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Wyktlad 14, 05.06.2001 ZAGADNIENIA BRZEGOWE, METODY ROZNICOWE CD.: TW. LAXA-MILGRAMA

Przypomnijmy z poprzedniego wyktadu:

e zagadnienie brzegowe

Lu=f (1)
na [0,1], z warunkami brzegowymi
lu=g, (2)
gdzie
lou=u dlaxz =0, w dlaz =0,
Lu=d" +pu — qu, lu= g(x) =
liu=u dazxz=1, pe dlazxz=1.
Zagadnienie to posiada jednoznaczne rozwiazanie u € C9[0,1] dla p, ¢, f € C?[0,1], i g¢(z) > 0.
O
e i schemat ré6znicowy
Lyyn = fn (3)
Inyn = gn, (4)
dla fr €Y/, gne€Y;, czyli uklad réwnan liniowych
Yi—1 — 2Y5 + Yjt+1 Yi+l — Yj—1 B .
2 +plag) == — alzy)y; = fag) (i=12,....,N-1)
Yo = M1, YN = H2.
majacy, ogblniej, posta¢ uktadu réwnan liniowych o macierzy trojprzekatniowej
Ayio1 — Ciyi + Biyiyr = —F;,  i=1,2,--- N -1 (5)
Yo = k1y1 + H1, YN = KoyN—1 + H2 (6)
O

I. Wlasnosci metody przegnania (zob. materialy wykladu 13)

Zalézmy, ze A; # 0, B; # 0 dla wszystkich i; w przeciwnym razie uklad mozna rozdzieli¢ na oddzielne,
mniejsze uklady rownan.

Twierdzenie Warunkiem wystarczajacym, aby algorytm metody przegnania mogt by¢ zrealizowany, jest
spelnienie nastepujacych nieréwnosci:

|Ci| > |Ai] + | Bl |k1] + [r2| <2, k1], [m2] < 1.
Dowdd:

o Mianowniki wyrazen wystepujacych we wzorach kroku 1 nie znikajq.
Dowéd. Poniewaz B; # 0, wiec |C;| > |4;], wiec

Ci — i Ai| > |Ci] — [ail[Ai] > [As](1 = a;) = 0.
e Spelniona jest zaleznosé
|Oél‘<1 - |Oti+1|<1.

Dowéd wynika z nieréwnosci
|Ci = lev||Ai] = | Bi.

o Mianownik w wyrazeniu na yy réowniez nie znika.
Dowéd. Poniewaz |k1| + |k2| < 2, wiec



Adam Szustalewicz

—albo |k1| <1, czyli |ay] <1 dla i=1,2,...,N
— albo |ka| < 1.

Zatem: |1 —anke| > 1— |an]|k2| > 0.

e Na podstawie nie znikajacych mianownikéw otrzymujemy jednoznacznos$é rozwiqzania schematu rézZnico-
wego, a jak tatwo policzy¢, liczba operacji arytmetycznych koniecznych do wykonania jest proporcjonalna
do liczby niewiadomych (N + 1) i moze by¢ przedstawiona wzorem

8(N +1)—9.

e Nieréwnosdci |a;| < 1 zabezpieczaja przed lawinowym wzrostem bledu obliczanych wartosei {y;} w
petli kroku 2. Ogolnie mozna stwierdzié, ze

max [fl(y;) — y;| ~ eN?

gdzie € jest rowne epsilonowi maszynowemu.

O
II. Aproksymacja, stabilno$¢ i zbieznosé
Zauwazmy, ze rozwiazanie u zag. brzegowego (1), (2), zrzutowane na przestrzenn Y} funkcji siatkowych
([u]n, € Y}) nie spelnia réwnan réznicowych (3), (4). Mozemy jedynie zapisa¢ réwnosci
Ly[ulp = fo+n na  w, (7)
oraz,
Inluln = gn + on na - wy, (8)

gdzie fn = [fln, gn =1[9ln, a Yn = Laulp — fo = Lpfuln — [Lulp,  ¢n = lpfuln — [lu],  sa funkcjami
siatkowymi zwanymi residuami ¢, € Y,, ¢p € Y;* (odpowiednio residuum dla r. réznicowego, oraz residuum
dla warunkéw brzegowych.)

