- N

Jezyki programowania i kontynuacje
2. Semantyka operatorow kontroli

Dariusz Biernacki

dabi @i . uni . w oc. pl

Instytut Informatyki

Uniwersytet Wroctawski

Semantyka operacyjna a kontynuacje

- N

Formalizmy takie jak Semantyka Naturalna czy
Strukturalna Semantyka Operacyjna (SOS) nie sa
odpowiednie

|stotna jest informacja o kontekscie (calosci programu),
a nie tylko o ewaluowanym podwyrazeniu

o |

Jezyki programowania i kontynuacje — p.2/60

Semantyka operacyjna operatorow

- N

Ewaluator w CPS
s Wyzszegdo rzedu (impl. semantyki kontynuacyjnej)
s pierwszego rzedu (Impl. maszyny abstrakcyjnej)

#® Maszyna abstrakcyjna
» System przejsc pierwszego rzedu
s semantyka malych krokow

Semantyka redukcyjna

s czysto syntaktyczna, oparta na przepisywaniu
calego programu

» semantyka malych krokow
Transformacja do CPS + ewaluator

o |

Jezyki programowania i kontynuacje — p.3/60

Modelowy jezyk funkcyjny ISWIM

fBeztypowy lambda rachunek rozszerzony o stale
numeryczne | funkcje nastepnika.

-

e =x| Ar.e|eger | "'m'| succe

Program to zamkniete wyrazenie.

Jez ania i kontynuacje — p.4/60

Ewaluatory (interpretery definiujace)

-

Semantyka jezyka definiowanego (object language) jest

-

definiowana przez interpreter napisany w jezyku
definiujacym (metalanguage)

W przypadku funkcyjnego jezyka definiujacego

>

wartosci funkcyjne jezyka definiowanego moga byc
reprezentowane przez funkcje jezyka definiujacego

Interpreter moze byc wyrazony w CPS

Interpreter moze byc kompozycyjny (moze
Implementowac semantyke denotacyjna jezyka)

|

Jezyki programowania i kontynuacje — p.5/60

Ewaluator CBV dla ISWIM (1)

T_;ype Il de = string

dat at ype exp = VAR of ide
LAM of 1de * exp
APP of exp * exp
LIT of 1Int
SUCC of exp
signature ENV = sig

type 'a env

val nt : 'a env
val lookup : "a env * ide -> ' a
val extend : "a env * 1de » "a -> 'a env

end
n

Jezyki programowan

-

|

ia i kontynuacje — p.6/60

Ewaluator CBV dla ISWIM (2)

T_gtructure Env : ENV = struct __T
type 'a env = (ide » "a) |ist
val nt =[]

exception | DENTI FI ER NOT_BOUND
fun | ookup (e, Xx)
= let fun wal k []
= rai se | DENTI FI ER_NOT_ BOUND
| walk ((y,v)::¢e")
=If x =y then v else walk ¢’
In wal k e end
fun extend (e, X, v) = (X,Vv):.:.e
end

o |

Jezyki programowania i kontynuacje — p.7/60

Ewaluator CBV dla ISWIM (3)

L N

atatype value = I NT of iInt
| FN of val ue -> val ue

exception TYPE ERROR

fun eval (VAR x, env)
= Env. |l ookup (env, x)
| eval (LAM (x,e), env)
= FN (fn v =>
eval (e, Env.extend (env, X, V)))

o |

Jezyki programowania i kontynuacje — p.8/60

Ewaluator CBV dla ISWIM (4)
-

| eval (APP (eO, el), env)
= |let val vO = eval (e0, env)
val vl = eval (el, env)
I n (case vO of
FN f =>f vl
| _ =>raise TYPE ERROR) end
| eval (LIT n, env) = INT n
| eval (SUCC e, env)
= |let val v = eval (e, env)
In (case v of INT n => (INT (n+1))
| _ =>raise TYPE ERROR) end
L__fun evaluate e = eval (e, Env.nt) __J

Jezyki programowania i kontynuacje — p.9/60

Ewaluator CBN dla ISWIM (1)

