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Wykład 1: Wprowadzenie do Modelowania
Ordinary Differential Equations (ODE)

1 Informacje wstępne – przykłady zagadnień

Czym są ODE? Równania Różniczkowe Zwyczajne należą do równań, w których występuje tylko jedna zmienna
niezależna – jest to najczęściej czas lub zmienna przestrzenna, a wszystkie pozostałe zmienne są funkcjami (i pocho-
dnymi funkcyj) właśnie tej jednej zmiennej.

Równania takie występują w zagadnieniach technicznych, opisie zjawisk przyrodniczych, chemicznych... Kłopotem
jest to, że często nie potrafimy tych równań rozwiązywać dokładnie, w zamkniętej postaci matematycznej i potrzebu-
jemy metod numerycznego rozwiązywania rozpatrywanych ODE z wystarczającą dokładnością... Takie
metody będą główną częścią tematyki naszych zajęć.

CIEKAWOSTKI

• The term cequatio differentialis or differential equation was first used by Leibniz in 1676 to denote a
relationship between the differentials dx and dy of two variables x and y...

Yet our hazy knowledge of the birth and infancy of the science of differential equations condenses upon a
remarkable date, the eleventh day of November, 1675, when Leibniz first set down on paper the equation1

∫
xdx =

1

2
x2 .

• Differential equations date back to the mid-seventeenth century, when calculus was discovered independently by
Newton (c. 1665) and Leibniz (c. 1684).2

2

Na początek obejrzyjmy kilka prostych zagadnień opisywanych za pomocą ODE.

1.1 Rozpad radioaktywny

Zgodnie z prawem rozpadu radioaktywnego masa radioaktywnego obiektu rozpada się z prędkością proporcjonalną
do aktualnej masy obiektu.

Niech masę obiektu w czasie t > 0 stanowi funkcja y = y(t). Wówczas prawo rozpadu oznacza związek

dy

dt
= −ky (1)

w którym stała k > 0 oznacza współczynnik rozpadu.

• Równanie (1) należy do najprostszych ODE i możemy sprawdzić, że jego analityczne rozwiązanie ma postać
y(t) = ce−kt z dowolną stałą c. Wartość stałej może być interpretowana jako wartość masy radioaktywnej w
chwili początkowej c = y(0).

• Równanie postaci (1) może być również związane z opisem nagrzewania obiektu, chłodzenia, absorpcji leków w
ciele, rozwoju populacji np. bakterii,...

• Gdyby równanie (1) było bardziej skomplikowanym y′ = f(t, y) i trudnym do rozwiązania, warto by się przynaj-
mniej zorientować jakie kształty posiadają rozwiązania. Dlatego przydałoby się przygotować pole kierunków
(direction field – zob. rozdz. 3). Pole kierunków pokazuje kierunki stycznych do rozwiązań w rozmaitych pun-
ktach obszaru (t, y) i celem naszym byłoby poprowadzić kształt krzywej z wybranego punktu początkowego
po obszarze tak, aby była ona styczna do kierunków w punktach przez które przechodzi.

1Edward L. Ince, Ordinary Differential Equations, Toronto, 1978, str. 3, 529
2James C. Robinson, An Introduction to Ordinary Differential Equations, Cambridge, 2004, str. 1
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1.2 CIEKAWOSTKA – Całun Turyński

Jest to przykład Zagadnienia Początkowego (ZP) dla rozpadu radioaktywnego w postaci

N ′(t) = −kN(t) z war. pocz. N(t0) = N0 . (2)

Można sprawdzić, że rozwiązanie przyjmuje postać

N(t) = N0 e
−k(t−t0) (3)

oraz, że spełnia RR oraz warunki początkowe. Z (3) wynika, że ilość masy radioaktywnej maleje wykładniczo do zera.

• Okresem Połowicznego Rozpadu (OPR) dla konkretnego izotopu promieniotwórczego nazywamy czas, w
ciągu którego ilość tego izotopu zmniejsza się o połowę i jest to związane ze stałą k występującą w równaniu.

Jeśli t0 = 0, to N(tpol̈owiczne) =
1
2N0 i zachodzi związek

−k tpol̈owiczne = − ln(2) . (4)

Jest to wzajemne powiązanie k oraz tpol̈owiczne .

• Rozwiązanie (3) stanowi podstawę metody datowania radiowęglowego3. A oto istota tej metody

– Organizm żyjący wymienia materię z otoczeniem i proporcja węgla radioaktywnego (C14) do stabilnego
(C12) w materii żywej jest taka jak w atmosferze i zasadniczo jest stała.

– Gdy organizm umiera (np. drzewo jest ścinane dla drewna, lub bawełna jest zbierana do tkania) węgiel
radioaktywny C14 zaczyna się rozpadać zgodnie z modelem (2).

