
Jezyki programowania i kontynuacje
1. Programowanie z kontynuacjami

Dariusz Biernacki

dabi@ii.uni.wroc.pl

Instytut Informatyki

Uniwersytet Wrocławski

Jezyki programowania i kontynuacje – p.1/51

Definicja i intuicje

Kontynuacja:

reszta obliczen w danym punkcie programu

informacja gdzie i jak kontynuowac obliczenia

funkcja wyznaczajaca dla wyniku czesciowego wynik
koncowy dzialania programu (wartosc lub stan)

Jezyki programowania i kontynuacje – p.2/51

Przyklad: arytmetyka

Kalkulator wyrazen arytmetycznych (od lewej do prawej):
wyznaczenie wartosci wyrazenia (3 + 5) ∗ 2.

oblicz a nastepnie

(3 + 5) ∗ 2 stop

3 + 5 oblicz 2 i pomnoz wyniki; stop

3 oblicz 5 i dodaj wyniki; oblicz 2 i pomnoz wyniki; stop

5 dodaj 3; oblicz 2 i pomnoz wyniki; stop

8 oblicz 2 i pomnoz wyniki; stop

2 pomnoz przez 8; stop

16 stop

Jezyki programowania i kontynuacje – p.3/51

Kontynuacje w informatyce

Implementacje jezykow programowania: stos w czasie
wykonania programu

Semantyka operacyjna: semantyka redukcyjna,
ewaluatory i maszyny abstrakcyjne

Semantyka denotacyjna (kontynuacyjna): jawny
porzadek obliczen, skoki, etc.

Programowanie funkcyjne: styl kontynuacyjny
(Continuation-Passing Style) i operatory kontroli

Kompilacja jezykow funkcyjnych: SML i Scheme

Logika i izomorfizm Curry’ego-Howarda: logika
klasyczna i translacja przez podwojne zaprzeczenie

Jezyki programowania i kontynuacje – p.4/51

Programowanie z kontynuacjami (1)

Kontynuacje sa dostepne dla programisty na dwoch
poziomach

technika programowania w stylu kontynuacyjnym
(CPS): funkcje akceptuja dodatkowy parametr –
kontynuacje reprezentowana jako funkcja

programowanie z operatorami kontroli
znane z imperatywnych jezykow: etykiety i skoki,
wyjatki, nielokalne wyjscia z petli, etc.
specyficzne dla jezykow funkcyjnych – udostepniaja
biezaca kontynuacje jako obiekt pierwszej klasy

Jezyki programowania i kontynuacje – p.5/51

Programowanie z kontynuacjami (2)

Niektore zastosowania

nielokalne wyjscia z rekursji i iteracji

obliczenia niedeterministyczne (nawroty)

synchroniczne procesy wspolbiezne (coroutines,
multitasking)

programowanie interakcji sieciowych

programy mobilne

programowanie systemowe

reprezentacja efektow (monady)

normalizacja i czesciowa ewaluacja

Jezyki programowania i kontynuacje – p.6/51

Kontynuacje w programach (1)

fun f () = true

fun main () =
if (f()) then print "Tak"
else print "Nie"

(***)

fun f () = true

fun f_continuation v =
if v then print "Tak" else print "Nie"

fun main () = f_continuation (f())

Jezyki programowania i kontynuacje – p.7/51

Kontynuacje w programach (2)

fun f_continuation v =
if v then print "Tak" else print "Nie"

fun f () = f_continuation true

fun main () = f ()

(**************************************)

fun f k = k true

fun main () =
f (fn v => if v then print "Tak"

else print "Nie")

Jezyki programowania i kontynuacje – p.8/51

Kontynuacje w programach (3)

fun fact 0
= 1

| fact n
= n*(fact (n-1))

fun main n
= fact n

Kontynuacje dla kolejnych wywolan rekurencyjnych fact 4:
fact 4: fn v => v

fact 3: fn v => 4 * v

fact 2: fn v => 4 * 3 * v

fact 1: fn v => 4 * 3 * 2 * v

fact 0: fn v => 4 * 3 * 2 * 1 * v

Jezyki programowania i kontynuacje – p.9/51

Kontynuacje w programach (4)

