
Jezyki programowania i kontynuacje
2. Semantyka operatorow kontroli

Dariusz Biernacki

dabi@ii.uni.wroc.pl

Instytut Informatyki

Uniwersytet Wrocławski

Jezyki programowania i kontynuacje – p.1/60

Semantyka operacyjna a kontynuacje

Formalizmy takie jak Semantyka Naturalna czy
Strukturalna Semantyka Operacyjna (SOS) nie sa
odpowiednie

Istotna jest informacja o kontekscie (calosci programu),
a nie tylko o ewaluowanym podwyrazeniu

Jezyki programowania i kontynuacje – p.2/60

Semantyka operacyjna operatorow

Ewaluator w CPS
wyzszego rzedu (impl. semantyki kontynuacyjnej)
pierwszego rzedu (impl. maszyny abstrakcyjnej)

Maszyna abstrakcyjna
system przejsc pierwszego rzedu
semantyka malych krokow

Semantyka redukcyjna
czysto syntaktyczna, oparta na przepisywaniu
calego programu
semantyka malych krokow

Transformacja do CPS + ewaluator

Jezyki programowania i kontynuacje – p.3/60

Modelowy jezyk funkcyjny ISWIM

Beztypowy lambda rachunek rozszerzony o stale
numeryczne i funkcje nastepnika.

e ::= x | λx .e | e0 e1 | pmq | succ e

Program to zamkniete wyrazenie.

Jezyki programowania i kontynuacje – p.4/60

Ewaluatory (interpretery definiujace)

Semantyka jezyka definiowanego (object language) jest
definiowana przez interpreter napisany w jezyku
definiujacym (metalanguage)

W przypadku funkcyjnego jezyka definiujacego
wartosci funkcyjne jezyka definiowanego moga byc
reprezentowane przez funkcje jezyka definiujacego
interpreter moze byc wyrazony w CPS
interpreter moze byc kompozycyjny (moze
implementowac semantyke denotacyjna jezyka)

Jezyki programowania i kontynuacje – p.5/60

Ewaluator CBV dla ISWIM (1)

type ide = string

datatype exp = VAR of ide

| LAM of ide * exp

| APP of exp * exp

| LIT of int

| SUCC of exp

signature ENV = sig

type ’a env

val mt : ’a env

val lookup : ’a env * ide -> ’a

val extend : ’a env * ide * ’a -> ’a env

end

Jezyki programowania i kontynuacje – p.6/60

Ewaluator CBV dla ISWIM (2)

structure Env : ENV = struct

type ’a env = (ide * ’a) list

val mt = []

exception IDENTIFIER_NOT_BOUND

fun lookup (e, x)

= let fun walk []

= raise IDENTIFIER_NOT_BOUND

| walk ((y,v)::e’)

= if x = y then v else walk e’

in walk e end

fun extend (e, x, v) = (x,v)::e

end

Jezyki programowania i kontynuacje – p.7/60

Ewaluator CBV dla ISWIM (3)

datatype value = INT of int

| FN of value -> value

exception TYPE_ERROR

fun eval (VAR x, env)

= Env.lookup (env, x)

| eval (LAM (x,e), env)

= FN (fn v =>

eval (e, Env.extend (env, x, v)))

Jezyki programowania i kontynuacje – p.8/60

Ewaluator CBV dla ISWIM (4)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

val v1 = eval (e1, env)

in (case v0 of

FN f => f v1

| _ => raise TYPE_ERROR) end

| eval (LIT n, env) = INT n

| eval (SUCC e, env)

= let val v = eval (e, env)

in (case v of INT n => (INT (n+1))

| _ => raise TYPE_ERROR) end

fun evaluate e = eval (e, Env.mt)

Jezyki programowania i kontynuacje – p.9/60

Ewaluator CBN dla ISWIM (1)

datatype value = INT of int

| FN of comp -> value

withtype comp = unit -> value

exception TYPE_ERROR

fun eval (VAR x, env)

