- N

Jezyki programowania i kontynuacje
1. Programowanie z kontynuacjami

Dariusz Biernacki

dabi @i . uni . w oc. pl

Instytut Informatyki

Uniwersytet Wroctawski

Definicja I intuicje
'

reszta obliczen w danym punkcie programu

ontynuacja:

Iinformacja gdzie i jak kontynuowac obliczenia

funkcja wyznaczajaca dla wyniku czesciowego wynik
koncowy dzialania programu (wartosc lub stan)

o |

Jezyki programowania i kontynuacje — p.2/51

Przyklad: arytmetyka
=

Kalkulator wyrazen arytmetycznych (od lewej do prawej):
wyznaczenie wartosci wyrazenia (3 + 5) x 2.

-

oblicz a nastepnie
(34 5) %2 stop
3+ oblicz 2 i pomnoz wyniki; stop
3 oblicz 5 1 dodaj wyniki; oblicz 2 1 pomnoz wyniki; stop
5 dodaj 3; oblicz 2 1 pomnoz wyniki; stop
8 oblicz 2 i pomnoz wyniki; stop
2 pomnoz przez 8; stop
16 stop

o |

Jezyki programowania i kontynuacje — p.3/51

°

Kontynuacje w informatyce

-

Implementacje jezykow programowania: stos w czasie
wykonania programu

Semantyka operacyjna:. semantyka redukcyjna,
ewaluatory i maszyny abstrakcyjne

Semantyka denotacyjna (kontynuacyjna): jawny
porzadek obliczen, skoki, etc.

Programowanie funkcyjne: styl kontynuacyjny
(Continuation-Passing Style) | operatory kontroli

Kompilacja jezykow funkcyjnych: SML | Scheme

Logika 1 izomorfizm Curry’ego-Howarda: logika
klasyczna I translacja przez podwojne zaprzeczenie

|

Jezyki programowania i kontynuacje — p.4/51

Programowanie z kontynuacjami (1)

fKontynuacje sa dostepne dla programisty na dwoch T
poziomach

technika programowania w stylu kontynuacyjnym
(CPS): funkcje akceptuja dodatkowy parametr —
kontynuacje reprezentowana jako funkcja

programowanie z operatorami kontroli
s znane z imperatywnych jezykow: etykiety i skoki,
wyjatki, nielokalne wyjscia z petli, etc.

s specyficzne dla jezykow funkcyjnych — udostepniaja
biezaca kontynuacje jako obiekt pierwszej klasy

o |

Jezyki programowania i kontynuacje — p.5/51

Programowanie z kontynuacjami (2)

VN

X
9

© o o o 0

lektore zastosowania

-

nielokalne wyjscia z rekursji I iteracji
obliczenia niedeterministyczne (nawroty)

synchroniczne procesy wspolbiezne (coroutines,
multitasking)

programowanie interakcji sieciowych
programy mobilne

programowanie systemowe
reprezentacja efektow (monady)
normalizacja | czesciowa ewaluacja

|

Jezyki programowania i kontynuacje — p.6/51

Kontynuacje w programach (1)
(_}un f () = true __T

fun main () =
1f (f()) then print "Tak"
el se print "N e"

(***)

fun f () = true

fun f _continuation v =
I1f v then print "Tak" else print "N e"

fun main () = f_continuation (f())

o |

Jezyki programowania i kontynuacje — p.7/51

Kontynuacje w programach (2)

o

un f _continuation v = __W
1f v then print "Tak" else print "N e"

fun f () = f _continuation true

fun main () =1 ()

(% ok k ok kK K K K K K Kk k ok ok ok kK ok kK K K K K K K K K Kk kK k)
fun f k = k true

fun main () =

f (fn v =>1f v then print "Tak"
el se print "N e")

o |

Jezyki programowania i kontynuacje — p.8/51

Kontynuacje w programach (3)

s

un fact O
1

| fact n
nx(fact (n-1))

fun mai n n

= fact n

-

Kontynuacje dla kolejnych wywolan rekurencyjnych f act 4:

fact
fact
fact

4.