Silnia w stylu kontynuacyjnym:

fun fact 0 k
= k 1

| fact n k
= fact (n-1) (fn v => k (n * v))

fun main n =
fact n (fn v => v)

Jezyki programowania i kontynuacje – p.10/51

Styl kontynuacyjny

funkcje akceptuja dodatkowy argument funkcyjny –
kontynuacje

funkcja zwraca wartosc poprzez wyslanie jej do swojej
kontynuacji

wszystkie wywolania funkcji sa ogonowe

wyniki obliczen czesciowych sa nazwane

kolejnosc obliczen jest jawnie zakodowana w postaci
programu

Istnieje wiele metod automatycznej transformacji progra-

mow do stylu kontynuacyjnego.

Jezyki programowania i kontynuacje – p.11/51

Transformacja do CPS (1)

Zalozmy, ze funkcje f, g i h sa jednoargumentowe, a k
reprezentuje biezaca kontynuacje. Wowczas wyrazenie

f (g h) j

zostanie przetransformowane do

g h (fn v => f v (fn u => u j k))

Jezyki programowania i kontynuacje – p.12/51

Transformacja do CPS (2)

datatype aexp = Num of int
| Add of aexp * aexp
| Mul of aexp * aexp

(* eval : aexp -> int *)
fun eval (Num i) = i

| eval (Add (a1, a2))
= (eval a1) + (eval a2)

| eval (Mul (a1, a2))
= (eval a1) * (eval a2)

fun main e = eval e

Jezyki programowania i kontynuacje – p.13/51

Transformacja do CPS (3)

(* eval : aexp -> (int -> ’a) -> ’a *)
fun eval (Num i) k

= k i
| eval (Add (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 => k (i1 + i2)))
| eval (Mul (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 => k (i1 * i2)))

(* main : aexp -> int *)
fun main e = eval e (fn i => i)

Jezyki programowania i kontynuacje – p.14/51

Transformacja ze stylu kontynuacyjnego (1)

Czasami interesuje nas transformacja odwrotna: dla
danego programu w stylu kontynuacyjnym, znalezc
program, ktorego obrazem przez transformacje do stylu
kontynuacyjnego jest dany program.

Istnieja metody automatycznej transformacji programow ze

stylu kontynuacyjnego.

Jezyki programowania i kontynuacje – p.15/51

Transformacja ze stylu kontynuacyjnego (2)

Obrazem wyrazenia

g h (fn v => f v (fn u => u j k))

jest wyrazenie

let val v = g h
in let val u = f v

in u j
end

end

rownowazne

f (g h) j

Jezyki programowania i kontynuacje – p.16/51

Transformacja ze stylu kontynuacyjnego (3)

fun append_cps [] ys k
= k ys

| append_cps (x::xs) ys k
= append_cps xs ys (fn vs => k (x::vs))

fun append [] ys
= ys

| append (x::xs) ys
= x :: (append xs ys)

Jezyki programowania i kontynuacje – p.17/51

Zmiana reprezentacji kontynuacji

Kontynuacja w programie jest utozsamiana ze stosem

Pytania
Czy ta odpowiedniosc moze byc zaobserwowana na
poziomie programow funkcyjnych?
Jaka jest reprezentacja pierwszego rzedu dla
kontynuacji w programach w stylu kontynuacyjnym?
Czy istnieje mechaniczna (a moze automatyczna)
metoda przejscia z jednej reprezentacji do drugiej?

Odpowiedz
defunkcjonalizacja
refunkcjonalizacja

Jezyki programowania i kontynuacje – p.18/51

Defunkcjonalizacja

Transformacja programow przeksztalcajaca programy
wyzszego rzedu do semantycznie rownowaznych im
programow pierwszego rzedu, poprzez zmiane
reprezentacji lambda abstrakcji.