= Env.lookup (env, x) ()

| eval (LAM (x,e), env)

= FN (fn c =>

eval (e, Env.extend (env, x, c)))

Jezyki programowania i kontynuacje – p.10/60

Ewaluator CBN dla ISWIM (2)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

in (case v0 of

FN f => f (fn () => eval (e1, env))

| _ => raise TYPE_ERROR) end

| eval (LIT n, env) = INT n

| eval (SUCC e, env)

= let val v = eval (e, env)

in (case v of INT n => (INT (n+1))

| _ => raise TYPE_ERROR) end

fun evaluate e = eval (e, Env.mt)

Jezyki programowania i kontynuacje – p.11/60

Maszyny abstrakcyjne

system przejsc pierwszego rzedu sluzacy do ewaluacji
programow

konfiguracje (stany) maszyny abstrakcyjnej okreslaja
stan obliczen na danym etapie

przejscia sa zdefiniowane przez binarna relacje
okreslona na zbiorze konfiguracji

definiuje semantyke malych krokow

stanowi etap posredni miedzy np. semantyka
redukcyjna a implementacja jezyka (wykorzystuje
srodowisko, stos, etc.)

Jezyki programowania i kontynuacje – p.12/60

Maszyna abstrakcyjna CBV dla ISWIM (1)

Kanoniczna maszyna abstrakcyjna CBV zwana CEK:

Jezyk: e ::= x | λx .e | e0 e1 | pmq | succ e

Wartosci:
v ::= m | [x , e, ρ]

Srodowisko: ρ ::= ρmt | ρ{x 7→ v}

Kontekst (stos):

E ::= STOP | ARG ((e, ρ), E) | SUCC (E) | FUN (v, E)

Jezyki programowania i kontynuacje – p.13/60

Maszyna abstrakcyjna CBV dla ISWIM (2)

Relacja przejscia:

e ⇒ 〈e, ρmt , STOP〉eval

〈x , ρ, E〉eval ⇒ 〈E, ρ(x)〉cont

〈λx .e, ρ, E〉eval ⇒ 〈E, [x , e, ρ]〉cont

〈e0 e1, ρ, E〉eval ⇒ 〈e0, ρ, ARG ((e1, ρ), E)〉eval

〈pmq, ρ, E〉eval ⇒ 〈E, m〉cont

〈succ e, ρ, E〉eval ⇒ 〈e, ρ, SUCC (E)〉eval

〈ARG ((e1, ρ), E), v〉cont ⇒ 〈e1, ρ, FUN (v, E)〉eval

〈SUCC (E), m〉cont ⇒ 〈E, m+ 1〉cont

〈FUN ([x , e, ρ], E), v〉cont ⇒ 〈e, ρ{x 7→ v}, E〉eval

〈STOP, v〉cont ⇒ v

Jezyki programowania i kontynuacje – p.14/60

Maszyna abstrakcyjna CBV dla ISWIM (3)

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna CEK:

Definicja 1

eval
v
AM(e)

def
= v wtw e⇒+ v.

Jezyki programowania i kontynuacje – p.15/60

Maszyna abstrakcyjna CBN dla ISWIM (1)

Kanoniczna maszyna abstrakcyjna CBN zwana maszyna
Krivine’a:

Jezyk: e ::= x | λx .e | e0 e1 | pmq | succ e |

Wartosci:
v ::= m | [x , e, ρ]

Domkniecia:
c ::= [e, ρ]

Srodowisko:
ρ ::= ρmt | ρ{x 7→ c}

Kontekst (stos):

E ::= STOP | ARG (c, E) | SUCC (E)

Jezyki programowania i kontynuacje – p.16/60

Maszyna abstrakcyjna CBN dla ISWIM (2)

