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Semantyka operacyjna a kontynuacje

Formalizmy takie jak Semantyka Naturalna czy
Strukturalna Semantyka Operacyjna (SOS) nie sa
odpowiednie

Istotna jest informacja o kontekscie (calosci programu),
a nie tylko o ewaluowanym podwyrazeniu
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Semantyka operacyjna operatorow

Ewaluator w CPS
wyzszego rzedu (impl. semantyki kontynuacyjnej)
pierwszego rzedu (impl. maszyny abstrakcyjnej)

Maszyna abstrakcyjna
system przejsc pierwszego rzedu
semantyka malych krokow

Semantyka redukcyjna
czysto syntaktyczna, oparta na przepisywaniu
calego programu
semantyka malych krokow

Transformacja do CPS + ewaluator
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Modelowy jezyk funkcyjny ISWIM

Beztypowy lambda rachunek rozszerzony o stale
numeryczne i funkcje nastepnika.

e ::= x | λx .e | e0 e1 | pmq | succ e

Program to zamkniete wyrazenie.
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Ewaluatory (interpretery definiujace)

Semantyka jezyka definiowanego (object language) jest
definiowana przez interpreter napisany w jezyku
definiujacym (metalanguage)

W przypadku funkcyjnego jezyka definiujacego
wartosci funkcyjne jezyka definiowanego moga byc
reprezentowane przez funkcje jezyka definiujacego
interpreter moze byc wyrazony w CPS
interpreter moze byc kompozycyjny (moze
implementowac semantyke denotacyjna jezyka)
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Ewaluator CBV dla ISWIM (1)

type ide = string

datatype exp = VAR of ide

| LAM of ide * exp

| APP of exp * exp

| LIT of int

| SUCC of exp

signature ENV = sig

type ’a env

val mt : ’a env

val lookup : ’a env * ide -> ’a

val extend : ’a env * ide * ’a -> ’a env

end
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Ewaluator CBV dla ISWIM (2)

structure Env : ENV = struct

type ’a env = (ide * ’a) list

val mt = []

exception IDENTIFIER_NOT_BOUND

fun lookup (e, x)

= let fun walk []

= raise IDENTIFIER_NOT_BOUND

| walk ((y,v)::e’)

= if x = y then v else walk e’

in walk e end

fun extend (e, x, v) = (x,v)::e

end
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Ewaluator CBV dla ISWIM (3)

datatype value = INT of int

| FN of value -> value

exception TYPE_ERROR

fun eval (VAR x, env)

= Env.lookup (env, x)

| eval (LAM (x,e), env)

= FN (fn v =>

eval (e, Env.extend (env, x, v)))
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Ewaluator CBV dla ISWIM (4)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

val v1 = eval (e1, env)

in (case v0 of

FN f => f v1

| _ => raise TYPE_ERROR) end

| eval (LIT n, env) = INT n

| eval (SUCC e, env)

= let val v = eval (e, env)

in (case v of INT n => (INT (n+1))

| _ => raise TYPE_ERROR) end

fun evaluate e = eval (e, Env.mt)
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Ewaluator CBN dla ISWIM (1)

datatype value = INT of int

| FN of comp -> value

withtype comp = unit -> value

exception TYPE_ERROR

fun eval (VAR x, env)

= Env.lookup (env, x) ()

| eval (LAM (x,e), env)

= FN (fn c =>

eval (e, Env.extend (env, x, c)))
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Ewaluator CBN dla ISWIM (2)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

in (case v0 of

FN f => f (fn () => eval (e1, env))

| _ => raise TYPE_ERROR) end

| eval (LIT n, env) = INT n

| eval (SUCC e, env)

