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Wykład 14, 05.06.2001 Zagadnienia brzegowe, metody różnicowe cd.: tw. Laxa-Milgrama

Przypomnijmy z poprzedniego wykładu:

• zagadnienie brzegowe
Lu = f (1)

na [0, 1], z warunkami brzegowymi
lu = g, (2)

gdzie

Lu ≡ u′′ + pu′ − qu, lu ≡

{

l0u ≡ u dla x = 0,

l1u ≡ u dla x = 1,
g(x) =

{

µ1 dla x = 0,

µ2 dla x = 1.

Zagadnienie to posiada jednoznaczne rozwi ↪azanie u ∈ C(4)[0, 1] dla p, q, f ∈ C(2)[0, 1], i q(x) ≥ 0.
2

• i schemat różnicowy
Lhyh = fh (3)

lhyh = gh, (4)

dla fh ∈ Y ′
h, gh ∈ Y ∗

h , czyli układ równań liniowych

yj−1 − 2yj + yj+1

h2 + p(xj)
yj+1 − yj−1

2h
− q(xj)yj = f(xj) (j = 1, 2, . . . , N − 1)

y0 = µ1, yN = µ2.

maj ↪acy, ogólniej, postać układu równań liniowych o macierzy trójprzek ↪atniowej

Aiyi−1 − Ciyi + Biyi+1 = −Fi, i = 1, 2, · · · , N − 1 (5)

y0 = κ1y1 + µ1, yN = κ2yN−1 + µ2 (6)
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I. Własności metody przegnania (zob. materiały wykładu 13)

Załóżmy, że Ai 6= 0, Bi 6= 0 dla wszystkich i; w przeciwnym razie układ można rozdzielić na oddzielne,
mniejsze układy równań.

Twierdzenie Warunkiem wystarczaj ↪acym, aby algorytm metody przegnania mógł być zrealizowany, jest
spełnienie nast ↪epuj ↪acych nierówności:

|Ci| ≥ |Ai|+ |Bi|, |κ1|+ |κ2| < 2, |κ1|, |κ2| ≤ 1 .

Dowód:

• Mianowniki wyrażeń wyst ↪epuj ↪acych we wzorach kroku 1 nie znikaj ↪a.
Dowód. Ponieważ Bi 6= 0, wi ↪ec |Ci| > |Ai|, wi ↪ec

|Ci − αiAi| ≥ |Ci| − |αi||Ai| > |Ai|(1− αi) ≥ 0 .

• Spełniona jest zależność
|αi| < 1 =⇒ |αi+1| < 1 .

Dowód wynika z nierówności
|Ci| − |αi||Ai| ≥ |Bi|.

• Mianownik w wyrażeniu na yN również nie znika.
Dowód. Ponieważ |κ1|+ |κ2| < 2, wi ↪ec
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– albo |κ1| < 1, czyli |α1| < 1 dla i = 1, 2, . . . , N

– albo |κ2| < 1.

Zatem: |1− αNκ2| ≥ 1− |αN ||κ2| > 0.

• Na podstawie nie znikaj ↪acych mianowników otrzymujemy jednoznaczność rozwi ↪azania schematu różnico-
wego, a jak łatwo policzyć, liczba operacji arytmetycznych koniecznych do wykonania jest proporcjonalna
do liczby niewiadomych (N + 1) i może być przedstawiona wzorem

8(N + 1)− 9 .

• Nierówności |αi| ≤ 1 zabezpieczaj ↪a przed lawinowym wzrostem bł ↪edu obliczanych wartości {yi} w
p ↪etli kroku 2. Ogólnie można stwierdzić, że

max
i
|fl(yi)− yi| ≈ εN2

gdzie ε jest równe epsilonowi maszynowemu.
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II. Aproksymacja, stabilność i zbieżność

Zauważmy, że rozwi ↪azanie u zag. brzegowego (1), (2), zrzutowane na przestrzeń Yh funkcji siatkowych
([u]h ∈ Yh) nie spełnia równań różnicowych (3), (4). Możemy jedynie zapisać równości

Lh[u]h = fh + ψh na ω′h, (7)

oraz
lh[u]h = gh + φh na ω∗h, (8)

gdzie fh = [f ]h, gh = [g]h, a ψh = Lh[u]h − fh = Lh[u]h − [Lu]h, φh = lh[u]h − [lu]h s ↪a funkcjami
siatkowymi zwanymi residuami ψh ∈ Y ′

h, φh ∈ Y ∗
h (odpowiednio residuum dla r. różnicowego, oraz residuum

dla warunków brzegowych.)