Relacja przejscia:

e ⇒ 〈e, ρmt , STOP〉eval

〈x , ρ, E〉eval ⇒ 〈e, ρ′, E〉eval ρ(x) = [e, ρ′]

〈λx .e, ρ, E〉eval ⇒ 〈E, [x , e, ρ]〉cont

〈e0 e1, ρ, E〉eval ⇒ 〈e0, ρ, ARG ([e1, ρ], E)〉eval

〈pmq, ρ, E〉eval ⇒ 〈E, m〉cont

〈succ e, ρ, E〉eval ⇒ 〈e, ρ, SUCC (E)〉eval

〈ARG (c, E), [x , e, ρ]〉cont ⇒ 〈e, ρ{x 7→ c}, E〉eval

〈SUCC (E), m〉cont ⇒ 〈E, m+ 1〉cont

〈STOP, v〉cont ⇒ v

Jezyki programowania i kontynuacje – p.17/60

Maszyna abstrakcyjna CBN dla ISWIM (3)

Funkcja ewaluacyjna definiowana przez maszyne
abstrakcyjna Krivine’a:

Definicja 2

eval
n
AM(e)

def
= v wtw e⇒+ v.

Jezyki programowania i kontynuacje – p.18/60

Od ewaluatora do MA (1)

Funkcyjna odpowiedniosc miedzy ewaluatorem a maszyna
abstrakcyjna:

1. defunkcjonalizacja wartosci funkcyjnych
produkowanych przez ewaluator – wprowadzenie
domkniec

2. CPS transformacja ewaluatora – sekwencjalizacja
obliczen

3. defunkcjonalizacja kontynuacji – wprowadzenie stosu

Jezyki programowania i kontynuacje – p.19/60

Od ewaluatora do MA (2)

Przyklady

1. kanoniczny ewaluator CBV —> CEK

2. kanoniczny ewaluator CBN —> maszyna Krivine’a

Konstrukcja ta jest aplikowalna rowniez w przypadku
ewaluatorow dla jezykow nalezacych do innych
paradygmatow programowania, m.in., logicznego,
imperatywnego i obiektowego.

Przesledzmy ja na przykladzie naszego ewaluatora CBV.

Jezyki programowania i kontynuacje – p.20/60

1.Zmiana reprezentacji funkcji (1)

Defunkcjonalizujemy przestrzen funkcji value -> value

w ewaluatorze CBV. Otrzymany ewaluator operuje na
domknieciach funkcji (kod funkcji + srodowisko okreslajace
wartosc zmiennych wolnych).

datatype value = INT of int

| FN of ide * exp * value Env.env

...

| eval (LAM (x,e), env)

= FN (x, e, env)

...

Jezyki programowania i kontynuacje – p.21/60

1.Zmiana reprezentacji funkcji (2)

| eval (APP (e0, e1), env)

= let val v0 = eval (e0, env)

val v1 = eval (e1, env)

in (case v0 of

FN (x, e, env) =>

eval (e, Env.extend (env, x, v1))

| _ => raise TYPE_ERROR)

end

Jezyki programowania i kontynuacje – p.22/60

2.Sekwencjalizacja obliczen (1)

Transformujemy ewaluator do stylu kontynuacyjnego, co
uwydatnia porzadek obliczen.

datatype value = INT of int

| FN of ide * exp * value Env.env

withtype cont = value -> value

fun eval (VAR x, env, k)

= k (Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= k (FN (x, e, env))

Jezyki programowania i kontynuacje – p.23/60

2.Sekwencjalizacja obliczen (2)

| eval (APP (e0, e1), env, k) =

eval (e0, env,

fn v0 =>

eval (e1, env,

fn v1 => case v0 of

FN (x, e, env) =>

eval (e,

Env.extend (env, x, v1), k)

| _ => raise TYPE_ERROR))

Jezyki programowania i kontynuacje – p.24/60

3.Zmiana repr. kontynuacji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

and cont = STOP

| ARG of exp * value Env.env * cont

| FUN of value * cont

| SUC of cont

fun eval (VAR x, env, k)