Algorytm: zakladamy, ze chcemy zdefunkcjonalizowac okre-

slona przestrzen funkcyjna t1 -> t2.

Jezyki programowania i kontynuacje – p.19/51

Algorytm defunkcjonalizacji (1)

identyfikujemy wszystkie lambda abstrakcje
“zamieszkujace” dana przestrzen funkcyjna

wprowadzamy typ danych t do reprezentowania lambda
abstrakcji – po jednym konstruktorze dla kazdej lambda
abstrakcji; kazdy konstruktor jest typu s1 * ... * sn -> t,
gdzie s1,...,sn sa typami zmiennych wolnych w ciele
danej lambda abstrakcji

wprowadzamy funkcje apply : t -> t1 -> t2, ktora dla
kazdego konstruktora typu t i wartosci typu t1, zwraca
wartosc aplikacji lambda abstrakcji reprezentowanej
przez ten konstruktor na tej wartosci

Jezyki programowania i kontynuacje – p.20/51

Algorytm defunkcjonalizacji (2)

kazde wprowadzenie danej lambda abstrakcji
zastepujemy uzyciem odpwiadajacego jej konstruktora
zaaplikowanego do zmiennych wolnych w ciele lambda
abstrakcji

kazda eliminacje lambda abstrakcji z danej przestrzeni
zastepujemy wywolaniem funkcji apply

Jezyki programowania i kontynuacje – p.21/51

Defunkcjonalizacja: przyklad (1)

(* aux : (int -> int) -> int *)
fun aux f = f 1 + f 10

(* main : int -> int -> bool -> int *)
fun main a b c

= aux (fn x => a + x)

* aux (fn y => if c then b else y)

Jezyki programowania i kontynuacje – p.22/51

Defunkcjonalizacja: przyklad (2)

datatype lam = LAM1 of int
| LAM2 of int * bool

fun apply (LAM1 a) x = a + x
| apply (LAM2 (b, c)) y = if c then b else y

fun aux_def f = apply f 1 + apply f 10

fun main_def a b c = aux_def (LAM1 a)

* aux_def (LAM2 (b, c))

Jezyki programowania i kontynuacje – p.23/51

Defunkcjonalizacja kontynuacji (1)

(* fact_cps : int -> (int -> int) -> int *)
fun fact_cps 0 k

= k 1
| fact_cps n k
= fact_cps (n-1) (fn v => k (n*v))

(* fact : int -> int *)
and fact n = fact_cps n (fn v => v)

Jezyki programowania i kontynuacje – p.24/51

Defunkcjonalizacja kontynuacji (2)

datatype cont = CONT0 | CONT1 of int * cont

(* fact_cps_def : int -> cont -> int *)
fun fact_cps_def 0 k

= apply k 1
| fact_cps_def n k
= fact_cps_def (n-1) (CONT1 (n, k))

(* apply : cont -> int *)
and apply CONT0 v = v

| apply (CONT1 (n, k)) v
= apply k (n * v)

(* fact : int -> int *)
and fact n = fact_cps_def n CONT0

Jezyki programowania i kontynuacje – p.25/51

Defunkcjonalizacja kontynuacji (3)

datatype stack = EMPTY | PUSH of int * stack

(* fact_cps_def : int -> stack -> int *)
fun fact_cps_def 0 s

= pop_and_mul s 1
| fact_cps_def n s
= fact_cps_def (n-1) (PUSH (n, s))

(* pop_and_mul : stack -> int *)
and pop_and_mul EMPTY v = v

| pop_and_mul (PUSH (n, s)) v
= pop_and_mul s (n * v)

(* fact : int -> int *)
and fact n = fact_cps_def n EMPTY

Jezyki programowania i kontynuacje – p.26/51

Refunkcjonalizacja

Transformacja programow przeksztalcajaca programy
pierwszego rzedu do semantycznie rownowaznych im
programow wyzszego rzedu.