SR DM

fn
fn
fn
fn
fn

Vv

< < < <

=>
=>

Y
4
A4

A
4

*

*

*

*

3 * V
3 * 2 x V
3 * 2 *x 1 x vV

|

Jezyki programowania i kontynuacje — p.9/51

Kontynuacje w programach (4)

-

Silnia w stylu kontynuacyjnym:

fun fact 0 Kk
=k 1
| fact n kK
= fact (n-1) (fnv == Kk (n * v))

-

fun main n =
fact n (fn v => v)

Styl kontynuacyjny
- -

funkcje akceptuja dodatkowy argument funkcyjny —
kontynuacje

o funkcja zwraca wartosc poprzez wyslanie je] do swoje]
kontynuacji

°

wszystkie wywolania funkcji sa ogonowe

°

wyniki obliczen czesciowych sa nazwane

kolejnosc obliczen jest jawnie zakodowana w postaci
programu

Istnieje wiele metod automatycznej transformacji progra-

mow do stylu kontynuacyjnego.

o |

Jezyki programowania i kontynuacje — p.11/51

Transformacja do CPS (1)
=

Zalozmy, ze funkcje f, g | h sa jednoargumentowe, a k
reprezentuje biezaca kontynuacje. Wowczas wyrazenie

t (g h) |
zostanie przetransformowane do

-

gh(fnv =f v (fnu =>uj] k))

o |

Jezyki programowania i kontynuacje — p.12/51

Transformacja do CPS (2)

K

at at ype aexp = Num of I nt
Add of aexp * aexp
Mul of aexp * aexp

(» eval : aexp ->int *)
fun eval (Numi) =i
| eval (Add (al, a2))
= (eval al) + (eval a2)
| eval (Mul (al, a2))
= (eval al) ~ (eval a2)

fun main e = eval e

-

|

Jezyki programowania i kontynuacje — p.13/51

Transformacja do CPS (3)

eval : aexp -> (int ->’a) ->"a «)
eval (Numi) k
= Kk i

eval (Add (al, a2)) k
= eval al (fnil1l =
eval a2 (fni2 =k (i1l +1i2)))
eval (Mul (al, a2)) k
= eval al (fni1l1l =
eval a2 (fni2 =k (il * i2)))

main . aexp -> int =)
mine==eval e (fni =>1)

-

Transformacja ze stylu kontynuacyjnego (1)

o N

Czasami interesuje nas transformacja odwrotna: dla
danego programu w stylu kontynuacyjnym, znalezc
program, ktorego obrazem przez transformacje do stylu
kontynuacyjnego jest dany program.

Istnieja metody automatycznej transformacji programow ze

stylu kontynuacyjnego.

o |

Jezyki programowania i kontynuacje — p.15/51

Transformacja ze stylu kontynuacyjnego (2)

. N

Obrazem wyrazenia
gh(fnv =1 v (fnu =>uj] k))
jest wyrazenie

let val v = g h
In let val u =1 v
In u |
end
end

rownowazne

t (g h) |

Jezyki programowania i kontynuacje — p.16/51

Transformacja ze stylu kontynuacyjnego (3)

s

un append cps [] ys k __T
= k ys
| append cps (x::xs) ys Kk
= append _cps xs ys (fn vs => k (x::vs))

fun append [] Vs
= VyS
| append (X::XS) VysS
= X .. (append xs ys)

Zmiana reprezentacji kontynuaciji

- N

Kontynuacja w programie jest utozsamiana ze stosem
Pytania

s Czy ta odpowiedniosc moze byc zaobserwowana na
poziomie programow funkcyjnych?

» Jaka jest reprezentacja pierwszego rzedu dla
kontynuacji w programach w stylu kontynuacyjnym?

» Czy istnieje mechaniczna (a moze automatyczna)
metoda przejscia z jednej reprezentacji do drugiej?
Odpowiedz
s defunkcjonalizacja
» refunkcjonalizacja

o |

Jezyki programowania i kontynuacje — p.18/51

Defunkcjonalizacja

-

Transformacja programow przeksztalcajaca programy
wyzszego rzedu do semantycznie rownowaznych im
programow pierwszego rzedu, poprzez zmiane
reprezentacji lambda abstrakcji.