= apply (k, Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= apply (k, FN (x, e, env))

| eval (APP (e0, e1), env, k)

= eval (e0, env, ARG (e1, env, k))

Jezyki programowania i kontynuacje – p.25/60

3.Zmiana repr. kontynuacji (2)
| eval (LIT n, env, k)

= apply (k, INT n)

| eval (SUCC e, env, k)

= eval (e, env, SUCC k)

and apply (STOP, v) = v

| apply (ARG (e1, env, k), v0)

= eval (e1, env, (FUN (v0, k)))

| apply (FUN (FN (x, e, env), k), v1)

= eval (e, Env.extend (env, x, v1), k)

| apply (SUC k, INT n)

= apply (k, INT (n+1))

fun evaluate e = eval (e, Env.mt, STOP)

Jezyki programowania i kontynuacje – p.26/60

Uwagi

Kolejnosc krokow 1. i 2. w transformacji moze byc
odwrotna

W przypadku gdy ewaluator bazowy nie produkuje
wartosci funkcyjnych, krok 1. jest pomijany

W przypadku gdy ewaluator bazowy jest wyrazony w
stylu kontynuacyjnym (np. operatory), krok 2. jest
pomijany

Moze zajsc koniecznosc wielokrotnego zastosowania
kroku 2. (np. kontynuacje ograniczone)

Transformacja jest odwracalna: jezeli dana maszyna
abstrakcyjna jest w zdefunkcjonalizowanej formie, to
refunkcjonalizacja kontynuacji, a nastepnie transformacja ze
stylu kontynuacyjnego prowadzi do ewaluatora

Jezyki programowania i kontynuacje – p.27/60

Semantyka redukcyjna (1)

czysto syntaktyczna semantyka malych krokow

oparta na przepisywaniu termow (przepisywany jest
tekst programu)

definiowane sa nastepujace komponenty:
termy (wyrazenia), a wsrod nich wartosci – mozliwy
wynik obliczen
redeksy (potencjalne i faktyczne) – postac wyrazen,
ktore moga byc zredukowane
konteksty ewaluacyjne – programy z “dziura”,
okreslajace gdzie w programie moze nastapic
redukcja
reguly redukcji (jak redukuje sie redeks danej
postaci)

Jezyki programowania i kontynuacje – p.28/60

Semantyka redukcyjna (2)

Lemat o jednoznacznym rozkladzie

Lemat 1 Kazdy program albo jest wartoscia, albo
mozna go jednoznacznie rozlozyc na potencjalny
redeks i kontekst.

Jeden krok redukcji polega na
dekompozycji termu na kontekst i redeks
kontrakcji redeksu
wlozeniu wyniku kotrakcji do kontekstu

Ewaluacja definiowana jest jako zwrotno-przechodnie
domkniecie relacji redukcji

Jezyki programowania i kontynuacje – p.29/60

Semantyka redukcyjna CBV dla ISWIM (1)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v0 v1 | succ v

r ::= (λx .e) v | succ pmq

Konteksty ewaluacyjne

E ::= [] | E [[] e] | E [succ []] | E [v []]

Jezyki programowania i kontynuacje – p.30/60

Semantyka redukcyjna CBV dla ISWIM (2)

Reguly redukcji

(βλ) (λx .e) v → e{v/x}

(succ) succ pmq → pm+ 1q

Oznaczamy przez 7→ domkniecie relacji →
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evalv(e)
def
= v wtw e 7→∗ v.