L N

atatype value = I NT of iInt
| FN of conp -> val ue
W thtype conp = unit -> val ue

exception TYPE ERROR

fun eval (VAR x, env)
= Env. | ookup (env, x) ()
| eval (LAM (x,e), env)
= FN (fn c =>
eval (e, Env.extend (env, X, C)))

o |

Jezyki programowania i kontynuacje — p.10/60

Ewaluator CBN dla ISWIM (2)
-

| eval (APP (eO, el), env)
= |let val vO = eval (e0, env)
In (case vO of
FNf == f (fn () => eval (el, env))
| _ =>raise TYPE ERROR) end
| eval (LIT n, env) = INT n
| eval (SUCC e, env)
= |let val v = eval (e, env)
In (case v of INT n => (INT (n+1))
| _ =>raise TYPE ERROR) end

L__fun evaluate e = eval (e, Env.nt) __J

Jezyki programowania i kontynuacje — p.11/60

°

Maszyny abstrakcyjne

-

system przejsc pierwszego rzedu sluzacy do ewaluacii
programow

konfiguracje (stany) maszyny abstrakcyjnej okreslaja
stan obliczen na danym etapie

przejscia sa zdefiniowane przez binarna relacje
okreslona na zbiorze konfiguracji

definiuje semantyke malych krokow

stanowi etap posredni miedzy np. semantyka
redukcyjna a implementacja jezyka (wykorzystuje
srodowisko, stos, etc.)

|

Jezyki programowania i kontynuacje — p.12/60

Maszyna abstrakcyjna CBV dla ISWIM (1)
- -

Kanoniczna maszyna abstrakcyjna CBV zwana CEK:
® Jezyk: e == x| Ar.e|eger|"m’| succe

® \Wartosci:
va=m||z, e, pl

#® Srodowisko: p = pp | p{x — v}
Kontekst (stos):

FE ::=STOP | ARG ((e, p), E) | SUCC(FE) | FUN (v, E)

Jezyki programowania i kontynuacje — p.13/60

Maszyna abstrakcyjna CBV dla ISWIM (2)

-

#® Relacja przejscia:

e = (€ pPmt, STOP) eyl
(T, p, E)evat = (E, p(T)) cont
(Az.e, p, E)evar = (E, [z, €, pl)cont
(eoer, py E)evar = (€0, p, ARG ((e1, p), E))eval
("mY, p, E)evr = (E, M) cont
(succ e, p, E)evar = (€, p, SUCC (E)) epai
(ARG ((e1, p), E), V)cont = (e1, p, FUN (v, E))eya
(SUCC (E), M)cont = (K, m~+1)cont
(FUN([z, €, p], E), V)cont = (e, p{z = v}, E)epa
(STOP, V) cont = U

-

Jezyki programowania i kontynuacje — p.14/60

Maszyna abstrakcyjna CBV dla ISWIM (3)
- -

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna CEK:

Definicja 1

def
evalyy(e) = v wtw e =T v.

Maszyna abstrakcyjna CBN dla ISWIM (1)
- -

Kanoniczna maszyna abstrakcyjna CBN zwana maszyna

Krivine’a:
® Jezyk: e == z|Axr.e|eger |™m'| succe |
» \Wartosci:
vi=m| |z, e, pl
o Domkniecia:
c:=le, pl

#® Srodowisko:
p = pmt | plo — c;
Kontekst (stos):

L FE ::=STOP | ARG (¢, F) | succ (F) J

Jezyki programowania i kontynuacje — p.16/60

Maszyna abstrakcyjna CBN dla ISWIM (2)
- -

#® Relacja przejscia:

e = (e, Pmt, STOP) cpui
(z, p, E)evar = (e, 0, E)evar p(z) =[e, p]
(Az.e, p, E)evar = (E, |z, €, pl)cont
(eoet, p, E)evat = (€0, p, ARG (le1, p], E))eval
("'m", o, E)evat = (£, M) cont
(succ e, p, E)evar = (€, p, SUCC (L)) epai
(ARG (¢, E), [z, €, p)cont = (e, p{z = c}, E)evai
(SUCC (E), MYeont = (E, m+1)cont
(STOP, V) cont = v

Maszyna abstrakcyjna CBN dla ISWIM (3)
- -

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna Krivine’'a:

Definicja 2

def
evaliy(e) = v wtw e =T v.