-

Algorytm: zakladamy, ze chcemy zdefunkcjonalizowac okre-

slona przestrzen funkcyjna tl -> t2.

o |

Jezyki programowania i kontynuacje — p.19/51

Algorytm defunkcjonalizacji (1)

- N

Iidentyfikujemy wszystkie lambda abstrakcje
“zamieszkujace” dana przestrzen funkcyjna

wprowadzamy typ danych t do reprezentowania lambda
abstrakcji — po jednym konstruktorze dla kazde) lambda
abstrakcji; kazdy konstruktor jest typu s1 * ... * sn -> t,
gdzie s1,...,sn sa typami zmiennych wolnych w ciele
danej lambda abstrakcji

wprowadzamy funkcje apply : t ->t1 -> t2, ktora dla
kazdego konstruktora typu t | wartosci typu tl, zwraca
wartosc aplikacji lambda abstrakcji reprezentowane]
przez ten konstruktor na te] wartosci

o |

Jezyki programowania i kontynuacje — p.20/51

Algorytm defunkcjonalizacji (2)

- N

#® kazde wprowadzenie danej lambda abstrakcji
zastepujemy uzyciem odpwiadajacego jej] konstruktora
zaaplikowanego do zmiennych wolnych w ciele lambda
abstrakcji

kazda eliminacje lambda abstrakcji z danej przestrzeni
zastepujemy wywolaniem funkcji apply

o |

Jezyki programowania i kontynuacje — p.21/51

Defunkcjonalizacja: przyklad (1)

-

T__* aux . (Iint ->1int) ->1int)
fun aux f =f 1 +f 10

(» main : int ->1int -> bool ->1int =)
fun main a b c
= aux (fn x =>a + x)
* aux (fny =>1if c then b else vy)

Defunkcjonalizacja: przyklad (2)

fdat atype lam = LAML of I nt T
| LAMR of int * bool

fun apply (LAML a) x = a + X
| apply (LAM2 (b, c)) vy =1i1f c then b else y

fun aux _def f = apply f 1 + apply f 10

fun main _def a b ¢ = aux _def (LAML a)
* aux_def (LAMZ (b, c))

o |

Jezyki programowania i kontynuacje — p.23/51

Defunkcjonalizacja kontynuacji (1)

. g

* fact cps : int -> (int ->1int) ->int
fun fact _cps 0 k
=k 1

| fact _cps n kK
= fact _cps (n-1) (fn v => Kk (n*v))

(» fact : Int ->1nt *)
and fact n = fact _cps n (fn v => v)

Defunkcjonalizacja kontynuacji (2)

-

dat at ype cont = CONTO | CONT1 of int * cont

-

(» fact cps def : int ->cont ->int *)
fun fact _cps_def 0 k
= apply k 1

| fact _cps_def n k
= fact _cps_def (n-1) (CONT1 (n, k))

(apply : cont ->1int =)
and apply CONTO v = v
| apply (CONT1 (n, k)) v
= apply k (n = v)
(» fact : Int ->1nt =)

and fact n = fact _cps_def n CONTO

|

Jezyki programowania i kontynuacje — p.25/51

Defunkcjonalizacja kontynuacji (3)

-

dat at ype stack = EMPTY | PUSH of int = stack_1
(» fact _cps def : int -> stack ->int «)
fun fact _cps_def O s
= pop_and mul s 1
| fact _cps_def n s
= fact _cps_def (n-1) (PUSH (n, s))
(» pop_and mul : stack ->int =)
and pop_and nmul EMPTY v = v
| pop_and nul (PUSH (n, s)) v
= pop_and nmul s (n * v)

(» fact : Int ->1nt =)
and fact n = fact_cps_def n EMPTY

|

Jezyki programowania i kontynuacje — p.26/51

Refunkcjonalizacja

-

Transformacja programow przeksztalcajaca programy
pierwszego rzedu do semantycznie rownowaznych im
programow wyzszego rzedul.