= let val v = eval (e, env)

in (case v of INT n => (INT (n+1))

| _ => raise TYPE_ERROR) end

fun evaluate e = eval (e, Env.mt)
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Maszyny abstrakcyjne

system przejsc pierwszego rzedu sluzacy do ewaluacji
programow

konfiguracje (stany) maszyny abstrakcyjnej okreslaja
stan obliczen na danym etapie

przejscia sa zdefiniowane przez binarna relacje
okreslona na zbiorze konfiguracji

definiuje semantyke malych krokow

stanowi etap posredni miedzy np. semantyka
redukcyjna a implementacja jezyka (wykorzystuje
srodowisko, stos, etc.)
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Maszyna abstrakcyjna CBV dla ISWIM (1)

Kanoniczna maszyna abstrakcyjna CBV zwana CEK:

Jezyk: e ::= x | λx .e | e0 e1 | pmq | succ e

Wartosci:
v ::= m | [x , e, ρ]

Srodowisko: ρ ::= ρmt | ρ{x 7→ v}

Kontekst (stos):

E ::= STOP | ARG ((e, ρ), E) | SUCC (E) | FUN (v, E)
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Maszyna abstrakcyjna CBV dla ISWIM (2)

Relacja przejscia:

e ⇒ 〈e, ρmt , STOP〉eval

〈x , ρ, E〉eval ⇒ 〈E, ρ(x )〉cont

〈λx .e, ρ, E〉eval ⇒ 〈E, [x , e, ρ]〉cont

〈e0 e1, ρ, E〉eval ⇒ 〈e0, ρ, ARG ((e1, ρ), E)〉eval

〈pmq, ρ, E〉eval ⇒ 〈E, m〉cont

〈succ e, ρ, E〉eval ⇒ 〈e, ρ, SUCC (E)〉eval

〈ARG ((e1, ρ), E), v〉cont ⇒ 〈e1, ρ, FUN (v, E)〉eval

〈SUCC (E), m〉cont ⇒ 〈E, m+ 1〉cont

〈FUN ([x , e, ρ], E), v〉cont ⇒ 〈e, ρ{x 7→ v}, E〉eval

〈STOP, v〉cont ⇒ v
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Maszyna abstrakcyjna CBV dla ISWIM (3)

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna CEK:

Definicja 1

eval
v
AM(e)

def
= v wtw e⇒+ v.
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Maszyna abstrakcyjna CBN dla ISWIM (1)

Kanoniczna maszyna abstrakcyjna CBN zwana maszyna
Krivine’a:

Jezyk: e ::= x | λx .e | e0 e1 | pmq | succ e |

Wartosci:
v ::= m | [x , e, ρ]

Domkniecia:
c ::= [e, ρ]

Srodowisko:
ρ ::= ρmt | ρ{x 7→ c}

Kontekst (stos):

E ::= STOP | ARG (c, E) | SUCC (E)
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Maszyna abstrakcyjna CBN dla ISWIM (2)

Relacja przejscia:

e ⇒ 〈e, ρmt , STOP〉eval

〈x , ρ, E〉eval ⇒ 〈e, ρ′, E〉eval ρ(x ) = [e, ρ′]

〈λx .e, ρ, E〉eval ⇒ 〈E, [x , e, ρ]〉cont

〈e0 e1, ρ, E〉eval ⇒ 〈e0, ρ, ARG ([e1, ρ], E)〉eval

〈pmq, ρ, E〉eval ⇒ 〈E, m〉cont

〈succ e, ρ, E〉eval ⇒ 〈e, ρ, SUCC (E)〉eval

〈ARG (c, E), [x , e, ρ]〉cont ⇒ 〈e, ρ{x 7→ c}, E〉eval

〈SUCC (E), m〉cont ⇒ 〈E, m+ 1〉cont

〈STOP, v〉cont ⇒ v
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Maszyna abstrakcyjna CBN dla ISWIM (3)

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna Krivine’a:

Definicja 2

eval
n
AM(e)

def
= v wtw e⇒+ v.
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Od ewaluatora do MA (1)

Funkcyjna odpowiedniosc miedzy ewaluatorem a maszyna
abstrakcyjna:

1. defunkcjonalizacja wartosci funkcyjnych
produkowanych przez ewaluator – wprowadzenie
domkniec

2. CPS transformacja ewaluatora – sekwencjalizacja
obliczen

3. defunkcjonalizacja kontynuacji – wprowadzenie stosu
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Od ewaluatora do MA (2)

Przyklady

1. kanoniczny ewaluator CBV —> CEK

2. kanoniczny ewaluator CBN —> maszyna Krivine’a

Konstrukcja ta jest aplikowalna rowniez w przypadku
ewaluatorow dla jezykow nalezacych do innych
paradygmatow programowania, m.in., logicznego,
imperatywnego i obiektowego.

Przesledzmy ja na przykladzie naszego ewaluatora CBV.
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1.Zmiana reprezentacji funkcji (1)

Defunkcjonalizujemy przestrzen funkcji value -> value

w ewaluatorze CBV. Otrzymany ewaluator operuje na
domknieciach funkcji (kod funkcji + srodowisko okreslajace
wartosc zmiennych wolnych).

datatype value = INT of int

| FN of ide * exp * value Env.env

...

| eval (LAM (x,e), env)

= FN (x, e, env)

...
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1.Zmiana reprezentacji funkcji (2)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

val v1 = eval (e1, env)

in (case v0 of

FN (x, e, env) =>

eval (e, Env.extend (env, x, v1))

| _ => raise TYPE_ERROR)

end

Jezyki programowania i kontynuacje – p.22/60



2.Sekwencjalizacja obliczen (1)

Transformujemy ewaluator do stylu kontynuacyjnego, co
uwydatnia porzadek obliczen.

datatype value = INT of int

| FN of ide * exp * value Env.env

withtype cont = value -> value

fun eval (VAR x, env, k)

= k (Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= k (FN (x, e, env))
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2.Sekwencjalizacja obliczen (2)

| eval (APP (e0, e1), env, k) =

eval (e0, env,

fn v0 =>

eval (e1, env,

fn v1 => case v0 of

FN (x, e, env) =>

eval (e,

Env.extend (env, x, v1), k)

| _ => raise TYPE_ERROR))

Jezyki programowania i kontynuacje – p.24/60



3.Zmiana repr. kontynuacji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

and cont = STOP

| ARG of exp * value Env.env * cont

| FUN of value * cont

| SUC of cont

fun eval (VAR x, env, k)

= apply (k, Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= apply (k, FN (x, e, env))

| eval (APP (e0, e1), env, k)

= eval (e0, env, ARG (e1, env, k))
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3.Zmiana repr. kontynuacji (2)
| eval (LIT n, env, k)

= apply (k, INT n)

| eval (SUCC e, env, k)

= eval (e, env, SUCC k)

and apply (STOP, v) = v

| apply (ARG (e1, env, k), v0)

= eval (e1, env, (FUN (v0, k)))

| apply (FUN (FN (x, e, env), k), v1)

= eval (e, Env.extend (env, x, v1), k)

| apply (SUC k, INT n)

= apply (k, INT (n+1))

fun evaluate e = eval (e, Env.mt, STOP)
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Uwagi

Kolejnosc krokow 1. i 2. w transformacji moze byc
odwrotna

W przypadku gdy ewaluator bazowy nie produkuje
wartosci funkcyjnych, krok 1. jest pomijany

W przypadku gdy ewaluator bazowy jest wyrazony w
stylu kontynuacyjnym (np. operatory), krok 2. jest
pomijany

Moze zajsc koniecznosc wielokrotnego zastosowania
kroku 2. (np. kontynuacje ograniczone)

