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Definicja I intuicje
'

# reszta obliczen w danym punkcie programu

ontynuacja:

# Iinformacja gdzie i jak kontynuowac obliczenia

# funkcja wyznaczajaca dla wyniku czesciowego wynik
koncowy dzialania programu (wartosc lub stan)

o |
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Przyklad: arytmetyka
=

Kalkulator wyrazen arytmetycznych (od lewej do prawej):
wyznaczenie wartosci wyrazenia (3 + 5) x 2.

-

oblicz a nastepnie
(34 5) %2 stop
3+ oblicz 2 i pomnoz wyniki; stop
3 oblicz 5 1 dodaj wyniki; oblicz 2 1 pomnoz wyniki; stop
5 dodaj 3; oblicz 2 1 pomnoz wyniki; stop
8 oblicz 2 i pomnoz wyniki; stop
2 pomnoz przez 8; stop
16 stop

o |
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°

Kontynuacje w informatyce

-

Implementacje jezykow programowania: stos w czasie
wykonania programu

Semantyka operacyjna:. semantyka redukcyjna,
ewaluatory i maszyny abstrakcyjne

Semantyka denotacyjna (kontynuacyjna): jawny
porzadek obliczen, skoki, etc.

Programowanie funkcyjne: styl kontynuacyjny
(Continuation-Passing Style) | operatory kontroli

Kompilacja jezykow funkcyjnych: SML | Scheme

Logika 1 izomorfizm Curry’ego-Howarda: logika
klasyczna I translacja przez podwojne zaprzeczenie

|
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Programowanie z kontynuacjami (1)

fKontynuacje sa dostepne dla programisty na dwoch T
poziomach

# technika programowania w stylu kontynuacyjnym
(CPS): funkcje akceptuja dodatkowy parametr —
kontynuacje reprezentowana jako funkcja

# programowanie z operatorami kontroli
s znane z imperatywnych jezykow: etykiety i skoki,
wyjatki, nielokalne wyjscia z petli, etc.

s specyficzne dla jezykow funkcyjnych — udostepniaja
biezaca kontynuacje jako obiekt pierwszej klasy

o |
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Programowanie z kontynuacjami (2)

VN

X
9

© o o o 0

lektore zastosowania

-

nielokalne wyjscia z rekursji I iteracji
obliczenia niedeterministyczne (nawroty)

synchroniczne procesy wspolbiezne (coroutines,
multitasking)

programowanie interakcji sieciowych
programy mobilne

programowanie systemowe
reprezentacja efektow (monady)
normalizacja | czesciowa ewaluacja

|
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Kontynuacje w programach (1)
(_}un f () = true __T

fun main () =
1f (f()) then print "Tak"
el se print "N e"

(*****************************************)

fun f () = true

fun f _continuation v =
I1f v then print "Tak" else print "N e"

fun main () = f_continuation (f())

o |
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Kontynuacje w programach (2)

o

un f _continuation v = __W
1f v then print "Tak" else print "N e"

fun f () = f _continuation true

fun main () =1 ()

(% ok k ok kK K K K K K Kk k ok ok ok kK ok kK K K K K K K K K Kk kK k)
fun f k = k true

fun main () =

f (fn v =>1f v then print "Tak"
el se print "N e")

o |
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Kontynuacje w programach (3)

s

un fact O
1

| fact n
nx(fact (n-1))

fun mai n n

= fact n

-

Kontynuacje dla kolejnych wywolan rekurencyjnych f act 4:

fact
fact
fact
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fn
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3 * V
3 * 2 x V
3 * 2 *x 1 x vV

|
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Kontynuacje w programach (4)

-

Silnia w stylu kontynuacyjnym:

fun fact 0 Kk
=k 1
| fact n kK
= fact (n-1) (fnv == Kk (n * v))

-

fun main n =
fact n (fn v => v)