– Ponieważ OPR węgla C14 wynosi 5700 lat, możemy wyznaczyć stałą k z równań (2) i (4) otrzymując

k =
ln(2)

5700
≈ 1.216× 10−4 . (5)

– Badając stosunek ilości węgla C12 do węgla C14 w próbce badanego materiału można wyznaczyć czas t0
rozpoczęcia się procesu rozkładu węgla C14.

• W roku 1988 datowano metodą radiowęglową Całun Turyński. Pracowały niezależnie trzy grupy naukowców: z
Arizony, Oxfordu i Zurychu. Próbki włókien Całunu zawierały ok. 92% C14 w porównaniu z materią żywą.

• Wyrażenie dla t0

t0 = 1988 +
ln(0.92)

1.216e−4
≈ 1302 (6)

pokazuje, że Całun powstał w Średniowieczu...

3James C. Robinson, An Introduction to Ordinary Differential Equations, Cambridge, 2004, str. 7
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1.3 Rozwój bakterii – wykładniczy wzrost populacji
Gdy bakteria rozwija się w przychylnym dla siebie środowisku, prędkość wzrostu populacji jest proporcjonalna do
aktualnej wielkości populacji. Gdybyśmy więc chcieli wyznaczyć krzywą y = y(t), obrazującą wzrost populacji w
czasie, to wystarczy rozwiązać równanie różniczkowe

dy

dt
= ay

z odpowiednim parametrem a > 0 charakteryzującym prędkość wzrostu. (Porównaj zadanie 1.c)

1.4 Jeszcze dwa proste modele
Ograniczony rozwój populacji. W wielu wypadkach obowiązuje założenie, że populacja x(t) nie przekroczy

pewnej liczby C, zwanej dopuszczalną pojemnością środowiska. Następnym założeniem jest, że populacja rośnie
z prędkością proporcjonalną (ze stałą k) do różnicy między stałą C i aktualnym stanem populacji x(t). Zatem
x(t) spełnia

x′ = k(C − x(t)), z war. pocz. x(t0) = x0 . (7)

Chłodzenie – prawo Newtona mówi, że prędkość chłodzenia obiektu jest proporcjonalna (ze stałą k) do różnicy
pomiędzy temperaturą T (t) obiektu i temperaturą otoczenia Totocz. Otrzymujemy

T ′ = k(Totocz − T (t)), z war. pocz. T (t0) = T0 . (8)

Obydwa równania (7) i (8) są tej samej postaci, a ich rozwiązywanie nastąpi w zadaniu 3.

1.5 Lisy i Zające (prey–predator)
Wyobraźmy sobie teren, na którym żyją lisy y(t) ≥ 0 i zające x(t) ≥ 0. Zające rozmnażają się w sposób wykładniczy.
Zające nie giną same, ale gdy spotkają się z lisem, to najczęściej są przez niego zjadane. Prawdopodobieństwo, że zając
spotka lisa i zostanie zjedzony, jest proporcjonalne do iloczynu obu populacji. Lisy rozmnażają się dzięki żywieniu się
zającami, a giną jedynie z chorób lub ze starości...

Takie założenia pozwalają ułożyć równania różniczkowe opisujące ten proces{
dx
dt

= αx− βxy (= x(α− βy))
dy
dt

= −γy + δxy (= −y(γ − δx))

Od roku 1925 ten układ równań nazywany jest równaniem Lotki–Volterry. Aby narysować odpowiednią krzywą
na polu kierunków potrzebujemy jeszcze warunku początkowego np. dla t = 0 : x(0) = x0, y(0) = y0.

O tym, jak ten układ ODE rozwiązać dokładnie, dowiemy się później...

1.6 Drganie ciężarka na sprężynie
Doświadczenie – do pionowego drgania wzbudzamy obiekt o masie m, podwieszony na sprężynie długości L.

1. Wisi sprężyna długości L.
2. Podwieszamy na niej obiekt o masie m. Sprężyna

naciąga się o ∆L. Obiekt znajduje się w bezruchu
– obie siły się równoważą: siła mg ciężkości obiektu
oraz skierowana do góry siła naciągu sprężyny, która
zgodnie z prawem Hooka jest równa k∆L dla pewnej
stałej k > 0. Równanie równowagi sił

F = mg − k∆L = 0 . (9)

3. Wprowadźmy oś pionową OX skierowaną w dół, z
początkiem x = 0 na wysokości obiektu.

4. Teraz ściągamy obiekt w dół do pktu x0 > 0.
5. Będziemy ignorować wszelkie siły powodowane przez

otoczenie – np. siły oporu środowiska wobec ruchu...

L

Drganie na Sprezynie

L

∆L
x=0

x
0

0

Drugie prawo Newtona względem x = x(t) brzmi
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mx′′ = mg − k(x+∆L) a dzięki (9) → mx′′ = −kx . (10)

Warunki początkowe x(0) = x0, x′(0) = 0.
Łatwo sprawdzić, że rozwiązanie równania (10), spełniające warunki początkowe, ma postać

x(t) = x0 cos

(√
k

m
t

)
.

