operations

fromZipper (Zipper hole NullCtxt) = hole
fromZipper (Zipper hole (ConsCtxt l r ctxt)) =
fromZipper (Zipper (combine l hole r) ctxt)

toZipper x = Zipper x NullCtxt

query f (Zipper hole ctxt) = f hole

trans f (Zipper hole ctxt) = Zipper (f hole) ctxt

transM f (Zipper hole ctxt) = do
hole ' <− f hole
r e t u r n (Zipper hole ' ctxt)

Dariusz Bukowski Zipper

Implementing down

With a single exception, down, all of the core zipper operations
simply shuffle the constructors of a zipper around.
When moving down, the values of Left , Right and Context do
not yet exist - they must be built by deconstructing the hole. We
will use the gfoldl for that.

Dariusz Bukowski Zipper

Implementing down

The gfoldl function is defined so that the call gfoldl f k a
deconstructs the object a, applies k to the extracted constructor
of a, and then reapplies each of the constructor’s arguments
using f .
For example the call:

*Main> gfoldl f k (Bar 5 'd ')

deconstructs Bar 5 ′d ′ into three parts: Bar , 5, and ′d ′. The k
function wraps around Bar , and then f reapplies 5 and ′d ′. The
end result is that our gfoldl call is equivalent to:

*Main> ((k Bar) 'f ' 5) 'f ' 'd '

Dariusz Bukowski Zipper

Implementing down

The generic zipper uses gfoldl to implement the toLeft helper,
which deconstructs a value into a set of left siblings:

toLeft : : (Data a) => a −> L e f t a
toLeft a = gfoldl ConsLeft UnitLeft a

For example toLeft (Bar 5 ′d ′) results in the value:

(UnitLeft Bar) 'ConsLeft ' 5 'ConsLeft ' 'd '

Dariusz Bukowski Zipper

Implementing down

The down function is implemented by injecting the hole into a
Left with toLeft and extracting its rightmost element. This
rightmost element (if there is one) becomes the new hole, and
the remaining elements become the left siblings:

down (Zipper hole ctxt) =
case toLeft hole of
UnitLeft _ −> Nothing
ConsLeft l hole ' −>
Just (Zipper hole ' (ConsCtxt l NullRight ctxt))

Dariusz Bukowski Zipper

Implementing down

There are two drawbacks of using gfoldl :
Data class constraints in Context , Left and Right types.
gfoldl is a left fold, so the outermost ConsLeft constructor
that comes out of toLeft contains the rightmost child. This
means that the simplest implementation of down always
moves to the rightmost child.

Dariusz Bukowski Zipper

Bibliography

Gérard Huet: Functional Pearl. The Zipper

Michael D. Adams: Scrap Your Zippers. A Generic Zipper
for Heterogeneous Types

Dariusz Bukowski Zipper

Thank you for your attention!
Questions?

Dariusz Bukowski Zipper