Od ewaluatora do MA (1)
-

fFunkcyjna odpowiedniosc miedzy ewaluatorem a maszyna
abstrakcyjna:

1. defunkcjonalizacja wartosci funkcyjnych
produkowanych przez ewaluator — wprowadzenie
domkniec

2. CPS transformacja ewaluatora — sekwencjalizacja
obliczen

3. defunkcjonalizacja kontynuacji — wprowadzenie stosu

o |

Jezyki programowania i kontynuacje — p.19/60

Od ewaluatora do MA (2)
b

rzyklady

1. kanoniczny ewaluator CBV —> CEK
2. kanoniczny ewaluator CBN —> maszyna Krivine'a

Konstrukcja ta jest aplikowalna rowniez w przypadku
ewaluatorow dla jezykow nalezacych do innych
paradygmatow programowania, m.in., logicznego,
Imperatywnego | obiektowego.

Przesledzmy ja na przykladzie naszego ewaluatora CBV.

o |

Jezyki programowania i kontynuacje — p.20/60

1.Zmiana reprezentacji funkcji (1)

. N

Defunkcjonalizujemy przestrzen funkcji val ue -> val ue
w ewaluatorze CBV. Otrzymany ewaluator operuje na
domknieciach funkcji (kod funkcji + srodowisko okreslajace
wartosc zmiennych wolnych).

dat at ype val ue = I NT of int
| FN of 1de » exp * val ue Env. env

| eval (LAM (x,e), env)
= FN (x, e, env)

o |

Jezyki programowania i kontynuacje — p.21/60

1.Zmiana reprezentacji funkcji (2)

- N

| eval (APP (eO, el), env)

= |let val vO = eval (eO, env)
val vl = eval (el, env)

I n (case vO of

FN (x, e, env) =>

eval (e, Env.extend (env, X, vl))

| _ => raise TYPE ERROR)

end

2.Sekwencjalizacja obliczen (1)

- N

Transformujemy ewaluator do stylu kontynuacyjnego, co
uwydatnia porzadek obliczen.

dat at ype value = I NT of int
| FN of 1de * exp * value Env.env
wthtype cont = val ue -> val ue

fun eval (VAR x, env, k)
= k (Env.lookup (env, X))
| eval (LAM (x,e), env, k)
= k (FN (x, e, env))

o |

Jezyki programowania i kontynuacje — p.23/60

2.Sekwencjalizacja obliczen (2)

-

| eval (APP (eO, el), env, k) =
eval (e0, env,
fn v =>
eval (el, env,
fn vl => case vO of
FN (x, e, env) =>
eval (e,
Env. extend (env, X, vl1l), k)
| _ =>raise TYPE ERROR))

-

Jezyki programowania i kontynuacje — p.24/60

3.Zmiana repr. kontynuacji (1)

T_aatatype value = I NT of iInt __T
| FN of 1de *» exp * val ue Env.env

and cont = STOP

ARG of exp * val ue Env.env * cont
FUN of val ue * cont

SUC of cont

fun eval (VAR x, env, k)
= apply (k, Env.l|ookup (env, X))
| eval (LAM (x,e), env, k)
= apply (k, FN (x, e, env))
| eval (APP (eO, el), env, k)
L__ = eval (eO, env, ARG (el, env, k)) __J

Jezyki programowania i kontynuacje — p.25/60

t_fun

3.Zmiana repr. kontynuacji (2)

eval (LIT n, env, k)

= apply (k, I NT n)

eval (SUCC e, env, k)

= eval (e, env, SUCC k)

apply (STOP, v) = v

apply (ARG (el, env, k), vO0)

= eval (el, env, (FUN (vO, k)))
apply (FUN (FN (x, e, env), k), vl)
= eval (e, Env.extend (env, Xx, vl), k)
apply (SUC k, | NT n)

= apply (k, INT (n+l))

evaluate e = eval (e, Env.nt, STOP)

-

ia i kontynuacje — p.26/60

Uwagl
-

Kolejnosc krokow 1. i 2. w transformacji moze byc
odwrotna

W przypadku gdy ewaluator bazowy nie produkuje
wartosci funkcyjnych, krok 1. jest pomijany

W przypadku gdy ewaluator bazowy jest wyrazony w
stylu kontynuacyjnym (np. operatory), krok 2. jest
pomijany

Moze zajsc koniecznosc wielokrotnego zastosowania
kroku 2. (np. kontynuacje ograniczone)