Transformacja jest odwracalna: jezeli dana maszyna
abstrakcyjna jest w zdefunkcjonalizowanej formie, to
refunkcjonalizacja kontynuacji, a nastepnie transformacja ze
stylu kontynuacyjnego prowadzi do ewaluatora
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Semantyka redukcyjna (1)

czysto syntaktyczna semantyka malych krokow

oparta na przepisywaniu termow (przepisywany jest
tekst programu)

definiowane sa nastepujace komponenty:
termy (wyrazenia), a wsrod nich wartosci – mozliwy
wynik obliczen
redeksy (potencjalne i faktyczne) – postac wyrazen,
ktore moga byc zredukowane
konteksty ewaluacyjne – programy z “dziura”,
okreslajace gdzie w programie moze nastapic
redukcja
reguly redukcji (jak redukuje sie redeks danej
postaci)
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Semantyka redukcyjna (2)

Lemat o jednoznacznym rozkladzie

Lemat 1 Kazdy program albo jest wartoscia, albo
mozna go jednoznacznie rozlozyc na potencjalny
redeks i kontekst.

Jeden krok redukcji polega na
dekompozycji termu na kontekst i redeks
kontrakcji redeksu
wlozeniu wyniku kotrakcji do kontekstu

Ewaluacja definiowana jest jako zwrotno-przechodnie
domkniecie relacji redukcji
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Semantyka redukcyjna CBV dla ISWIM (1)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v0 v1 | succ v

r ::= (λx .e) v | succ pmq

Konteksty ewaluacyjne

E ::= [ ] | E [[ ] e] | E [succ [ ]] | E [v [ ]]
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Semantyka redukcyjna CBV dla ISWIM (2)

Reguly redukcji

(βλ) (λx .e) v → e{v/x}

(succ) succ pmq → pm+ 1q

Oznaczamy przez 7→ domkniecie relacji →
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evalv(e)
def
= v wtw e 7→∗ v.
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Semantyka redukcyjna CBN dla ISWIM (1)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v e | succ v

r ::= (λx .e) e′ | succ pmq

Konteksty ewaluacyjne

E ::= [ ] | E [[ ] e] | E [succ [ ]]
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Semantyka redukcyjna CBN dla ISWIM (2)

Reguly redukcji

(βλ) (λx .e) e′ → e{e′/x}

(succ) succ pmq → pm+ 1q

Oznaczamy przez 7→ domkniecie relacji →
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evaln(e)
def
= v wtw e 7→∗ v.
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Od MA do SR i z powrotem (1)

Maszyna abstrakcyjna to zoptymalizowana semantyka
redukcyjna

W SR term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie odbudowa termu,
po czym ten proces sie powtarza
W MA term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie, bez
odbudowywania calego termu, poszukiwany jest
kolejny redeks
Dodatkowa optymalizacja jest uzycie srodowiska
zamiast podstawienia, ale czasem rozwaza sie MA
oparte na podstawieniu
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Od MA do SR i z powrotem (2)

Z danej MA mozna wyekstraktowac SR
semantyczne komponenty zastepujemy
syntaktycznymi
odczytujemy reguly redukcji z przejsc maszyny –
redukcja nastepuje tam gdzie lewa i prawa strona
reprezentuja rozne termy

Z danej SR mozna mechanicznie wyprowadzic MA
metoda zwana “refocusing”
polega na fuzji funkcji wkladajacej term do kontekstu
z funkcja dekomponujaca term
w celu otrzymania MA ze srodowiskiem, startujemy z
SR z jawnym podstawieniem
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Od MA do SR i z powrotem (3)

Twierdzenie 1 Dla kazdego programu e oraz literalu pmq,

1. evalv(e) = pmq wtw eval
v
AM

(e) = pmq

2. evaln(e) = pmq wtw eval
n
AM

(e) = pmq
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Transformacja do CPS formalnie

Semantyka programow funkcyjnych, a w szczegolnosci
tych z operatorami, mozna definiowac poprzez
transformacje do stylu kontynuacyjnego