Styl kontynuacyjny
- -

# funkcje akceptuja dodatkowy argument funkcyjny —
kontynuacje

o funkcja zwraca wartosc poprzez wyslanie je] do swoje]
kontynuacji

°

wszystkie wywolania funkcji sa ogonowe

°

wyniki obliczen czesciowych sa nazwane

# kolejnosc obliczen jest jawnie zakodowana w postaci
programu

Istnieje wiele metod automatycznej transformacji progra-

mow do stylu kontynuacyjnego.

o |
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Transformacja do CPS (1)
=

Zalozmy, ze funkcje f, g | h sa jednoargumentowe, a k
reprezentuje biezaca kontynuacje. Wowczas wyrazenie

t (g h) |
zostanie przetransformowane do

-

gh(fnv =f v (fnu =>uj] k))

o |
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Transformacja do CPS (2)

K

at at ype aexp = Num of I nt
Add of aexp * aexp
Mul of aexp * aexp

(» eval : aexp ->int *)
fun eval (Numi) =i
| eval (Add (al, a2))
= (eval al) + (eval a2)
| eval (Mul (al, a2))
= (eval al) ~ (eval a2)

fun main e = eval e

-

|
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Transformacja do CPS (3)

eval : aexp -> (int ->’a) ->"a «)
eval (Numi) k
= Kk i

eval (Add (al, a2)) k
= eval al (fnil1l =
eval a2 (fni2 =k (i1l +1i2)))
eval (Mul (al, a2)) k
= eval al (fni1l1l =
eval a2 (fni2 =k (il * i2)))

main . aexp -> int =)
mine==eval e (fni =>1)

-



Transformacja ze stylu kontynuacyjnego (1)

o N

Czasami interesuje nas transformacja odwrotna: dla
danego programu w stylu kontynuacyjnym, znalezc
program, ktorego obrazem przez transformacje do stylu
kontynuacyjnego jest dany program.

Istnieja metody automatycznej transformacji programow ze

stylu kontynuacyjnego.

o |
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Transformacja ze stylu kontynuacyjnego (2)

. N

Obrazem wyrazenia
gh(fnv =1 v (fnu =>uj] k))
jest wyrazenie

let val v = g h
In let val u =1 v
In u |
end
end

rownowazne

t (g h) |
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Transformacja ze stylu kontynuacyjnego (3)

s

un append cps [] ys k __T
= k ys
| append cps (x::xs) ys Kk
= append _cps xs ys (fn vs => k (x::vs))

fun append [] Vs
= VyS
| append (X::XS) VysS
= X .. (append xs ys)



Zmiana reprezentacji kontynuaciji

- N

# Kontynuacja w programie jest utozsamiana ze stosem
# Pytania

s Czy ta odpowiedniosc moze byc zaobserwowana na
poziomie programow funkcyjnych?

» Jaka jest reprezentacja pierwszego rzedu dla
kontynuacji w programach w stylu kontynuacyjnym?

» Czy istnieje mechaniczna (a moze automatyczna)
metoda przejscia z jednej reprezentacji do drugiej?
# Odpowiedz
s defunkcjonalizacja
» refunkcjonalizacja

o |
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Defunkcjonalizacja

-

Transformacja programow przeksztalcajaca programy
wyzszego rzedu do semantycznie rownowaznych im
programow pierwszego rzedu, poprzez zmiane
reprezentacji lambda abstrakcji.

-

Algorytm: zakladamy, ze chcemy zdefunkcjonalizowac okre-

slona przestrzen funkcyjna tl -> t2.

o |
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Algorytm defunkcjonalizacji (1)

- N

# Iidentyfikujemy wszystkie lambda abstrakcje
“zamieszkujace” dana przestrzen funkcyjna

# wprowadzamy typ danych t do reprezentowania lambda
abstrakcji — po jednym konstruktorze dla kazde) lambda
abstrakcji; kazdy konstruktor jest typu s1 * ... * sn -> t,
gdzie s1,...,sn sa typami zmiennych wolnych w ciele
danej lambda abstrakcji