Transformacja jest odwracalna: jezeli dana maszyna

abstrakcyjna jest w zdefunkcjonalizowanej formie, to

refunkcjonalizacja kontynuacji, a nastepnie transformacja ze

stylu kontynuacyjnego prowadzi do ewaluatora J

Jezyki programowania i kontynuacje — p.27/60

Semantyka redukcyjna (1)
- -

#® czysto syntaktyczna semantyka malych krokow

oparta na przepisywaniu termow (przepisywany jest
tekst programu)
definiowane sa nastepujace komponenty:

s termy (wyrazenia), a wsrod nich wartosci — mozliwy
wynik obliczen

» redeksy (potencjalne i faktyczne) — postac wyrazen,
ktore moga byc zredukowane

» konteksty ewaluacyjne — programy z “dziura”,

okreslajace gdzie w programie moze nastapic
redukcja

s reguly redukcji (jak redukuje sie redeks danej

L postaci) J

Jezyki programowania i kontynuacje — p.28/60

Semantyka redukcyjna (2)
- -

Lemat o jednoznacznym rozkladzie

Lemat 1 Kazdy program albo jest wartoscia, albo
mozna go jednoznacznie rozlozyc na potencjalny
redeks | kontekst.

Jeden krok redukcji polega na
» dekompozycji termu na kontekst | redeks
s kontrakcji redeksu
s wlozeniu wyniku kotrakcji do kontekstu

Ewaluacja definiowana jest jako zwrotno-przechodnie
domkniecie relacji redukcji

o |

Jezyki programowania i kontynuacje — p.29/60

Semantyka redukcyjna CBV dla ISWIM (1)
- -

Wyrazenia | wartosci

e == x|v]|eger|succe

v o= Ax.e|™m!
Potencjalne | faktyczne redeksy
p =11 | succ v

r = (Azr.e)v | succ "m’

Konteksty ewaluacyjne

Ex=[]]Ell]el| Elsucc[]] | Elv]]]

Jezyki programowania i kontynuacje — p.30/60

Semantyka redukcyjna CBV dla ISWIM (2)
- -

Requly redukcii

©N (Az.e)v — ev/z}

(succ) succ™m' — "m+ 17

#® Oznaczamy przez — domkniecie relacji —
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evaly(e) T wtw e —* v,

Jezyki programowania i kontynuacje — p.31/60

Semantyka redukcyjna CBN dla ISWIM (1)
- -

Wyrazenia | wartosci

e == x|v]|eger|succe

v o= Ax.e|™m!
Potencjalne | faktyczne redeksy
p=ve | succv

ri= (Az.e)e | succ "m’

o Konteksty ewaluacyjne

Ex=[]]E]el| Elsucc]]]

o |

Jezyki programowania i kontynuacje — p.32/60

Semantyka redukcyjna CBN dla ISWIM (2)
- -

Requly redukcii

(x) (Aze)e — efe/z}

(succ) succ™m' — "m+ 17

#® Oznaczamy przez — domkniecie relacji —
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evalp (e) T Wtw e —* v,

o |

Jezyki programowania i kontynuacje — p.33/60

Od MA do SR i1 z powrotem (1)

- N

Maszyna abstrakcyjna to zoptymalizowana semantyka
redukcyjna

o W SR term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie odbudowa termu,
PO czym ten proces sie powtarza

s W MA term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie, bez
odbudowywania calego termu, poszukiwany jest
kolejny redeks

» Dodatkowa optymalizacja jest uzycie srodowiska
zamiast podstawienia, ale czasem rozwaza sie MA
oparte na podstawieniu

o |

Jezyki programowania i kontynuacje — p.34/60

Od MA do SR i1 z powrotem (2)
- -

Z danej MA mozna wyekstraktowac SR

s Semantyczne komponenty zastepujemy
syntaktycznymi

» odczytujemy reguly redukcji z przejsc maszyny —
redukcja nastepuje tam gdzie lewa | prawa strona
reprezentuja rozne termy

Z dane] SR mozna mechanicznie wyprowadzic MA

s metoda zwana “refocusing”

s polega na fuzji funkcji wkladajacej term do kontekstu
z funkcja dekomponujaca term

s W celu otrzymania MA ze srodowiskiem, startujemy z
SR z jawnym podstawieniem

o |

Jezyki programowania i kontynuacje — p.35/60

Od MA do SR i1 z powrotem (3)
-

Twierdzenie 1 Dla kazdego programu e oraz literalu "m,

-

1. evaly(e) = "m" Wiw evaljy,(e) = "m’