Gdyby istniała jeszcze siła oporu – proporcjonalna do prędkości obiektu, to powinniśmy dopisać w równaniu (10)
składnik rx′ dla r > 0, otrzymując

mx′′ + rx′ + kx = 0 .

W przyszłości będziemy rozpatrywać również równania wyższych rzędów...

2 Sposoby rozwiązywania

• Przypomnjmy sobie całkę nieoznaczoną

y(x) = c +

∫ x

a

f(t) dt .

Łatwo sprawdzić, że jest to wzór na rozwiązanie y = y(x) równania różniczkowego

y′(x) = f(x) (11)

z warunkiem początkowym y(a) = c .

• Ale funkcja f pod całką w (11) może być bardziej skomplikowaną, np. f = f(x, y), i całka

y(x) = y(x0) +

∫ x

x0

f(t, y(t)) dt

może być zbyt trudną do policzenia. W takim wypadku, dla krótkiego odcinka całkowania, można całkę przy-
bliżyć metodą prostokąta. Aproksymujemy f(x, y(x)) ≈ f(x0, y(x0)) dla x ∈ [x0, x0 + h], gdzie h > 0 jest
małe, i otrzymujemy wzorek

y(x) = y(a) + f(a, y(a))(x− a) . (12)

Skonstruowana metoda (12) jest znana jako metoda numeryczna dla ODE pod nazwą metoda Eulera4 .
Zajmiemy się nią i innymi w przyszłości...

3 Pole kierunków, Izokliny

Zajmijmy się równaniem różniczkowym

y′ = f(x, y) dla f(x, y) ≡
√
1− x2 − y2 .

4Leonhard Euler (1707-1783)
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• Widać, że obszarem, na którym równanie jest
określone, jest jedynie koło jednostkowe.

• Poza kołem jednostkowym nie ma już żadnych
rozwiązań rzeczywistych.

• Wyznaczmy wartości funkcji f w rozmaitych pun-
ktach (x, y) koła jednostkowego.

• I narysujmy krótkie odcinki ilustrujące kierunki sty-
cznych do rozwiązań przechodzących przez te punkty.

• Otrzymujemy pole kierunków .
• Teraz trzeba narysować na tym polu kierunków

krzywe tak, aby były one styczne do narysowanych
odcinków. Jeśli nam się to uda, to otrzymamy
rozwiązania rozpatrywanego ODE.

• Krzywe (x(t), y(t)), wzdłuż których wartości funkcji
f posiadają takie same wartości nazywamy izokli-
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Rozwiazania numeryczne    y ’ = sqrt( 1 − x2 − y2 )

4 Zadania na ćwiczenia
1. Sprawdzić czy podane funkcje są rozwiązaniami odpowiednich

równań różniczkowych zwyczajnych:

a. y′′ − 2y′ + y = 0, y = xex ,

b y′′ + 16y = 0, y(t) = a cos(4t) ,

c. P ′(t) = (a− bP )P , P (t) = ac1e
at

1+bc1eat ,

d. X ′(t) = (2−X)(1−X), t = ln 2−X
1−X ,

e. xy′ − y − x sin(x) = 0, y = x
x∫
0

sin t
t dt na półprostej (0, +∞) ,

f. y′ + 2xy = 1, y = e−x2
x∫
0

et
2

dt+ c e−x2

.

2. W przyszłości udowodnić wzory (4) i (6).
3. Dla obu równań (7), (8) narysować pole kierunków; narysować kilka rozwiązań dla różnych wartości stałej k...

W przyszłości rozwiązać równania.
4. Sprawdzić poprawność rozwiązania równania (10).
5. Wyprowadzić wzór na pochodną funkcji F zdefiniowanej jako całka oznaczona

F (x) ≡
∫ g(x)

f(x)

h(x, t)dt

w której funkcje f , g, h posiadają ciągłe pochodne co najmniej pierwszego rzędu.
6. Naszkicować pola kierunków następujących równań:

y′ = e1/x, y′ =
1

1 + e1/x
, y′ = |y|, y′ =

sinx

sin y
, y′ =

sin y

sinx
.

Proszę zastanowić się nad kształtem krzywych będących rozwiązaniami...
7. Rzeka ma szerokość 100m (0 ≤ s ≤ 100). Rozkład prędkości prądu w poprzek koryta rzeki jest równy:

v = 2 sin(sπ/100)[m/s] . Jak daleko zostanie zniesiona łódka prowadzona przez wioślarza prostopadle do osi
rzeki, jeśli płynie on od brzegu do brzegu ze stałą prędkością 2[m/s] ?

* * *
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