# wprowadzamy funkcje apply : t ->t1 -> t2, ktora dla
kazdego konstruktora typu t | wartosci typu tl, zwraca
wartosc aplikacji lambda abstrakcji reprezentowane]
przez ten konstruktor na te] wartosci

o |
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Algorytm defunkcjonalizacji (2)

- N

#® kazde wprowadzenie danej lambda abstrakcji
zastepujemy uzyciem odpwiadajacego jej] konstruktora
zaaplikowanego do zmiennych wolnych w ciele lambda
abstrakcji

# kazda eliminacje lambda abstrakcji z danej przestrzeni
zastepujemy wywolaniem funkcji apply

o |
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Defunkcjonalizacja: przyklad (1)

-

T__* aux . (Iint ->1int) ->1int )
fun aux f =f 1 +f 10

(» main : int ->1int -> bool ->1int =)
fun main a b c
= aux (fn x =>a + x)
* aux (fny =>1if c then b else vy)



Defunkcjonalizacja: przyklad (2)

fdat atype lam = LAML of I nt T
| LAMR of int * bool

fun apply (LAML a) x = a + X
| apply (LAM2 (b, c)) vy =1i1f c then b else y

fun aux _def f = apply f 1 + apply f 10

fun main _def a b ¢ = aux _def (LAML a)
* aux_def (LAMZ (b, c))

o |
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Defunkcjonalizacja kontynuacji (1)

. g

* fact cps : int -> (int ->1int) ->int
fun fact _cps 0 k
=k 1

| fact _cps n kK
= fact _cps (n-1) (fn v => Kk (n*v))

(» fact : Int ->1nt *)
and fact n = fact _cps n (fn v => v)



Defunkcjonalizacja kontynuacji (2)

-

dat at ype cont = CONTO | CONT1 of int * cont

-

(» fact cps def : int ->cont ->int *)
fun fact _cps_def 0 k
= apply k 1

| fact _cps_def n k
= fact _cps_def (n-1) (CONT1 (n, k))

( apply : cont ->1int =)
and apply CONTO v = v
| apply (CONT1 (n, k)) v
= apply k (n = v)
(» fact : Int ->1nt =)

and fact n = fact _cps_def n CONTO

|
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Defunkcjonalizacja kontynuacji (3)

-

dat at ype stack = EMPTY | PUSH of int = stack_1
(» fact _cps def : int -> stack ->int «)
fun fact _cps_def O s
= pop_and mul s 1
| fact _cps_def n s
= fact _cps_def (n-1) (PUSH (n, s))
(» pop_and mul : stack ->int =)
and pop_and nmul EMPTY v = v
| pop_and nul (PUSH (n, s)) v
= pop_and nmul s (n * v)

(» fact : Int ->1nt =)
and fact n = fact_cps_def n EMPTY

|
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Refunkcjonalizacja

-

Transformacja programow przeksztalcajaca programy
pierwszego rzedu do semantycznie rownowaznych im
programow wyzszego rzedul.

-

Algorytm (zakladamy, ze zidentyfikowalismy typ t, oraz
funkcje apply typu t -> t1 -> t2 bedace w obrazie
defunkcjonalizaciji)

# zastap wywolania funkcji apply f x przez f x

# zastap wystapienia konstruktorow typu t przez lambda
abstrakcje o ciele zdefiniowanym przez odpowiadajaca
temu konstruktorowi klauzule funkcji apply

°

usun definicje typu t
# usun definicje funkcji apply

o |
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Refunkcjonalizacja: przyklad (1)

-

Konwolucja dwoch listy: conv ([ x1, ..., xnj,
[vl, ..., yn] ==> [(x1,yn),..., (xn, yl)]

-

fun conv (Xxs, Vys)
= let fun reverse (nil, a)
= pair (a, ys, nil)
| reverse (X::Xxs, a)
= reverse (xs, X::a)
and pair (nil, nil, r)
=r
| pair (x::a, y::ys, r)
= pair (a, ys, (x,y)::r)
In reverse (xs, nil) end
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Refunkcjonalizacja: przyklad (2)

. N

dat at ype cont = CONTO | CONT1 of int * cont

fun conv xs ys
= let fun reverse (nil, k)