2. evalp(e) = "m! wtw evalj\(e) = "m’

o |

Jezyki programowania i kontynuacje — p.36/60

Transformacja do CPS formalnie

- N

Semantyka programow funkcyjnych, a w szczegolnosci
tych z operatorami, mozna definiowac poprzez
transformacje do stylu kontynuacyjnego

|Istnieje wiele formalnie zdefiniowanych transformacji do
CPS

o |

Jezyki programowania i kontynuacje — p.37/60

Transformacja CBV do CPS
-

Ar.e = \k.k (Azk.ek)

ep el = A\k.ey ()\vo. el ()\1)1. Vo U1]C))
T = \k.k™m

succ e = Ak.e (\v. k (succ v))

Transformacja CBN do CPS
-

Nk.x k

x

\t.e = Mok (\zk.Ek)

Q)

ep el = Ak.eg (\vg. v er k)

' = \k.k™m

succ e = Ak.e (M. k (succ v))

Wzajemna symulacja CBV | CBN
-

Twierdzenie 2 Dla kazdego programu e oraz literalu "m,

-

1. evaly(e) = "m' wtw evaly(e (Ax.x)) = "m’

2. evalp(e) = "m? wiw eval,(e (A\z.xz)) = "m’

Twierdzenie 3 Dla kazdego programu e oraz literalu "m,
1. evaly(e(Az.x)) = "m' wtw eval,(e (A\z.z)) = "m’

2. evaly(€(A\x.x)) = "m' wtw eval,(e (A\x.z)) = "m’

o |

Jezyki programowania i kontynuacje — p.40/60

Modelowy jezyk z operatorami ISWIM .
B -

ex=2x | x.e|leper |™m'| succe| Kz.e| Ae

® K — call with current continuation
® A —abort

Ewaluator w CPS dla ISWIM .. (1)
F__datatype exp - __W

| ABORT of exp
| CALLCC of i1de * exp

dat at ype val ue | NT of I nt

| FN of value * cont -> val ue
W thtype cont = val ue -> val ue

Jezyki programowania i kontynuacje — p.42/60

i

Ewaluator w CPS dla ISWIM .. (2)

un

eval (VAR x, env, k) __T
= k (Env.lookup (env, X))
eval (LAM (x,e), env, k)
=k (FN (fn (v, k) =>
eval (e, Env.extend (env, X, V), Kk)))
eval (APP (e0O, el), env, k)
= eval (e0, env,
fn vO => eval (el, env,
fn vl =>
case vO of
FN f =>f (vl, k)
| _ => raise TYPE ERROR))

|

Jezyki programowania i kontynuacje — p.43/60

Ewaluator w CPS dla ISWIM .. (3)
-

| eval (LIT n, env, k) = k (I NT n)
| eval (SUCC e, env, k)
= eval (e, env,
fn v => case v of
INT n => k (INT (n+l))
| _ => raise TYPE ERROR)
| eval (ABORT e, env, k)
= eval (e, env, fnv =>v)
| eval (CALLCC (x, e), env, k)
= eval (e, Env.extend (env, X,
FN fn (v,k’) => k v), k)
L__fun evaluate e = eval (e, Env.m, fn v => v) __J

Jezyki programowania i kontynuacje — p.44/60

Defunkcjonalizacja funkcji (1)

| NT of 1 nt __1

| FN of 1de * exp * val ue Env. env
| CONT of cont

¥

at at ype val ue

| eval (APP (eO, el), env, k)
= eval (eO, env, fn v0 =>
eval (el, env, fn vl =
case vO of
FN (x, e, env) =>
eval (e, Env.extend (env, x, vl1l), k)
| CONT k' => k' vl
| _ =>raise TYPE ERROR))

o |

Jezyki programowania i kontynuacje — p.45/60

Defunkcjonalizacja funkcji (2)

| eval (CALLCC (x, e), env, k) T
= eval (e, Env.extend (env, X, CONT k), k)

-

Defunkcjonalizacja kontynuacji (1)

|

and cont

at at ype val ue

| NT of 1 nt __1

| FN of 1de * exp * val ue Env. env
| CONT of cont

STOP

ARG of exp * val ue Env.env * cont

FUN of val ue * cont

SUCC of cont

Jezyki programowania i kontynuacje — p.47/60

Defunkcjonalizacja kontynuacji (2)

- N

| eval (ABORT e, env, k)
= eval (e, env, STOP)
| eval (CALLCC (x, e), env, k)
= eval (e, Env.extend (env, x, CONT k), k)

| apply (FUN (CONT k', k), vl)
= apply (k', vil)

