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Definicja i intuicje

Kontynuacja:

reszta obliczen w danym punkcie programu

informacja gdzie i jak kontynuowac obliczenia

funkcja wyznaczajaca dla wyniku czesciowego wynik
koncowy dzialania programu (wartosc lub stan)
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Przyklad: arytmetyka

Kalkulator wyrazen arytmetycznych (od lewej do prawej):
wyznaczenie wartosci wyrazenia (3 + 5) ∗ 2.

oblicz a nastepnie

(3 + 5) ∗ 2 stop

3 + 5 oblicz 2 i pomnoz wyniki; stop

3 oblicz 5 i dodaj wyniki; oblicz 2 i pomnoz wyniki; stop

5 dodaj 3; oblicz 2 i pomnoz wyniki; stop

8 oblicz 2 i pomnoz wyniki; stop

2 pomnoz przez 8; stop

16 stop
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Kontynuacje w informatyce

Implementacje jezykow programowania: stos w czasie
wykonania programu

Semantyka operacyjna: semantyka redukcyjna,
ewaluatory i maszyny abstrakcyjne

Semantyka denotacyjna (kontynuacyjna): jawny
porzadek obliczen, skoki, etc.

Programowanie funkcyjne: styl kontynuacyjny
(Continuation-Passing Style) i operatory kontroli

Kompilacja jezykow funkcyjnych: SML i Scheme

Logika i izomorfizm Curry’ego-Howarda: logika
klasyczna i translacja przez podwojne zaprzeczenie
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Programowanie z kontynuacjami (1)

Kontynuacje sa dostepne dla programisty na dwoch
poziomach

technika programowania w stylu kontynuacyjnym
(CPS): funkcje akceptuja dodatkowy parametr –
kontynuacje reprezentowana jako funkcja

programowanie z operatorami kontroli
znane z imperatywnych jezykow: etykiety i skoki,
wyjatki, nielokalne wyjscia z petli, etc.
specyficzne dla jezykow funkcyjnych – udostepniaja
biezaca kontynuacje jako obiekt pierwszej klasy
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Programowanie z kontynuacjami (2)

Niektore zastosowania

nielokalne wyjscia z rekursji i iteracji

obliczenia niedeterministyczne (nawroty)

synchroniczne procesy wspolbiezne (coroutines,
multitasking)

programowanie interakcji sieciowych

programy mobilne

programowanie systemowe

reprezentacja efektow (monady)

normalizacja i czesciowa ewaluacja

Jezyki programowania i kontynuacje – p.6/51



Kontynuacje w programach (1)

fun f () = true

fun main () =
if (f()) then print "Tak"
else print "Nie"

(*****************************************)

fun f () = true

fun f_continuation v =
if v then print "Tak" else print "Nie"

fun main () = f_continuation (f())
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Kontynuacje w programach (2)

fun f_continuation v =
if v then print "Tak" else print "Nie"

fun f () = f_continuation true

fun main () = f ()

(**************************************)

fun f k = k true

fun main () =
f (fn v => if v then print "Tak"

else print "Nie")
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Kontynuacje w programach (3)

fun fact 0
= 1

| fact n
= n*(fact (n-1))

fun main n
= fact n

Kontynuacje dla kolejnych wywolan rekurencyjnych fact 4:
fact 4: fn v => v

fact 3: fn v => 4 * v

fact 2: fn v => 4 * 3 * v

fact 1: fn v => 4 * 3 * 2 * v

fact 0: fn v => 4 * 3 * 2 * 1 * v
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Kontynuacje w programach (4)

Silnia w stylu kontynuacyjnym:

fun fact 0 k
= k 1

| fact n k
= fact (n-1) (fn v => k (n * v))

fun main n =
fact n (fn v => v)
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Styl kontynuacyjny

funkcje akceptuja dodatkowy argument funkcyjny –
kontynuacje

funkcja zwraca wartosc poprzez wyslanie jej do swojej
kontynuacji

wszystkie wywolania funkcji sa ogonowe

wyniki obliczen czesciowych sa nazwane

kolejnosc obliczen jest jawnie zakodowana w postaci
programu

Istnieje wiele metod automatycznej transformacji progra-

mow do stylu kontynuacyjnego.
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Transformacja do CPS (1)

Zalozmy, ze funkcje f, g i h sa jednoargumentowe, a k
reprezentuje biezaca kontynuacje. Wowczas wyrazenie

f (g h) j

zostanie przetransformowane do

g h (fn v => f v (fn u => u j k))
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Transformacja do CPS (2)

datatype aexp = Num of int
| Add of aexp * aexp
| Mul of aexp * aexp

(* eval : aexp -> int *)
fun eval (Num i) = i

| eval (Add (a1, a2))
= (eval a1) + (eval a2)

| eval (Mul (a1, a2))
= (eval a1) * (eval a2)

fun main e = eval e
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Transformacja do CPS (3)