-

Algorytm (zakladamy, ze zidentyfikowalismy typ t, oraz
funkcje apply typu t -> t1 -> t2 bedace w obrazie
defunkcjonalizaciji)

zastap wywolania funkcji apply f x przez f x

zastap wystapienia konstruktorow typu t przez lambda
abstrakcje o ciele zdefiniowanym przez odpowiadajaca
temu konstruktorowi klauzule funkcji apply

°

usun definicje typu t
usun definicje funkcji apply

o |

Jezyki programowania i kontynuacje — p.27/51

Refunkcjonalizacja: przyklad (1)

-

Konwolucja dwoch listy: conv ([x1, ..., xnj,
[vl, ..., yn] ==> [(x1,yn),..., (xn, yl)]

-

fun conv (Xxs, Vys)
= let fun reverse (nil, a)
= pair (a, ys, nil)
| reverse (X::Xxs, a)
= reverse (xs, X::a)
and pair (nil, nil, r)
=r
| pair (x::a, y::ys, r)
= pair (a, ys, (x,y)::r)
In reverse (xs, nil) end

Jezyki programowania i kontynuacje — p.28/51

Refunkcjonalizacja: przyklad (2)

. N

dat at ype cont = CONTO | CONT1 of int * cont

fun conv xs ys
= let fun reverse (nil, k)

= apply (k, ys, nil)

| reverse (X::Xs, k)
= reverse (xs, CONT1 (x, Kk))

and apply (CONTO, nil, r)

=r

| apply (CONT1 (x, k), y::ys, r)
= apply (k, ys, (x, y)::r)

Il n reverse (xs, CONTO) end

o |

Jezyki programowania i kontynuacje — p.29/51

Refunkcjonalizacja: przyklad (3)

F__fun conv (Xs, VysS) __T
= |let fun reverse (nil, k)
= k (ys, nil)

| reverse (x::xs, k)
= reverse (Xxs,
fn (y::ys, r)

=> k (ys, (x,y)::r))
In reverse (xs, fn (nil, r) =>r) end

Refunkcjonalizacja: przyklad (4)

F__fun conv (Xs, VysS) __T
= et fun reverse nil
= (ys, nil)

| reverse (X::Xs)
= let val (y::ys, r)
= reverse Xxs
In (ys, (x,y)::r) end
val (nil, r) = reverse xs
In r end

Big Picture
fTrzy semantycznie rownowazne postaci programu:
1. program w DS
2. program w CPS

3. program ze stosem, implementujacy system przejsc
pierwszego rzedu

Transformacje pozwalajace na mechaniczne przejscia
pomiedzy nimi:

CPS transformacja (1 -> 2) i jej odwrotnosc (2 -> 1)

defunkcjonalizacja kontynuacji (2 -> 3) i ich
refunkcjonalizacja (3 -> 2)

o |

Jezyki programowania i kontynuacje — p.32/51

Manipulowanie kontynuacja (1)

{___* multlist : Iint list ->1nt =) __1

fun multlist xs =
let fun walk [] Kk
= kK 1
| walk (0::xs) Kk
=0
| wal k (x::xs) k
= walk xs (fn v => k (x * Vv))
In walk xs (fn v => v) end

Manipulowanie kontynuacja (2)

. N

datatype aexp = ... | Dv of aexp * aexp
dat atype result = VALUE of int | ERROR

(» eval : aexp -> (int ->result) -> result *)
| eval (Dv (al, a2)) k
= eval al (fnil =
eval a2 (fni12 =
division il i2 k))

fun division 1112 Kk
= 1f 12 =0 then ERROR else k (11 div 12)

|

Jezyki programowania i kontynuacje — p.34/51

fun main e = eval e (fn i1 => VALUE 1)

Operatory kontroll

- N

manipulowanie biezaca kontynuacja bez koniecznosci
programowania w stylu kontynuacyjnym

dostep do biezacej kontynuacji jako obiektu pierwsze]
klasy

o |

Jezyki programowania i kontynuacje — p.35/51

callcc (call with current continuation)

- N

Motywacja
» Nielokalne wyjscia (CPS)
s Symulacja innych efektow kontroli w zestawieniu z
przypisaniem
Semantyka wyrazeniacal l cc (fun k => e)