Algorytm (zakladamy, ze zidentyfikowalismy typ t, oraz
funkcje apply typu t -> t1 -> t2 bedace w obrazie
defunkcjonalizacji)

zastap wywolania funkcji apply f x przez f x

zastap wystapienia konstruktorow typu t przez lambda
abstrakcje o ciele zdefiniowanym przez odpowiadajaca
temu konstruktorowi klauzule funkcji apply

usun definicje typu t

usun definicje funkcji apply

Jezyki programowania i kontynuacje – p.27/51

Refunkcjonalizacja: przyklad (1)

Konwolucja dwoch listy: conv ([x1,...,xn],
[y1,...,yn] ==> [(x1,yn),...,(xn,y1)]

fun conv (xs, ys)
= let fun reverse (nil, a)

= pair (a, ys, nil)
| reverse (x::xs, a)
= reverse (xs, x::a)

and pair (nil, nil, r)
= r

| pair (x::a, y::ys, r)
= pair (a, ys, (x,y)::r)

in reverse (xs, nil) end

Jezyki programowania i kontynuacje – p.28/51

Refunkcjonalizacja: przyklad (2)

datatype cont = CONT0 | CONT1 of int * cont

fun conv xs ys
= let fun reverse (nil, k)

= apply (k, ys, nil)
| reverse (x::xs, k)
= reverse (xs, CONT1 (x, k))

and apply (CONT0, nil, r)
= r

| apply (CONT1 (x, k), y::ys, r)
= apply (k, ys, (x, y)::r)

in reverse (xs, CONT0) end

Jezyki programowania i kontynuacje – p.29/51

Refunkcjonalizacja: przyklad (3)

fun conv (xs, ys)
= let fun reverse (nil, k)

= k (ys, nil)
| reverse (x::xs, k)
= reverse (xs,

fn (y::ys, r)
=> k (ys, (x,y)::r))

in reverse (xs, fn (nil, r) => r) end

Jezyki programowania i kontynuacje – p.30/51

Refunkcjonalizacja: przyklad (4)

fun conv (xs, ys)
= let fun reverse nil

= (ys, nil)
| reverse (x::xs)
= let val (y::ys, r)

= reverse xs
in (ys, (x,y)::r) end

val (nil, r) = reverse xs
in r end

Jezyki programowania i kontynuacje – p.31/51

Big Picture

Trzy semantycznie rownowazne postaci programu:

1. program w DS

2. program w CPS

3. program ze stosem, implementujacy system przejsc
pierwszego rzedu

Transformacje pozwalajace na mechaniczne przejscia
pomiedzy nimi:

CPS transformacja (1 -> 2) i jej odwrotnosc (2 -> 1)

defunkcjonalizacja kontynuacji (2 -> 3) i ich
refunkcjonalizacja (3 -> 2)

Jezyki programowania i kontynuacje – p.32/51

Manipulowanie kontynuacja (1)

(* multlist : int list -> int *)
fun multlist xs =

let fun walk [] k
= k 1

| walk (0::xs) k
= 0

| walk (x::xs) k
= walk xs (fn v => k (x * v))

in walk xs (fn v => v) end

Jezyki programowania i kontynuacje – p.33/51

Manipulowanie kontynuacja (2)

datatype aexp = ... | Div of aexp * aexp

datatype result = VALUE of int | ERROR

(* eval : aexp -> (int -> result) -> result *)
| eval (Div (a1, a2)) k
= eval a1 (fn i1 =>

eval a2 (fn i2 =>
division i1 i2 k))

fun division i1 i2 k
= if i2 = 0 then ERROR else k (i1 div i2)

fun main e = eval e (fn i => VALUE i)

Jezyki programowania i kontynuacje – p.34/51

Operatory kontroli

manipulowanie biezaca kontynuacja bez koniecznosci
programowania w stylu kontynuacyjnym

dostep do biezacej kontynuacji jako obiektu pierwszej
klasy

Jezyki programowania i kontynuacje – p.35/51

callcc (call with current continuation)

Motywacja
Nielokalne wyjscia (CPS)
Symulacja innych efektow kontroli w zestawieniu z
przypisaniem