(* eval : aexp -> (int -> ’a) -> ’a *)
fun eval (Num i) k

= k i
| eval (Add (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 => k (i1 + i2)))
| eval (Mul (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 => k (i1 * i2)))

(* main : aexp -> int *)
fun main e = eval e (fn i => i)
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Transformacja ze stylu kontynuacyjnego (1)

Czasami interesuje nas transformacja odwrotna: dla
danego programu w stylu kontynuacyjnym, znalezc
program, ktorego obrazem przez transformacje do stylu
kontynuacyjnego jest dany program.

Istnieja metody automatycznej transformacji programow ze

stylu kontynuacyjnego.
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Transformacja ze stylu kontynuacyjnego (2)

Obrazem wyrazenia

g h (fn v => f v (fn u => u j k))

jest wyrazenie

let val v = g h
in let val u = f v

in u j
end

end

rownowazne

f (g h) j
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Transformacja ze stylu kontynuacyjnego (3)

fun append_cps [] ys k
= k ys

| append_cps (x::xs) ys k
= append_cps xs ys (fn vs => k (x::vs))

fun append [] ys
= ys

| append (x::xs) ys
= x :: (append xs ys)
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Zmiana reprezentacji kontynuacji

Kontynuacja w programie jest utozsamiana ze stosem

Pytania
Czy ta odpowiedniosc moze byc zaobserwowana na
poziomie programow funkcyjnych?
Jaka jest reprezentacja pierwszego rzedu dla
kontynuacji w programach w stylu kontynuacyjnym?
Czy istnieje mechaniczna (a moze automatyczna)
metoda przejscia z jednej reprezentacji do drugiej?

Odpowiedz
defunkcjonalizacja
refunkcjonalizacja
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Defunkcjonalizacja

Transformacja programow przeksztalcajaca programy
wyzszego rzedu do semantycznie rownowaznych im
programow pierwszego rzedu, poprzez zmiane
reprezentacji lambda abstrakcji.

Algorytm: zakladamy, ze chcemy zdefunkcjonalizowac okre-

slona przestrzen funkcyjna t1 -> t2.
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Algorytm defunkcjonalizacji (1)

identyfikujemy wszystkie lambda abstrakcje
“zamieszkujace” dana przestrzen funkcyjna

wprowadzamy typ danych t do reprezentowania lambda
abstrakcji – po jednym konstruktorze dla kazdej lambda
abstrakcji; kazdy konstruktor jest typu s1 * ... * sn -> t,
gdzie s1,...,sn sa typami zmiennych wolnych w ciele
danej lambda abstrakcji

wprowadzamy funkcje apply : t -> t1 -> t2, ktora dla
kazdego konstruktora typu t i wartosci typu t1, zwraca
wartosc aplikacji lambda abstrakcji reprezentowanej
przez ten konstruktor na tej wartosci
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Algorytm defunkcjonalizacji (2)

kazde wprowadzenie danej lambda abstrakcji
zastepujemy uzyciem odpwiadajacego jej konstruktora
zaaplikowanego do zmiennych wolnych w ciele lambda
abstrakcji

kazda eliminacje lambda abstrakcji z danej przestrzeni
zastepujemy wywolaniem funkcji apply
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Defunkcjonalizacja: przyklad (1)

(* aux : (int -> int) -> int *)
fun aux f = f 1 + f 10

(* main : int -> int -> bool -> int *)
fun main a b c

= aux (fn x => a + x)

* aux (fn y => if c then b else y)
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Defunkcjonalizacja: przyklad (2)

datatype lam = LAM1 of int
| LAM2 of int * bool

fun apply (LAM1 a) x = a + x
| apply (LAM2 (b, c)) y = if c then b else y

fun aux_def f = apply f 1 + apply f 10

fun main_def a b c = aux_def (LAM1 a)

* aux_def (LAM2 (b, c))
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Defunkcjonalizacja kontynuacji (1)

(* fact_cps : int -> (int -> int) -> int *)
fun fact_cps 0 k

= k 1
| fact_cps n k
= fact_cps (n-1) (fn v => k (n*v))

(* fact : int -> int *)
and fact n = fact_cps n (fn v => v)
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Defunkcjonalizacja kontynuacji (2)

datatype cont = CONT0 | CONT1 of int * cont

(* fact_cps_def : int -> cont -> int *)
fun fact_cps_def 0 k

= apply k 1
| fact_cps_def n k
= fact_cps_def (n-1) (CONT1 (n, k))