= apply (k, ys, nil)

| reverse (X::Xs, k)
= reverse (xs, CONT1 (x, Kk))

and apply (CONTO, nil, r)

=r

| apply (CONT1 (x, k), y::ys, r)
= apply (k, ys, (x, y)::r)

Il n reverse (xs, CONTO) end

o |
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Refunkcjonalizacja: przyklad (3)

F__fun conv (Xs, VysS) __T
= |let fun reverse (nil, k)
= k (ys, nil)

| reverse (x::xs, k)
= reverse (Xxs,
fn (y::ys, r)

=> k (ys, (x,y)::r))
In reverse (xs, fn (nil, r) =>r) end



Refunkcjonalizacja: przyklad (4)

F__fun conv (Xs, VysS) __T
= et fun reverse nil
= (ys, nil)

| reverse (X::Xs)
= let val (y::ys, r)
= reverse Xxs
In (ys, (x,y)::r) end
val (nil, r) = reverse xs
In r end



Big Picture
fTrzy semantycznie rownowazne postaci programu:
1. program w DS
2. program w CPS

3. program ze stosem, implementujacy system przejsc
pierwszego rzedu

Transformacje pozwalajace na mechaniczne przejscia
pomiedzy nimi:

# CPS transformacja (1 -> 2) i jej odwrotnosc (2 -> 1)

# defunkcjonalizacja kontynuacji (2 -> 3) i ich
refunkcjonalizacja (3 -> 2)

o |

Jezyki programowania i kontynuacje — p.32/51



Manipulowanie kontynuacja (1)

{___* multlist : Iint list ->1nt =) __1

fun multlist xs =
let fun walk [] Kk
= kK 1
| walk (0::xs) Kk
=0
| wal k (x::xs) k
= walk xs (fn v => k (x * Vv))
In walk xs (fn v => v) end




Manipulowanie kontynuacja (2)

. N

datatype aexp = ... | Dv of aexp * aexp
dat atype result = VALUE of int | ERROR

(» eval : aexp -> (int ->result) -> result *)
| eval (Dv (al, a2)) k
= eval al (fnil =
eval a2 (fni12 =
division il i2 k))

fun division 1112 Kk
= 1f 12 =0 then ERROR else k (11 div 12)

|
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fun main e = eval e (fn i1 => VALUE 1)



Operatory kontroll

- N

# manipulowanie biezaca kontynuacja bez koniecznosci
programowania w stylu kontynuacyjnym

# dostep do biezacej kontynuacji jako obiektu pierwsze]
klasy

o |
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callcc (call with current continuation)

- N

# Motywacja
» Nielokalne wyjscia (CPS)
s Symulacja innych efektow kontroli w zestawieniu z
przypisaniem
# Semantyka wyrazeniacal l cc (fun k => e)

» biezaca kontynuacja (w pewnej konkretnej
reprezentacji) staje sie wartoscia k

s obliczana jest wartosc wyrazenia e

s Jezeli k nie jest uzyta w e, to wartosc wyrazenia e
jest wartoscia wyrazeniacal l cc (fun k => e)

s Jezeli k jest zaaplikowana do wartosci v, to biezaca
Kontynuacja zostaje zastapiona kontynuacja
L zwiazana z k 1 v jest wartoscia calego wyrazenia J
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callcc (2)

- N

# Standard ML of New Jersey: struktura SM_of NJ. Cont

type 'a cont
val callcc : ("acont ->"a) ->"a
val throw: "a cont ->’a ->"D

® Scheme:call-wth-current-conti nuati on
(cal | / cc)

o |
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callcc (3)

- N

#® Przechwycona kontynuacja (1+[ ] ) nie zostaje uzyta.:

1 + callcc (fn k => 10 + 100)
==> 111

#® Przechwycona kontynuacja (1+[ ] ) zastepuje biezaca
(1+(10+[])):

1 + callcc (fn k => 10 + (throw k 100))
==> 101

o |
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Nielokalne wyjscia z rekursii