» biezaca kontynuacja (w pewnej konkretnej
reprezentacji) staje sie wartoscia k

s obliczana jest wartosc wyrazenia e

s Jezeli k nie jest uzyta w e, to wartosc wyrazenia e
jest wartoscia wyrazeniacal l cc (fun k => e)

s Jezeli k jest zaaplikowana do wartosci v, to biezaca
Kontynuacja zostaje zastapiona kontynuacja
L zwiazana z k 1 v jest wartoscia calego wyrazenia J

Jezyki programowania i kontynuacje — p.36/51

callcc (2)

- N

Standard ML of New Jersey: struktura SM_of NJ. Cont

type 'a cont
val callcc : ("acont ->"a) ->"a
val throw: "a cont ->’a ->"D

® Scheme:call-wth-current-conti nuati on
(cal | / cc)

o |

Jezyki programowania i kontynuacje — p.37/51

callcc (3)

- N

#® Przechwycona kontynuacja (1+[]) nie zostaje uzyta.:

1 + callcc (fn k => 10 + 100)
==> 111

#® Przechwycona kontynuacja (1+[]) zastepuje biezaca
(1+(10+[])):

1 + callcc (fn k => 10 + (throw k 100))
==> 101

o |

Jezyki programowania i kontynuacje — p.38/51

Nielokalne wyjscia z rekursii

-

* pmultlist
cal |l cc

(fn exit =>
| et fun

I n wal k

cIint list ->1nt
fun nmultlist Xxs

wal k []

=1

wal k (0::Xxs)

= throwexit O
wal kK (X::XSs)

= X * (wal k xs)
Xs end)

*)

-

Obsluga bledow
0 -

T__* eval aexp -> result
fun eval aexp a =
call cc
(fn exit =>
let fun division i1l 12 =
1f 12 =20
then throw exit ERROR
else 11 div i2
fun eval (Numi) =1

| eval (Div (al, a2))
= division (eval al)
(eval a2)
I n VALUE (eval a) end)

o |

Jezyki programowania i kontynuacje — p.40/51

Obliczenia z nawrotami (1)

- N

Niedeterminizm: anb() generuje dwie galezie obliczen,
w Jednej przyjmujac wartosc true, w drugiej false

#® Operator anb McCarthy’ego

|Interesuje nas ogolna funkcja backt r ack, ktora dla
danej funkcji uzywajace) operatora anb, zbiera wyniki
ze wszystkich galezi (wykonuje nawroty)

o |

Jezyki programowania i kontynuacje — p.41/51

Obliczenia z nawrotami (2)

F_k* backtrack :

((unit -> bool) ->

val res = backtrack
(fn anb =>

(» val res =1[4,3,2,1]

o

'a) ->"a list x)

It (amb ())
then i f (anmb ())
then 1
el se 2

else i f (anb ())
t hen 3
el se 4)

Int |ist =*)

-

Obliczenia z nawrotami (3)

o N

un backtrack f

let val res = ref []
val conts = ref []
In (res : =
i (fn () =>
callcc (fn k =>
(conts := k :: lconts;
true))) :: lres;

case !conts of
[] => !res
| (ki:conts’) => (conts := conts’;
throw k fal se))
end

o |

Jezyki programowania i kontynuacje — p.43/51

Obliczenia z nawrotami (4)
x B

backtrack (fn anmb => if (anb()) then 1 else 2)

ontynuacja przechwycona przez cal | cc w programie

“reprezentuje” kontekst

(res := (if [] then 1 else 2) :: !res;
case !conts of
[] => !res
| (k::conts’) => (conts := conts’;
throw k fal se))

o |

Jezyki programowania i kontynuacje — p.44/51

Coroutines (1)

- N

Procedury, ktore moga dobrowolnie oddawac
sterowanie innej procedurze

Ponowne odzyskanie sterowania powoduje wznowienie
obliczen od punktu, w ktorym sterowanie bylo oddane

Implementujemy funkcje cor out I ne- naker , ktora z
danej funkcji tworzy coroutine

o |

Jezyki programowania i kontynuacje — p.45/51

Coroutines (2)
f(

defi ne producer
(corouti ne- naker
(|l anbda (resune d)
(letrec ((loop (lanbda (n)
(resune consuner n)