(* apply : cont -> int *)
and apply CONT0 v = v

| apply (CONT1 (n, k)) v
= apply k (n * v)

(* fact : int -> int *)
and fact n = fact_cps_def n CONT0
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Defunkcjonalizacja kontynuacji (3)

datatype stack = EMPTY | PUSH of int * stack

(* fact_cps_def : int -> stack -> int *)
fun fact_cps_def 0 s

= pop_and_mul s 1
| fact_cps_def n s
= fact_cps_def (n-1) (PUSH (n, s))

(* pop_and_mul : stack -> int *)
and pop_and_mul EMPTY v = v

| pop_and_mul (PUSH (n, s)) v
= pop_and_mul s (n * v)

(* fact : int -> int *)
and fact n = fact_cps_def n EMPTY
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Refunkcjonalizacja

Transformacja programow przeksztalcajaca programy
pierwszego rzedu do semantycznie rownowaznych im
programow wyzszego rzedu.

Algorytm (zakladamy, ze zidentyfikowalismy typ t, oraz
funkcje apply typu t -> t1 -> t2 bedace w obrazie
defunkcjonalizacji)

zastap wywolania funkcji apply f x przez f x

zastap wystapienia konstruktorow typu t przez lambda
abstrakcje o ciele zdefiniowanym przez odpowiadajaca
temu konstruktorowi klauzule funkcji apply

usun definicje typu t

usun definicje funkcji apply
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Refunkcjonalizacja: przyklad (1)

Konwolucja dwoch listy: conv ([x1,...,xn],
[y1,...,yn] ==> [(x1,yn),...,(xn,y1)]

fun conv (xs, ys)
= let fun reverse (nil, a)

= pair (a, ys, nil)
| reverse (x::xs, a)
= reverse (xs, x::a)

and pair (nil, nil, r)
= r

| pair (x::a, y::ys, r)
= pair (a, ys, (x,y)::r)

in reverse (xs, nil) end
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Refunkcjonalizacja: przyklad (2)

datatype cont = CONT0 | CONT1 of int * cont

fun conv xs ys
= let fun reverse (nil, k)

= apply (k, ys, nil)
| reverse (x::xs, k)
= reverse (xs, CONT1 (x, k))

and apply (CONT0, nil, r)
= r

| apply (CONT1 (x, k), y::ys, r)
= apply (k, ys, (x, y)::r)

in reverse (xs, CONT0) end
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Refunkcjonalizacja: przyklad (3)

fun conv (xs, ys)
= let fun reverse (nil, k)

= k (ys, nil)
| reverse (x::xs, k)
= reverse (xs,

fn (y::ys, r)
=> k (ys, (x,y)::r))

in reverse (xs, fn (nil, r) => r) end
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Refunkcjonalizacja: przyklad (4)

fun conv (xs, ys)
= let fun reverse nil

= (ys, nil)
| reverse (x::xs)
= let val (y::ys, r)

= reverse xs
in (ys, (x,y)::r) end

val (nil, r) = reverse xs
in r end
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Big Picture

Trzy semantycznie rownowazne postaci programu:

1. program w DS

2. program w CPS

3. program ze stosem, implementujacy system przejsc
pierwszego rzedu

Transformacje pozwalajace na mechaniczne przejscia
pomiedzy nimi:

CPS transformacja (1 -> 2) i jej odwrotnosc (2 -> 1)

defunkcjonalizacja kontynuacji (2 -> 3) i ich
refunkcjonalizacja (3 -> 2)
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Manipulowanie kontynuacja (1)

(* multlist : int list -> int *)
fun multlist xs =

let fun walk [] k
= k 1

| walk (0::xs) k
= 0

| walk (x::xs) k
= walk xs (fn v => k (x * v))

in walk xs (fn v => v) end
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Manipulowanie kontynuacja (2)

datatype aexp = ... | Div of aexp * aexp

datatype result = VALUE of int | ERROR

(* eval : aexp -> (int -> result) -> result *)
| eval (Div (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 =>
division i1 i2 k))

fun division i1 i2 k
= if i2 = 0 then ERROR else k (i1 div i2)

fun main e = eval e (fn i => VALUE i)
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Operatory kontroli

manipulowanie biezaca kontynuacja bez koniecznosci
programowania w stylu kontynuacyjnym

dostep do biezacej kontynuacji jako obiektu pierwszej
klasy
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callcc (call with current continuation)

Motywacja
Nielokalne wyjscia (CPS)
Symulacja innych efektow kontroli w zestawieniu z
przypisaniem