Istnieje wiele formalnie zdefiniowanych transformacji do
CPS

Jezyki programowania i kontynuacje – p.37/60



Transformacja CBV do CPS

x = λk.k x

λx .e = λk.k (λxk. e k)

e0 e1 = λk.e0 (λv0. e1 (λv1. v0 v1 k))

pmq = λk.k pmq

succ e = λk.e (λv. k (succ v))
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Transformacja CBN do CPS

x = λk.x k

λx .e = λk.k (λxk. e k)

e0 e1 = λk.e0 (λv0. v0 e1 k)

pmq = λk.k pmq

succ e = λk.e (λv. k (succ v))
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Wzajemna symulacja CBV i CBN

Twierdzenie 2 Dla kazdego programu e oraz literalu pmq,

1. evalv(e) = pmq wtw evalv(e (λx.x)) = pmq

2. evaln(e) = pmq wtw evaln(e (λx.x)) = pmq

Twierdzenie 3 Dla kazdego programu e oraz literalu pmq,

1. evalv(e (λx.x)) = pmq wtw evaln(e (λx.x)) = pmq

2. evalv(e (λx.x)) = pmq wtw evaln(e (λx.x)) = pmq
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Modelowy jezyk z operatorami ISWIM c

e ::= x | λx .e | e0 e1 | pmq | succ e | Kx.e | Ae

K – call with current continuation

A – abort
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Ewaluator w CPS dla ISWIM c (1)

datatype exp = ...

| ABORT of exp

| CALLCC of ide * exp

datatype value = INT of int

| FN of value * cont -> value

withtype cont = value -> value
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Ewaluator w CPS dla ISWIM c (2)

fun eval (VAR x, env, k)

= k (Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= k (FN (fn (v,k) =>

eval (e, Env.extend (env, x, v), k)))

| eval (APP (e0, e1), env, k)

= eval (e0, env,

fn v0 => eval (e1, env,

fn v1 =>

case v0 of

FN f => f (v1, k)

| _ => raise TYPE_ERROR))
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Ewaluator w CPS dla ISWIM c (3)

| eval (LIT n, env, k) = k (INT n)

| eval (SUCC e, env, k)

= eval (e, env,

fn v => case v of

INT n => k (INT (n+1))

| _ => raise TYPE_ERROR)

| eval (ABORT e, env, k)

= eval (e, env, fn v => v)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x,

FN fn (v,k’) => k v), k)

fun evaluate e = eval (e, Env.mt, fn v => v)
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Defunkcjonalizacja funkcji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

| CONT of cont

| eval (APP (e0, e1), env, k)

= eval (e0, env, fn v0 =>

eval (e1, env, fn v1 =>

case v0 of

FN (x, e, env) =>

eval (e, Env.extend (env, x, v1), k)

| CONT k’ => k’ v1

| _ => raise TYPE_ERROR))
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Defunkcjonalizacja funkcji (2)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x, CONT k), k)
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Defunkcjonalizacja kontynuacji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

| CONT of cont

and cont = STOP

| ARG of exp * value Env.env * cont

| FUN of value * cont

| SUCC of cont
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Defunkcjonalizacja kontynuacji (2)

| eval (ABORT e, env, k)

= eval (e, env, STOP)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x, CONT k), k)

| apply (FUN (CONT k’, k), v1)

= apply (k’, v1)
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CEK dla ISWIM c

Rozszerzona kategoria wartosci

v ::= ... | E

Dodatkowe przejscia

〈Ae, ρ, E〉eval ⇒ 〈e, ρ, STOP〉eval

〈Kx.e, ρ, E〉eval ⇒ 〈e, ρ{x 7→ E}, STOP〉eval

〈FUN (E′, E), v〉cont ⇒ 〈E′, v〉cont
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Semantyka redukcyjna dla ISWIM c (1)

Redukcja wrazliwa na kontekst – kontrakcja redeksu
bierze pod uwage zarowno term jak i kontekst

Sa dwie (rownowazne) mozliwosci reprezentowania
“przechwyconego” kontekstu E:
1. jako funkcje λy.A(E[y])

2. jako nowy syntaktyczny rodzaj wartosci (ekstrakcja
SR z MA prowadzi wlasnie tu)