Definicja Mówimy, że schemat różnicowy (3), (4) aproksymuje zagadnienie różniczkowe (1), (2) na jego
rozwi ↪azaniu u z rz ↪edem k ze wzgl ↪edu na krok h, jeśli k > 0 oraz

||ψ||′h = O(hk) i ||φ||∗h = O(hk)

2
Widzimy, że warunki brzegowe s ↪a spełnione dokładnie, oraz że

||ψh||′h = O(h2)

czyli, zagadnienie brzegowe (1), (2) jest aproksymowane schematem różnicowym (3), (4) z rz ↪edem 2.

Definicja Schemat różnicowy (3), (4) nazywa si ↪e schematem stabilnym, jeśli
∨

h0 > 0
∧

h =
1
N

< h0

∧

ξ ∈ Y ′
h, η ∈ Y ∗

h schemat Lhzh = ξh, lhzh = ηh

posiada jednoznaczne rozwi ↪azanie zh ∈ Yh, spełniaj ↪ace nierówność

||zh||h ≤ C ′||ξh||′h + C∗||ηh||∗h

w której stałe C ′, C∗ nie zależ ↪a od h, ξh, ηh. 2

Twierdzenie Schemat różnicowy (3), (4) jest schematem stabilnym.
Dowód. Układ równań (5), (6) posiada jednoznaczne rozwi ↪azanie, zagwarantowane warunkiem 0 < h < h0.
Trzeba jeszcze udowodnić istnienie stałych C ′, C∗. Korzystaj ↪ac z liniowości układu równań możemy przyj ↪ać

zh = rh + sh gdzie
{

Lhrh = ξh, lhrh = 0 ,

Lhsh = 0, lhsh = ηh .
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Dla uproszczenia przyjmijmy p(x) ≡ 0. Układ równań na rh przyjmuje postać:

rj−1 − (2 + h2q(xj))rj + rj+1 = h2ξj (j = 1, 2, . . . , N − 1),

r0 = 0 , rN = 0 .

Dowodzi si ↪e, że
||rh||h = max

0≤j≤N
|rj | ≤ N2 max

1≤j≤N−1
|h2ξj | = ||ξh||′h .

Dla funkcji sh, spełniaj ↪acej układ równań

sj−1 − (2 + h2q(xj))sj + sj+1 = 0 (j = 1, 2, . . . , N − 1),

s0 = η0 , sN = ηN ,

pokazuje si ↪e (w tym przypadku dowód jest łatwy również dla p 6≡ 0), że

||sh||h = max
0≤j≤N

|sj | = max{|η0|, |ηN |} = ||ηh||∗h .

Ostatecznie wi ↪ec otrzymujemy: C ′ = C∗ = 1 . (Znacznie bardziej złożony jest dowód przy założeniu, że
p ∈ C[0, 1], otrzymujemy inne wartości stałych.)
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Definicja Mówimy, że rozwi ↪azanie yh schematu różnicowego (3), (4) jest zbieżne do rozwi ↪azania u zag.
brzegowego (1), (2) z rz ↪edem k ze wzgl ↪edu na krok siatki h gdy k > 0 i

||[u]h − yh||h = O(hk).
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Twierdzenie (Laxa-Milgrama) Niech stabilny schemat różnicowy (3), (4) aproksymuje zag. brzegowe (1),
(2) na rozwi ↪azaniu u z rz ↪edem k wzgl ↪edem kroku h. Wtedy rozwi ↪azanie yh schematu różnicowego d ↪aży
do u z tym samym rz ↪edem wzgl ↪edem h.

(Popularnie: aproksymacja + stabilność = zbieżność)

Dowód.

• Aproksymacja:
∨

h1 > 0 , C1 > 0 :
∧

h < h1 ||ψh||′h ≤ C1hk ∧ ||ξh||∗h ≤ C1hk

(warunek h < h1 dotyczy np. warunków rozwi ↪azalności zagadnienia różnicowego).

• korzystaj ↪ac z liniowości schematu odejmujemy (3), (4) od (7), (8) otrzymuj ↪ac równania

Lh([u]h − yh) = ψh, (9)

lh([u]h − yh) = φh. (10)

• Na podstawie stabilności
∨

h0 > 0 : h0 ≤ h1 ,
∨

C ′ , C∗ :
∧

0 < h < h0

zagadnienie (9), (10) posiada jednoznaczne rozwi ↪azanie, i spełniona jest nierówność

||[u]h − yh||h ≤ C ′||ψh||′h + C∗||φh||∗h ≤ C ′C1hk + C∗C1hk = Chk,

gdzie
C = C ′(C1 + C∗).
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Dla naszego schematu otrzymujemy nierówność

||[u]h − yh||h ≤ Ch2 ,

czyli zbieżność kwadratow ↪a.

•
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