Semantyka wyrazenia callcc (fun k => e)

biezaca kontynuacja (w pewnej konkretnej
reprezentacji) staje sie wartoscia k

obliczana jest wartosc wyrazenia e

jezeli k nie jest uzyta w e, to wartosc wyrazenia e
jest wartoscia wyrazenia callcc (fun k => e)

jezeli k jest zaaplikowana do wartosci v, to biezaca
kontynuacja zostaje zastapiona kontynuacja
zwiazana z k i v jest wartoscia calego wyrazenia

Jezyki programowania i kontynuacje – p.36/51

callcc (2)

Standard ML of New Jersey: struktura SMLofNJ.Cont

type ’a cont
val callcc : (’a cont -> ’a) -> ’a
val throw : ’a cont -> ’a -> ’b

Scheme: call-with-current-continuation
(call/cc)

Jezyki programowania i kontynuacje – p.37/51

callcc (3)

Przechwycona kontynuacja (1+[]) nie zostaje uzyta:

1 + callcc (fn k => 10 + 100)
==> 111

Przechwycona kontynuacja (1+[]) zastepuje biezaca
(1+(10+[])):

1 + callcc (fn k => 10 + (throw k 100))
==> 101

Jezyki programowania i kontynuacje – p.38/51

Nielokalne wyjscia z rekursji

(* multlist : int list -> int *)
fun multlist xs =

callcc
(fn exit =>

let fun walk []
= 1

| walk (0::xs)
= throw exit 0

| walk (x::xs)
= x * (walk xs)

in walk xs end)

Jezyki programowania i kontynuacje – p.39/51

Obsluga bledow

(* eval aexp -> result *)
fun eval_aexp a =

callcc
(fn exit =>

let fun division i1 i2 =
if i2 = 0
then throw exit ERROR
else i1 div i2

fun eval (Num i) = i
...

| eval (Div (a1, a2))
= division (eval a1)

(eval a2)
in VALUE (eval a) end)

Jezyki programowania i kontynuacje – p.40/51

Obliczenia z nawrotami (1)

Operator amb McCarthy’ego

Niedeterminizm: amb() generuje dwie galezie obliczen,
w jednej przyjmujac wartosc true, w drugiej false

Interesuje nas ogolna funkcja backtrack, ktora dla
danej funkcji uzywajacej operatora amb, zbiera wyniki
ze wszystkich galezi (wykonuje nawroty)

Jezyki programowania i kontynuacje – p.41/51

Obliczenia z nawrotami (2)

(* backtrack :
((unit -> bool) -> ’a) -> ’a list *)

val res = backtrack
(fn amb => if (amb ())

then if (amb ())
then 1
else 2

else if (amb ())
then 3
else 4)

(* val res = [4,3,2,1] : int list *)

Jezyki programowania i kontynuacje – p.42/51

Obliczenia z nawrotami (3)

fun backtrack f =
let val res = ref []

val conts = ref []
in (res :=

f (fn () =>
callcc (fn k =>

(conts := k :: !conts;
true))) :: !res;

case !conts of
[] => !res

| (k::conts’) => (conts := conts’;
throw k false))

end

Jezyki programowania i kontynuacje – p.43/51

Obliczenia z nawrotami (4)

Kontynuacja przechwycona przez callcc w programie

backtrack (fn amb => if (amb()) then 1 else 2)

“reprezentuje” kontekst

(res := (if [] then 1 else 2) :: !res;
case !conts of
[] => !res

| (k::conts’) => (conts := conts’;
throw k false))

Jezyki programowania i kontynuacje – p.44/51

Coroutines (1)

Procedury, ktore moga dobrowolnie oddawac
sterowanie innej procedurze

Ponowne odzyskanie sterowania powoduje wznowienie
obliczen od punktu, w ktorym sterowanie bylo oddane

Implementujemy funkcje coroutine-maker, ktora z
danej funkcji tworzy coroutine

Jezyki programowania i kontynuacje – p.45/51

Coroutines (2)