CEK dla ISWIM .
-

#® Rozszerzona kategoria wartosci
vi=..|F

Dodatkowe przejscia

<~’467 P, E> eval <67 P STOP>eval
<IC37-67 P, E>eval =4 <€7 p{aj = E}, STOP>eval
<FUN (E/7 E)7 U>cont — <EI7 U>cont

o |

Jezyki programowania i kontynuacje — p.49/60

Semantyka redukcyjna dla ISWIM.. (1)
- -

Redukcja wrazliwa na kontekst — kontrakcja redeksu
bierze pod uwage zarowno term jak | kontekst

Sa dwie (rownowazne) mozliwosci reprezentowania
“przechwyconego” kontekstu £

1. jako funkcje \y.A(E[y])

2. Jako nowy syntaktyczny rodzaj wartosci (ekstrakcja
SR z MA prowadzi wlasnie tu)

Skoncentrujmy sie na pierwszym wariancie

o |

Jezyki programowania i kontynuacje — p.50/60

Semantyka redukcyjna dla ISWIM.. (2)
- -

Wyrazenia | wartosci

e == x|v|eger|succel| Ae| Kx.e

v o= Ax.e|™m!
Potencjalne | faktyczne redeksy
pr=uwvvy | succv | Ae | Kx.e

ro=(Ax.e)v | succ'm'| Ae | Kzx.e

Konteksty ewaluacyjne

Ex=[]]Ell]el| Elsucc[]] | Elv]]]

o |

Jezyki programowania i kontynuacje — p.51/60

Semantyka redukcyjna dla ISWIM.. (3)

f.o Reqguly redukcji T
(Bx) E|(Az.e)v] — Elev/z}]
(succ) E |[succ™m'] — E['m+ 17
(A) E[Ae] — e
(Kx) EKre — Ele{(Ay.A(E[y]))/z}]

Semantyka redukcyjna dla ISWIM .. (4)
W]

Zmiany w skladni i gramatyce kontekstow:

ariant drugi — konteksty staja sie czescia skladni:

v = ...| kK
p = .| Ev
r = ..|Fv

#® Regula (K,) Jest zastapiona przez dwie
(KY) E[Kzxe] — Ele{E/x}]
(Be) E[E'v] — E'[

Funkcje ewaluacyjne generowane przez obie semantyki re-

Ldukcyjne, jak | przez maszyne abstrakcyjne sa rownowazne.J

Jezyki programowania i kontynuacje — p.53/60

CPS transformacja operatorow kontroli
- N -
Ae = ke (\v.v)
Kz.e = \Nke{(\k . kv)/z} k

Mozemy zdefiniowac semantyke jezyka ISWIM.. uzywajac
funkcji ewaluacyjnej dla ISWIM (jest ona rownowazna

funkcjom generowanym przez SR | MA):

Definicja 3

evalcps () % evaly (€ (\z.2)).

o |

Jezyki programowania i kontynuacje — p.54/60

Operator C
-

#® Operator C

Cx.e = M.e{(Mk . kv)/z} (\z. x)

® (Cjestsilniejszy niz i A

Kr.e =Cx.xe
Ae =Cd.e, gdzied¢ FV (e)
Cr.e = Kzx.Ae

o |

Jezyki programowania i kontynuacje — p.55/60

© o o 0

A-rachunek | logika minimalna

-

Termy (dowody): e :=z | Az.e | eg eq
Typy (formuly): ¢, = L | A| ¢ — ¢
Konteksty typowania: I' ::=e | ',z : ¢
Reguly wnioskowania:

I'e:9okFe:y
F,x:gbl—x:gb(AX) I'EAMze:¢p— Y

(—4)

Fl—e():gb—>¢ Fl—elng
I'Fegep:

Definiuemy ¢ = ¢ — L

(—e)

|

Jezyki programowania i kontynuacje — p.56/60

Kontynuacje I logika klasyczna (1)

- N

Logika intuicjonistyczna = Logika minimalna + Ex Falso
Quodlibet

I'Fe: L

EX FAL ODLIBET
' Ae : gb(SO QU)

Minimalna logika klasyczna = Logika minimalna +
Prawo Peirce’a

'Nz:9o—1YFe:d
I'-Kz.e: o

o |

Jezyki programowania i kontynuacje — p.57/60

(PRAWO PEIRCE’A)

Kontynuacje I logika klasyczna (2)

- N

#® Logika klasyczna =
Logika intuicjonistyczna + Prawo Peirce’a =
Logika minimalna + Eliminacja podwojnego
zaprzeczenia (DNE)

I''z:—okFe: L
I'-Cx.e: ¢

(DNE)

Jezyki programowania i kontynuacje — p.58/60

Kontynuacje I logika klasyczna (3)

- N

Definiujemy transformacje na typach:

L=1 A=4 ¢—-v¢Y=06—->—-

e=e l z:0=T,2:0

#® Twierdzenie 4 JezeliI' e : ¢ w logice klasycznej, to
[Fe:——¢ w logice minimalne;j.