-

*  pmultlist
cal |l cc

(fn exit =>
| et fun

I n wal k

cIint list ->1nt
fun nmultlist Xxs

wal k []

=1

wal k (0::Xxs)

= throwexit O
wal kK ( X::XSs)

= X * (wal k xs)
Xs end)

*)

-



Obsluga bledow
0 -

T__* eval aexp -> result
fun eval aexp a =
call cc
(fn exit =>
let fun division i1l 12 =
1f 12 =20
then throw exit ERROR
else 11 div i2
fun eval (Numi) =1

| eval (Div (al, a2))
= division (eval al)
(eval a2)
I n VALUE (eval a) end)

o |
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Obliczenia z nawrotami (1)

- N

# Niedeterminizm: anb() generuje dwie galezie obliczen,
w Jednej przyjmujac wartosc true, w drugiej false

#® Operator anb McCarthy’ego

# |Interesuje nas ogolna funkcja backt r ack, ktora dla
danej funkcji uzywajace) operatora anb, zbiera wyniki
ze wszystkich galezi (wykonuje nawroty)

o |
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Obliczenia z nawrotami (2)

F_k* backtrack :

((unit -> bool) ->

val res = backtrack
(fn anb =>

(» val res =1[4,3,2,1]

o

'a) ->"a list x)

It (amb ())
then i f (anmb ())
then 1
el se 2

else i f (anb ())
t hen 3
el se 4)

Int |ist =*)

-



Obliczenia z nawrotami (3)

o N

un backtrack f

let val res = ref []
val conts = ref []
In (res : =
i (fn () =>
callcc (fn k =>
(conts := k :: lconts;
true))) :: lres;

case !conts of
[] => !res
| (ki:conts’) => (conts := conts’;
throw k fal se))
end

o |
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Obliczenia z nawrotami (4)
x B

backtrack (fn anmb => if (anb()) then 1 else 2)

ontynuacja przechwycona przez cal | cc w programie

“reprezentuje” kontekst

(res := (if [] then 1 else 2) :: !res;
case !conts of
[] => !res
| (k::conts’) => (conts := conts’;
throw k fal se))

o |
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Coroutines (1)

- N

# Procedury, ktore moga dobrowolnie oddawac
sterowanie innej procedurze

# Ponowne odzyskanie sterowania powoduje wznowienie
obliczen od punktu, w ktorym sterowanie bylo oddane

# Implementujemy funkcje cor out I ne- naker , ktora z
danej funkcji tworzy coroutine

o |
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Coroutines (2)
f(

defi ne producer
(corouti ne- naker
(|l anbda (resune d)
(letrec ((loop (lanbda (n)
(resune consuner n)

(loop (+ n 1)))))
(loop 0)))))



Coroutines (3)
f(

defi ne consuner
(corouti ne- naker
(|l anbda (resune d)

(letrec
((loop
(| anbda ()
(let ((n (resune producer d)))
(di splay n)
(new i ne)
(l'oop)))))
(l'oop)))))



Coroutines (4)
f(

def i ne corouti ne- maker
(I anbda (proc)
(let ((saved-cont "()))
(l et ((update-cont!
(1 anbda (k)
(set! saved-cont k))))
(let ((resumner
(resune- maker update-cont!))
(first-tinme #t))
(| anbda (val ue)
(1f first-tinme
(begin (set! first-tinme #f)
(proc resuner val ue))
(saved-cont value))))))))
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Coroutines (5)
f(

defi ne resune- naker
(| anbda (updat e-proc!)
(|l anbda (next-coroutine val ue)
(call/cc
(I anbda (conti nuati on)
(updat e- proc! continuati on)
(next-coroutine value))))))

o |
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Coroutines (6)

-

fKontynuacje przechwytywane przez procedury pr oducer |
consuner “reprezentuja” konteksty, odpowiednio:

(let ((n []))
(di spl ay n)
(new i ne)

(1 oop))

oraz

(let ((d []))
(loop (+ n 1)))

o |
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