Jezyki programowania i kontynuacje – p.31/60

Semantyka redukcyjna CBN dla ISWIM (1)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v e | succ v

r ::= (λx .e) e′ | succ pmq

Konteksty ewaluacyjne

E ::= [] | E [[] e] | E [succ []]

Jezyki programowania i kontynuacje – p.32/60

Semantyka redukcyjna CBN dla ISWIM (2)

Reguly redukcji

(βλ) (λx .e) e′ → e{e′/x}

(succ) succ pmq → pm+ 1q

Oznaczamy przez 7→ domkniecie relacji →
kompatybilne ze wzgledu na konteksty ewaluacyjne

Funkcja ewaluacyjna

evaln(e)
def
= v wtw e 7→∗ v.

Jezyki programowania i kontynuacje – p.33/60

Od MA do SR i z powrotem (1)

Maszyna abstrakcyjna to zoptymalizowana semantyka
redukcyjna

W SR term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie odbudowa termu,
po czym ten proces sie powtarza
W MA term jest dekomponowany, nastepuje
kontrakcja redeksu, a nastepnie, bez
odbudowywania calego termu, poszukiwany jest
kolejny redeks
Dodatkowa optymalizacja jest uzycie srodowiska
zamiast podstawienia, ale czasem rozwaza sie MA
oparte na podstawieniu

Jezyki programowania i kontynuacje – p.34/60

Od MA do SR i z powrotem (2)

Z danej MA mozna wyekstraktowac SR
semantyczne komponenty zastepujemy
syntaktycznymi
odczytujemy reguly redukcji z przejsc maszyny –
redukcja nastepuje tam gdzie lewa i prawa strona
reprezentuja rozne termy

Z danej SR mozna mechanicznie wyprowadzic MA
metoda zwana “refocusing”
polega na fuzji funkcji wkladajacej term do kontekstu
z funkcja dekomponujaca term
w celu otrzymania MA ze srodowiskiem, startujemy z
SR z jawnym podstawieniem

Jezyki programowania i kontynuacje – p.35/60

Od MA do SR i z powrotem (3)

Twierdzenie 1 Dla kazdego programu e oraz literalu pmq,

1. evalv(e) = pmq wtw eval
v
AM

(e) = pmq

2. evaln(e) = pmq wtw eval
n
AM

(e) = pmq

Jezyki programowania i kontynuacje – p.36/60

Transformacja do CPS formalnie

Semantyka programow funkcyjnych, a w szczegolnosci
tych z operatorami, mozna definiowac poprzez
transformacje do stylu kontynuacyjnego

Istnieje wiele formalnie zdefiniowanych transformacji do
CPS

Jezyki programowania i kontynuacje – p.37/60

Transformacja CBV do CPS

x = λk.k x

λx .e = λk.k (λxk. e k)

e0 e1 = λk.e0 (λv0. e1 (λv1. v0 v1 k))

pmq = λk.k pmq

succ e = λk.e (λv. k (succ v))

Jezyki programowania i kontynuacje – p.38/60

Transformacja CBN do CPS

x = λk.x k

λx .e = λk.k (λxk. e k)

e0 e1 = λk.e0 (λv0. v0 e1 k)

pmq = λk.k pmq

succ e = λk.e (λv. k (succ v))

Jezyki programowania i kontynuacje – p.39/60

Wzajemna symulacja CBV i CBN

Twierdzenie 2 Dla kazdego programu e oraz literalu pmq,

1. evalv(e) = pmq wtw evalv(e (λx.x)) = pmq

2. evaln(e) = pmq wtw evaln(e (λx.x)) = pmq

Twierdzenie 3 Dla kazdego programu e oraz literalu pmq,

1. evalv(e (λx.x)) = pmq wtw evaln(e (λx.x)) = pmq

2. evalv(e (λx.x)) = pmq wtw evaln(e (λx.x)) = pmq

Jezyki programowania i kontynuacje – p.40/60

Modelowy jezyk z operatorami ISWIM c

e ::= x | λx .e | e0 e1 | pmq | succ e | Kx.e | Ae

K – call with current continuation

A – abort

Jezyki programowania i kontynuacje – p.41/60

Ewaluator w CPS dla ISWIM c (1)

datatype exp = ...