Definicja Mowimy, ze schemat réznicowy (3), (4) aproksymuje zagadnienie rézniczkowe (1), (2) na jego
rozwigzaniu u 2z rzedem k ze wzgledu na krok h, jesli k>0 oraz

19l = 0% i llgll; = O(h")

Widzimy, ze warunki brzegowe sa spelnione doktadnie, oraz ze
[[¥nll}, = O(h?)
czyli, zagadnienie brzegowe (1), (2) jest aproksymowane schematem réznicowym (3), (4) z rzedem 2.

Definicja Schemat réznicowy (3), (4) nazywa sie schematem stabilnym, jesli

1 / .
\/ho >0 /\h = N < hyg /\f € Yh’ ne Yh schemat Lpzp =&n, lpzp = Mh
posiada jednoznaczne rozwiazanie zp € Yy, spelniajace nieréwnosé

lznlln < C'lIEnlln + Clnnlly

w ktoérej stale C’, C* nie zaleza od h, &, np. O

Twierdzenie Schemat réznicowy (3), (4) jest schematem stabilnym.
Dowéd. Uktad réwnan (5), (6) posiada jednoznaczne rozwiazanie, zagwarantowane warunkiem 0 < h < hyg.
Trzeba jeszcze udowodnié istnienie statych C’, C*. Korzystajac z liniowosci uktadu réwnan mozemy przyjaé

{LhthSh, Ihrn =0,

Lypsp =0, Ipsp=1np.

Zn =7Th + Sk gdzie
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Dla uproszczenia przyjmijmy p(xz) = 0. Uklad réwnan na r, przyjmuje postaé:

ri-1 — (2+R2q(a;))ry + rj = B¢ (j=12,...,N-1),
7o =0, ry =0.
Dowodzi sie, ze
lIralln = max |r;| < NQISEIIS%(_JW&\ = (|l -

Dla funkcji sj, spelniajacej uklad réwnan
Sj—1 — (2 + h2q($j))8j + Sj+1 = 0 (] = ]., 2, . .,N - 1)7

So ="1o, SN = 1IN,

pokazuje sie (w tym przypadku dowdd jest tatwy réwniez dla p £ 0), ze

[lsnlln = jmax_|s;| = max{|no], [} = {nlls-
Ostatecznie wiec otrzymujemy: C' = C* = 1. (Znacznie bardziej zlozony jest dowdd przy zalozeniu, ze

p € Cp, 1], otrzymujemy inne wartosci statych.)
O

Definicja Mo6wimy, ze rozwiazanie yp, schematu réznicowego (3), (4) jest zbiezne do rozwigzania u zag.
brzegowego (1), (2) z rzedem k ze wzgledu na krok siatki h gdy k>0 i

1[uln = ynlln = O(R®). _

Twierdzenie (Laxa-Milgrama) Niech stabilny schemat réznicowy (3), (4) aproksymuje zag. brzegowe (1),
(2) na rozwiazaniu u z rzedem k wzgledem kroku h. Wtedy rozwiazanie y;, schematu réznicowego dazy
do u z tym samym rzedem wzgledem h.

(Popularnie: aproksymacja + stabilno§é = zbieznosé)

e Aproksymacja:
Vi >0,C1>0: Ah<hi ([l <Cik* A (Gl < CiR*
(warunek h < h; dotyczy np. warunkéw rozwiazalnosci zagadnienia réznicowego).
e korzystajac z liniowosci schematu odejmujemy (3), (4) od (7), (8) otrzymujac réwnania
Li([uln = yn) = ¥n, 9)
In([uln = yn) = én. (10)
e Na podstawie stabilnosci
Vhio>0: ho<h, \/C',C*: AN0<h<hg
zagadnienie (9), (10) posiada jednoznaczne rozwiazanie, i spelniona jest nieréwnosé

Nwln —ynlln < C'llwnlly, + C*lignll;, < C'Cih* + C*Cih* = CRF,

gdzie
C = C'(Cy +C%).
O
Dla naszego schematu otrzymujemy nierownosé
[uln = ynlln < CH?,
czyli zbieznoé¢ kwadratowa,.
J