Skoncentrujmy sie na pierwszym wariancie
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Semantyka redukcyjna dla ISWIM c (2)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e | Ae | Kx.e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v0 v1 | succ v | Ae | Kx.e

r ::= (λx .e) v | succ pmq | Ae | Kx.e

Konteksty ewaluacyjne

E ::= [ ] | E [[ ] e] | E [succ [ ]] | E [v [ ]]
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Semantyka redukcyjna dla ISWIM c (3)

Reguly redukcji

(βλ) E [(λx .e) v] → E [e{v/x}]

(succ) E [succ pmq] → E [pm+ 1q]

(A) E [Ae] → e

(Kλ) E [Kx.e] → E [e{(λy.A(E[y]))/x}]
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Semantyka redukcyjna dla ISWIM c (4)

Wariant drugi – konteksty staja sie czescia skladni:

Zmiany w skladni i gramatyce kontekstow:

v ::= ... | E

p ::= ... | E v

r ::= ... | E v

Regula (Kλ) jest zastapiona przez dwie

(K′

λ
) E [Kx.e] → E [e{E/x}]

(βE) E [E′ v] → E′ [v]

Funkcje ewaluacyjne generowane przez obie semantyki re-

dukcyjne, jak i przez maszyne abstrakcyjne sa rownowazne.
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CPS transformacja operatorow kontroli

Ae = λk.e (λv. v)

Kx.e = λk.e{(λvk′. k v)/x} k

Mozemy zdefiniowac semantyke jezyka ISWIMc uzywajac
funkcji ewaluacyjnej dla ISWIM (jest ona rownowazna
funkcjom generowanym przez SR i MA):

Definicja 3

evalCPS(e)
def
= evalv(e (λx .x )).

Jezyki programowania i kontynuacje – p.54/60



Operator C

Operator C

Cx.e = λk.e{(λvk′. k v)/x} (λx . x )

C jest silniejszy niz K i A

Kx.e = Cx.x e

Ae = Cd.e, gdzie d /∈ FV (e)

Cx.e = Kx.Ae
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λ-rachunek i logika minimalna

Termy (dowody): e ::= x | λx .e | e0 e1

Typy (formuly): φ, ψ ::= ⊥ | A | φ→ ψ

Konteksty typowania: Γ ::= • | Γ, x : φ

Reguly wnioskowania:

Γ, x : φ ⊢ x : φ
(AX)

Γ, x : φ ⊢ e : ψ

Γ ⊢ λx.e : φ→ ψ
(→i)

Γ ⊢ e0 : φ→ ψ Γ ⊢ e1 : φ

Γ ⊢ e0 e1 : ψ
(→e)

Definiujemy ¬φ = φ→ ⊥
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Kontynuacje i logika klasyczna (1)

Logika intuicjonistyczna = Logika minimalna + Ex Falso
Quodlibet

Γ ⊢ e : ⊥

Γ ⊢ Ae : φ
(EX FALSO QUODLIBET)

Minimalna logika klasyczna = Logika minimalna +
Prawo Peirce’a

Γ, x : φ→ ψ ⊢ e : φ

Γ ⊢ Kx .e : φ
(PRAWO PEIRCE’A)
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Kontynuacje i logika klasyczna (2)

Logika klasyczna =
Logika intuicjonistyczna + Prawo Peirce’a =
Logika minimalna + Eliminacja podwojnego
zaprzeczenia (DNE)

Γ, x : ¬φ ⊢ e : ⊥

Γ ⊢ Cx .e : φ
(DNE)
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Kontynuacje i logika klasyczna (3)

Definiujemy transformacje na typach:

⊥ = ⊥, A = A, φ→ ψ = φ→ ¬¬ψ

• = •, Γ, x : φ = Γ, x : φ

Twierdzenie 4 Jezeli Γ ⊢ e : φ w logice klasycznej, to
Γ ⊢ e : ¬¬φ w logice minimalnej.
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