Semantyka wyrazenia callcc (fun k => e)

biezaca kontynuacja (w pewnej konkretnej
reprezentacji) staje sie wartoscia k

obliczana jest wartosc wyrazenia e

jezeli k nie jest uzyta w e, to wartosc wyrazenia e
jest wartoscia wyrazenia callcc (fun k => e)

jezeli k jest zaaplikowana do wartosci v, to biezaca
kontynuacja zostaje zastapiona kontynuacja
zwiazana z k i v jest wartoscia calego wyrazenia
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callcc (2)

Standard ML of New Jersey: struktura SMLofNJ.Cont

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

Scheme: call-with-current-continuation
(call/cc)
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callcc (3)

Przechwycona kontynuacja (1+[]) nie zostaje uzyta:

1 + callcc (fn k => 10 + 100)
==> 111

Przechwycona kontynuacja (1+[]) zastepuje biezaca
(1+(10+[])):

1 + callcc (fn k => 10 + (throw k 100))
==> 101
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Nielokalne wyjscia z rekursji

(* multlist : int list -> int *)
fun multlist xs =

callcc
(fn exit =>

let fun walk []
= 1

| walk (0::xs)
= throw exit 0

| walk (x::xs)
= x * (walk xs)

in walk xs end)
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Obsluga bledow

(* eval aexp -> result *)
fun eval_aexp a =

callcc
(fn exit =>

let fun division i1 i2 =
if i2 = 0
then throw exit ERROR
else i1 div i2

fun eval (Num i) = i
...

| eval (Div (a1, a2))
= division (eval a1)

(eval a2)
in VALUE (eval a) end)
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Obliczenia z nawrotami (1)

Operator amb McCarthy’ego

Niedeterminizm: amb() generuje dwie galezie obliczen,
w jednej przyjmujac wartosc true, w drugiej false

Interesuje nas ogolna funkcja backtrack, ktora dla
danej funkcji uzywajacej operatora amb, zbiera wyniki
ze wszystkich galezi (wykonuje nawroty)
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Obliczenia z nawrotami (2)

(* backtrack :
((unit -> bool) -> ’a) -> ’a list *)

val res = backtrack
(fn amb => if (amb ())

then if (amb ())
then 1
else 2

else if (amb ())
then 3
else 4)

(* val res = [4,3,2,1] : int list *)
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Obliczenia z nawrotami (3)

fun backtrack f =
let val res = ref []

val conts = ref []
in (res :=

f (fn () =>
callcc (fn k =>

(conts := k :: !conts;
true))) :: !res;

case !conts of
[] => !res

| (k::conts’) => (conts := conts’;
throw k false))

end
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Obliczenia z nawrotami (4)

Kontynuacja przechwycona przez callcc w programie

backtrack (fn amb => if (amb()) then 1 else 2)

“reprezentuje” kontekst

(res := (if [] then 1 else 2) :: !res;
case !conts of
[] => !res

| (k::conts’) => (conts := conts’;
throw k false))
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Coroutines (1)

Procedury, ktore moga dobrowolnie oddawac
sterowanie innej procedurze

Ponowne odzyskanie sterowania powoduje wznowienie
obliczen od punktu, w ktorym sterowanie bylo oddane

Implementujemy funkcje coroutine-maker, ktora z
danej funkcji tworzy coroutine
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Coroutines (2)

(define producer
(coroutine-maker
(lambda (resume d)

(letrec ((loop (lambda (n)
(resume consumer n)
(loop (+ n 1)))))

(loop 0)))))
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Coroutines (3)

(define consumer
(coroutine-maker
(lambda (resume d)

(letrec
((loop

(lambda ()
(let ((n (resume producer d)))

(display n)
(newline)
(loop)))))

(loop)))))
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Coroutines (4)

(define coroutine-maker
(lambda (proc)
(let ((saved-cont ’()))

(let ((update-cont!
(lambda (k)
(set! saved-cont k))))

(let ((resumer
(resume-maker update-cont!))

(first-time #t))
(lambda (value)

(if first-time
(begin (set! first-time #f)

(proc resumer value))
(saved-cont value))))))))
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Coroutines (5)

(define resume-maker
(lambda (update-proc!)
(lambda (next-coroutine value)

(call/cc
(lambda (continuation)

(update-proc! continuation)
(next-coroutine value))))))
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Coroutines (6)

Kontynuacje przechwytywane przez procedury producer i
consumer “reprezentuja” konteksty, odpowiednio:

(let ((n []))
(display n)
(newline)
(loop))

oraz

(let ((d []))
(loop (+ n 1)))
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