| ABORT of exp

| CALLCC of ide * exp

datatype value = INT of int

| FN of value * cont -> value

withtype cont = value -> value

Jezyki programowania i kontynuacje – p.42/60

Ewaluator w CPS dla ISWIM c (2)

fun eval (VAR x, env, k)

= k (Env.lookup (env, x))

| eval (LAM (x,e), env, k)

= k (FN (fn (v,k) =>

eval (e, Env.extend (env, x, v), k)))

| eval (APP (e0, e1), env, k)

= eval (e0, env,

fn v0 => eval (e1, env,

fn v1 =>

case v0 of

FN f => f (v1, k)

| _ => raise TYPE_ERROR))

Jezyki programowania i kontynuacje – p.43/60

Ewaluator w CPS dla ISWIM c (3)

| eval (LIT n, env, k) = k (INT n)

| eval (SUCC e, env, k)

= eval (e, env,

fn v => case v of

INT n => k (INT (n+1))

| _ => raise TYPE_ERROR)

| eval (ABORT e, env, k)

= eval (e, env, fn v => v)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x,

FN fn (v,k’) => k v), k)

fun evaluate e = eval (e, Env.mt, fn v => v)

Jezyki programowania i kontynuacje – p.44/60

Defunkcjonalizacja funkcji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

| CONT of cont

| eval (APP (e0, e1), env, k)

= eval (e0, env, fn v0 =>

eval (e1, env, fn v1 =>

case v0 of

FN (x, e, env) =>

eval (e, Env.extend (env, x, v1), k)

| CONT k’ => k’ v1

| _ => raise TYPE_ERROR))

Jezyki programowania i kontynuacje – p.45/60

Defunkcjonalizacja funkcji (2)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x, CONT k), k)

Jezyki programowania i kontynuacje – p.46/60

Defunkcjonalizacja kontynuacji (1)

datatype value = INT of int

| FN of ide * exp * value Env.env

| CONT of cont

and cont = STOP

| ARG of exp * value Env.env * cont

| FUN of value * cont

| SUCC of cont

Jezyki programowania i kontynuacje – p.47/60

Defunkcjonalizacja kontynuacji (2)

| eval (ABORT e, env, k)

= eval (e, env, STOP)

| eval (CALLCC (x, e), env, k)

= eval (e, Env.extend (env, x, CONT k), k)

| apply (FUN (CONT k’, k), v1)

= apply (k’, v1)

Jezyki programowania i kontynuacje – p.48/60

CEK dla ISWIM c

Rozszerzona kategoria wartosci

v ::= ... | E

Dodatkowe przejscia

〈Ae, ρ, E〉eval ⇒ 〈e, ρ, STOP〉eval

〈Kx.e, ρ, E〉eval ⇒ 〈e, ρ{x 7→ E}, STOP〉eval

〈FUN (E′, E), v〉cont ⇒ 〈E′, v〉cont

Jezyki programowania i kontynuacje – p.49/60

Semantyka redukcyjna dla ISWIM c (1)

Redukcja wrazliwa na kontekst – kontrakcja redeksu
bierze pod uwage zarowno term jak i kontekst

Sa dwie (rownowazne) mozliwosci reprezentowania
“przechwyconego” kontekstu E:
1. jako funkcje λy.A(E[y])

2. jako nowy syntaktyczny rodzaj wartosci (ekstrakcja
SR z MA prowadzi wlasnie tu)

Skoncentrujmy sie na pierwszym wariancie

Jezyki programowania i kontynuacje – p.50/60

Semantyka redukcyjna dla ISWIM c (2)

Wyrazenia i wartosci

e ::= x | v | e0 e1 | succ e | Ae | Kx.e

v ::= λx.e | pmq

Potencjalne i faktyczne redeksy

p ::= v0 v1 | succ v | Ae | Kx.e

r ::= (λx .e) v | succ pmq | Ae | Kx.e

Konteksty ewaluacyjne

E ::= [] | E [[] e] | E [succ []] | E [v []]