Jezyki programowania i kontynuacje — p.59/60

Literatura

-

Definitional Interpreters for Higher-Order Programming
Languages, J.Reynolds

Programming Languages and Lambda Calculi,
M.Felleisen, M.Flatt

A Functional Correspondence between Evaluators and
Abstract Machines, M.Ager et al.

Refocusing in Reduction Semantics, O.Danvy, L.Nielsen

Call-by-name, Call-by-value and the \-calculus,
G.Plotkin

Representing Control: A Study of the CPS
Transformation, O.Danvy, A.Filinski

Formulae as Types Notion of Control, T.Griffin J

Jezyki programowania i kontynuacje — p.60/60

	Semantyka operacyjna a kontynuacje
	Semantyka operacyjna operatorow
	Modelowy jezyk funkcyjny ISWIM
	Ewaluatory (interpretery definiujace)
	Ewaluator CBV dla ISWIM (1)
	Ewaluator CBV dla ISWIM (2)
	Ewaluator CBV dla ISWIM (3)
	Ewaluator CBV dla ISWIM (4)
	Ewaluator CBN dla ISWIM (1)
	Ewaluator CBN dla ISWIM (2)
	Maszyny abstrakcyjne
	Maszyna abstrakcyjna CBV dla ISWIM (1)
	Maszyna abstrakcyjna CBV dla ISWIM (2)
	Maszyna abstrakcyjna CBV dla ISWIM (3)
	Maszyna abstrakcyjna CBN dla ISWIM (1)
	Maszyna abstrakcyjna CBN dla ISWIM (2)
	Maszyna abstrakcyjna CBN dla ISWIM (3)
	Od ewaluatora do MA (1)
	Od ewaluatora do MA (2)
	1.Zmiana reprezentacji funkcji (1)
	1.Zmiana reprezentacji funkcji (2)
	2.Sekwencjalizacja obliczen (1)
	2.Sekwencjalizacja obliczen (2)
	3.Zmiana repr. kontynuacji (1)
	3.Zmiana repr. kontynuacji (2)
	Uwagi
	Semantyka redukcyjna (1)
	Semantyka redukcyjna (2)
	Semantyka redukcyjna CBV dla ISWIM (1)
	Semantyka redukcyjna CBV dla ISWIM (2)
	Semantyka redukcyjna CBN dla ISWIM (1)
	Semantyka redukcyjna CBN dla ISWIM (2)
	Od MA do SR i z powrotem (1)
	Od MA do SR i z powrotem (2)
	Od MA do SR i z powrotem (3)
	Transformacja do CPS formalnie
	Transformacja CBV do CPS
	Transformacja CBN do CPS
	Wzajemna symulacja CBV i CBN
	Modelowy jezyk z operatorami ISWIM$_c$
	Ewaluator w CPS dla ISWIM$_c$ (1)
	Ewaluator w CPS dla ISWIM$_c$ (2)
	Ewaluator w CPS dla ISWIM$_c$ (3)
	Defunkcjonalizacja funkcji (1)
	Defunkcjonalizacja funkcji (2)
	Defunkcjonalizacja kontynuacji (1)
	Defunkcjonalizacja kontynuacji (2)
	CEK dla ISWIM$_c$
	Semantyka redukcyjna dla ISWIM$_c$ (1)
	Semantyka redukcyjna dla ISWIM$_c$ (2)
	{Semantyka redukcyjna dla ISWIM$_c$ (3)}
	{Semantyka redukcyjna dla ISWIM$_c$ (4)}
	CPS transformacja operatorow kontroli
	Operator $
awC $
	$lambda $-rachunek i logika minimalna
	Kontynuacje i logika klasyczna (1)
	Kontynuacje i logika klasyczna (2)
	Kontynuacje i logika klasyczna (3)
	Literatura