(loop (+ n 1)))))
(loop 0)))))

Coroutines (3)
f(

defi ne consuner
(corouti ne- naker
(|l anbda (resune d)

(letrec
((loop
(| anbda ()
(let ((n (resune producer d)))
(di splay n)
(new i ne)
(l'oop)))))
(l'oop)))))

Coroutines (4)
f(

def i ne corouti ne- maker
(I anbda (proc)
(let ((saved-cont "()))
(l et ((update-cont!
(1 anbda (k)
(set! saved-cont k))))
(let ((resumner
(resune- maker update-cont!))
(first-tinme #t))
(| anbda (val ue)
(1f first-tinme
(begin (set! first-tinme #f)
(proc resuner val ue))
(saved-cont value))))))))

ia i kontynuacje — p.48/51

Coroutines (5)
f(

defi ne resune- naker
(| anbda (updat e-proc!)
(|l anbda (next-coroutine val ue)
(call/cc
(I anbda (conti nuati on)
(updat e- proc! continuati on)
(next-coroutine value))))))

o |

Jezyki programowania i kontynuacje — p.49/51

Coroutines (6)

-

fKontynuacje przechwytywane przez procedury pr oducer |
consuner “reprezentuja” konteksty, odpowiednio:

(let ((n []))
(di spl ay n)
(new i ne)

(1 oop))

oraz

(let ((d []))
(loop (+ n 1)))

o |

Jezyki programowania i kontynuacje — p.50/51

e

© o o o 0

Literatura

-

Continuations in Programming Practice: Introduction
and Survey, M.Felleisen, A.Sabry

Definitional Interpreters for Higher-Order Programming
Languages, J.Reynolds

The Discoveries of Continuations, J.Reynolds
Defunctionalization at Work, O.Danvy, L.Nielsen
Refunctionalization at Work, O.Danvy, K.Millikin
Applications of Continuations, D.Friedman

Call with Current Continuation Patterns, D.Ferguson,
D.Deugo

|

Jezyki programowania i kontynuacje — p.51/51

	Definicja i intuicje
	Przyklad: arytmetyka
	Kontynuacje w informatyce
	Programowanie z kontynuacjami (1)
	Programowanie z kontynuacjami (2)
	Kontynuacje w programach (1)
	Kontynuacje w programach (2)
	Kontynuacje w programach (3)
	Kontynuacje w programach (4)
	Styl kontynuacyjny
	Transformacja do CPS (1)
	Transformacja do CPS (2)
	Transformacja do CPS (3)
	Transformacja ze stylu kontynuacyjnego (1)
	Transformacja ze stylu kontynuacyjnego (2)
	Transformacja ze stylu kontynuacyjnego (3)
	Zmiana reprezentacji kontynuacji
	Defunkcjonalizacja
	Algorytm defunkcjonalizacji (1)
	Algorytm defunkcjonalizacji (2)
	Defunkcjonalizacja: przyklad (1)
	Defunkcjonalizacja: przyklad (2)
	Defunkcjonalizacja kontynuacji (1)
	Defunkcjonalizacja kontynuacji (2)
	Defunkcjonalizacja kontynuacji (3)
	Refunkcjonalizacja
	Refunkcjonalizacja: przyklad (1)
	Refunkcjonalizacja: przyklad (2)
	Refunkcjonalizacja: przyklad (3)
	Refunkcjonalizacja: przyklad (4)
	Big Picture
	Manipulowanie kontynuacja (1)
	Manipulowanie kontynuacja (2)
	Operatory kontroli
	callcc (call with current continuation)
	callcc (2)
	callcc (3)
	Nielokalne wyjscia z rekursji
	Obsluga bledow
	Obliczenia z nawrotami (1)
	Obliczenia z nawrotami (2)
	Obliczenia z nawrotami (3)
	Obliczenia z nawrotami (4)
	Coroutines (1)
	Coroutines (2)
	Coroutines (3)
	Coroutines (4)
	Coroutines (5)
	Coroutines (6)
	Literatura