Jezyki programowania i kontynuacje – p.51/60

Semantyka redukcyjna dla ISWIM c (3)

Reguly redukcji

(βλ) E [(λx .e) v] → E [e{v/x}]

(succ) E [succ pmq] → E [pm+ 1q]

(A) E [Ae] → e

(Kλ) E [Kx.e] → E [e{(λy.A(E[y]))/x}]

Jezyki programowania i kontynuacje – p.52/60

Semantyka redukcyjna dla ISWIM c (4)

Wariant drugi – konteksty staja sie czescia skladni:

Zmiany w skladni i gramatyce kontekstow:

v ::= ... | E

p ::= ... | E v

r ::= ... | E v

Regula (Kλ) jest zastapiona przez dwie

(K′

λ
) E [Kx.e] → E [e{E/x}]

(βE) E [E′ v] → E′ [v]

Funkcje ewaluacyjne generowane przez obie semantyki re-

dukcyjne, jak i przez maszyne abstrakcyjne sa rownowazne.
Jezyki programowania i kontynuacje – p.53/60

CPS transformacja operatorow kontroli

Ae = λk.e (λv. v)

Kx.e = λk.e{(λvk′. k v)/x} k

Mozemy zdefiniowac semantyke jezyka ISWIMc uzywajac
funkcji ewaluacyjnej dla ISWIM (jest ona rownowazna
funkcjom generowanym przez SR i MA):

Definicja 3

evalCPS(e)
def
= evalv(e (λx .x)).

Jezyki programowania i kontynuacje – p.54/60

Operator C

Operator C

Cx.e = λk.e{(λvk′. k v)/x} (λx . x)

C jest silniejszy niz K i A

Kx.e = Cx.x e

Ae = Cd.e, gdzie d /∈ FV (e)

Cx.e = Kx.Ae

Jezyki programowania i kontynuacje – p.55/60

λ-rachunek i logika minimalna

Termy (dowody): e ::= x | λx .e | e0 e1

Typy (formuly): φ, ψ ::= ⊥ | A | φ→ ψ

Konteksty typowania: Γ ::= • | Γ, x : φ

Reguly wnioskowania:

Γ, x : φ ⊢ x : φ
(AX)

Γ, x : φ ⊢ e : ψ

Γ ⊢ λx.e : φ→ ψ
(→i)

Γ ⊢ e0 : φ→ ψ Γ ⊢ e1 : φ

Γ ⊢ e0 e1 : ψ
(→e)

Definiujemy ¬φ = φ→ ⊥

Jezyki programowania i kontynuacje – p.56/60

Kontynuacje i logika klasyczna (1)

Logika intuicjonistyczna = Logika minimalna + Ex Falso
Quodlibet

Γ ⊢ e : ⊥

Γ ⊢ Ae : φ
(EX FALSO QUODLIBET)

Minimalna logika klasyczna = Logika minimalna +
Prawo Peirce’a

Γ, x : φ→ ψ ⊢ e : φ

Γ ⊢ Kx .e : φ
(PRAWO PEIRCE’A)

Jezyki programowania i kontynuacje – p.57/60

Kontynuacje i logika klasyczna (2)

Logika klasyczna =
Logika intuicjonistyczna + Prawo Peirce’a =
Logika minimalna + Eliminacja podwojnego
zaprzeczenia (DNE)

Γ, x : ¬φ ⊢ e : ⊥

Γ ⊢ Cx .e : φ
(DNE)

Jezyki programowania i kontynuacje – p.58/60

Kontynuacje i logika klasyczna (3)

Definiujemy transformacje na typach:

⊥ = ⊥, A = A, φ→ ψ = φ→ ¬¬ψ

• = •, Γ, x : φ = Γ, x : φ

Twierdzenie 4 Jezeli Γ ⊢ e : φ w logice klasycznej, to
Γ ⊢ e : ¬¬φ w logice minimalnej.