(define producer
(coroutine-maker
(lambda (resume d)

(letrec ((loop (lambda (n)
(resume consumer n)
(loop (+ n 1)))))

(loop 0)))))

Jezyki programowania i kontynuacje – p.46/51

Coroutines (3)

(define consumer
(coroutine-maker
(lambda (resume d)

(letrec
((loop

(lambda ()
(let ((n (resume producer d)))

(display n)
(newline)
(loop)))))

(loop)))))

Jezyki programowania i kontynuacje – p.47/51

Coroutines (4)

(define coroutine-maker
(lambda (proc)
(let ((saved-cont ’()))

(let ((update-cont!
(lambda (k)
(set! saved-cont k))))

(let ((resumer
(resume-maker update-cont!))

(first-time #t))
(lambda (value)

(if first-time
(begin (set! first-time #f)

(proc resumer value))
(saved-cont value))))))))

Jezyki programowania i kontynuacje – p.48/51

Coroutines (5)

(define resume-maker
(lambda (update-proc!)
(lambda (next-coroutine value)

(call/cc
(lambda (continuation)

(update-proc! continuation)
(next-coroutine value))))))

Jezyki programowania i kontynuacje – p.49/51

Coroutines (6)

Kontynuacje przechwytywane przez procedury producer i
consumer “reprezentuja” konteksty, odpowiednio:

(let ((n []))
(display n)
(newline)
(loop))

oraz

(let ((d []))
(loop (+ n 1)))

Jezyki programowania i kontynuacje – p.50/51

Literatura

Continuations in Programming Practice: Introduction
and Survey, M.Felleisen, A.Sabry

Definitional Interpreters for Higher-Order Programming
Languages, J.Reynolds

The Discoveries of Continuations, J.Reynolds

Defunctionalization at Work, O.Danvy, L.Nielsen

Refunctionalization at Work, O.Danvy, K.Millikin

Applications of Continuations, D.Friedman

Call with Current Continuation Patterns, D.Ferguson,
D.Deugo

Jezyki programowania i kontynuacje – p.51/51

	Definicja i intuicje
	Przyklad: arytmetyka
	Kontynuacje w informatyce
	Programowanie z kontynuacjami (1)
	Programowanie z kontynuacjami (2)
	Kontynuacje w programach (1)
	Kontynuacje w programach (2)
	Kontynuacje w programach (3)
	Kontynuacje w programach (4)
	Styl kontynuacyjny
	Transformacja do CPS (1)
	Transformacja do CPS (2)
	Transformacja do CPS (3)
	Transformacja ze stylu kontynuacyjnego (1)
	Transformacja ze stylu kontynuacyjnego (2)
	Transformacja ze stylu kontynuacyjnego (3)
	Zmiana reprezentacji kontynuacji
	Defunkcjonalizacja
	Algorytm defunkcjonalizacji (1)
	Algorytm defunkcjonalizacji (2)
	Defunkcjonalizacja: przyklad (1)
	Defunkcjonalizacja: przyklad (2)
	Defunkcjonalizacja kontynuacji (1)
	Defunkcjonalizacja kontynuacji (2)
	Defunkcjonalizacja kontynuacji (3)
	Refunkcjonalizacja
	Refunkcjonalizacja: przyklad (1)
	Refunkcjonalizacja: przyklad (2)
	Refunkcjonalizacja: przyklad (3)
	Refunkcjonalizacja: przyklad (4)
	Big Picture
	Manipulowanie kontynuacja (1)
	Manipulowanie kontynuacja (2)
	Operatory kontroli
	callcc (call with current continuation)
	callcc (2)
	callcc (3)
	Nielokalne wyjscia z rekursji
	Obsluga bledow
	Obliczenia z nawrotami (1)
	Obliczenia z nawrotami (2)
	Obliczenia z nawrotami (3)
	Obliczenia z nawrotami (4)
	Coroutines (1)
	Coroutines (2)
	Coroutines (3)
	Coroutines (4)
	Coroutines (5)
	Coroutines (6)
	Literatura