Jezyki programowania i kontynuacje – p.59/60

Literatura

Definitional Interpreters for Higher-Order Programming
Languages, J.Reynolds

Programming Languages and Lambda Calculi,
M.Felleisen, M.Flatt

A Functional Correspondence between Evaluators and
Abstract Machines, M.Ager et al.

Refocusing in Reduction Semantics, O.Danvy, L.Nielsen

Call-by-name, Call-by-value and the λ-calculus,
G.Plotkin

Representing Control: A Study of the CPS
Transformation, O.Danvy, A.Filinski

Formulae as Types Notion of Control, T.Griffin

Jezyki programowania i kontynuacje – p.60/60

	Semantyka operacyjna a kontynuacje
	Semantyka operacyjna operatorow
	Modelowy jezyk funkcyjny ISWIM
	Ewaluatory (interpretery definiujace)
	Ewaluator CBV dla ISWIM (1)
	Ewaluator CBV dla ISWIM (2)
	Ewaluator CBV dla ISWIM (3)
	Ewaluator CBV dla ISWIM (4)
	Ewaluator CBN dla ISWIM (1)
	Ewaluator CBN dla ISWIM (2)
	Maszyny abstrakcyjne
	Maszyna abstrakcyjna CBV dla ISWIM (1)
	Maszyna abstrakcyjna CBV dla ISWIM (2)
	Maszyna abstrakcyjna CBV dla ISWIM (3)
	Maszyna abstrakcyjna CBN dla ISWIM (1)
	Maszyna abstrakcyjna CBN dla ISWIM (2)
	Maszyna abstrakcyjna CBN dla ISWIM (3)
	Od ewaluatora do MA (1)
	Od ewaluatora do MA (2)
	1.Zmiana reprezentacji funkcji (1)
	1.Zmiana reprezentacji funkcji (2)
	2.Sekwencjalizacja obliczen (1)
	2.Sekwencjalizacja obliczen (2)
	3.Zmiana repr. kontynuacji (1)
	3.Zmiana repr. kontynuacji (2)
	Uwagi
	Semantyka redukcyjna (1)
	Semantyka redukcyjna (2)
	Semantyka redukcyjna CBV dla ISWIM (1)
	Semantyka redukcyjna CBV dla ISWIM (2)
	Semantyka redukcyjna CBN dla ISWIM (1)
	Semantyka redukcyjna CBN dla ISWIM (2)
	Od MA do SR i z powrotem (1)
	Od MA do SR i z powrotem (2)
	Od MA do SR i z powrotem (3)
	Transformacja do CPS formalnie
	Transformacja CBV do CPS
	Transformacja CBN do CPS
	Wzajemna symulacja CBV i CBN
	Modelowy jezyk z operatorami ISWIM$_c$
	Ewaluator w CPS dla ISWIM$_c$ (1)
	Ewaluator w CPS dla ISWIM$_c$ (2)
	Ewaluator w CPS dla ISWIM$_c$ (3)
	Defunkcjonalizacja funkcji (1)
	Defunkcjonalizacja funkcji (2)
	Defunkcjonalizacja kontynuacji (1)
	Defunkcjonalizacja kontynuacji (2)
	CEK dla ISWIM$_c$
	Semantyka redukcyjna dla ISWIM$_c$ (1)
	Semantyka redukcyjna dla ISWIM$_c$ (2)
	{Semantyka redukcyjna dla ISWIM$_c$ (3)}
	{Semantyka redukcyjna dla ISWIM$_c$ (4)}
	CPS transformacja operatorow kontroli
	Operator $
awC $
	$lambda $-rachunek i logika minimalna
	Kontynuacje i logika klasyczna (1)
	Kontynuacje i logika klasyczna (2)
	Kontynuacje i logika klasyczna (3)
	Literatura

