

Numerical Analysis – Lecture 9¹

3 Ordinary differential equations

Problem 3.1 We wish to approximate the exact solution of the *ordinary differential equation (ODE)*

$$\mathbf{y}' = \mathbf{f}(t, \mathbf{y}), \quad t \geq 0, \quad (3.1)$$

where $\mathbf{y} \in \mathbb{R}^N$ and the function $\mathbf{f} : \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R}^N$ is sufficiently ‘nice’. (In principle, it is enough for \mathbf{f} to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that \mathbf{f} is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (3.1) is accompanied by the initial condition $\mathbf{y}(0) = \mathbf{y}_0$.

Our purpose is to approximate $\mathbf{y}_{n+1} \approx \mathbf{y}(t_{n+1})$, $n = 0, 1, \dots$, where $t_m = mh$ and the *time step* $h > 0$ is small, from $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$ and equation (3.1).

Definition 3.2 A *one-step method* is a map $\mathbf{y}_{n+1} = \varphi_h(t_n, \mathbf{y}_n)$, i.e. an algorithm which allows \mathbf{y}_{n+1} to depend only on t_n , \mathbf{y}_n , h and the ODE (3.1).

Method 3.3 (Euler’s method) We know \mathbf{y} and its slope \mathbf{y}' at $t = 0$ and wish to approximate \mathbf{y} at $t = h > 0$. The most obvious approach is to truncate $\mathbf{y}(h) = \mathbf{y}(0) + h\mathbf{y}'(0) + \frac{1}{2}h^2\mathbf{y}''(0) + \dots$ at the h^2 term. Since $\mathbf{y}'(0) = \mathbf{f}(t_0, \mathbf{y}_0)$, this procedure approximates $\mathbf{y}(h) \approx \mathbf{y}_0 + h\mathbf{f}(t_0, \mathbf{y}_0)$ and we thus set $\mathbf{y}_1 = \mathbf{y}_0 + h\mathbf{f}(t_0, \mathbf{y}_0)$.

By the same token, we may advance from h to $2h$ by letting $\mathbf{y}_2 = \mathbf{y}_1 + h\mathbf{f}(t_1, \mathbf{y}_1)$. In general, we obtain the *Euler method*

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(t_n, \mathbf{y}_n), \quad n = 0, 1, \dots \quad (3.2)$$

Definition 3.4 Let $t^* > 0$ be given. We say that a method, which for every $h > 0$ produces the solution sequence $\mathbf{y}_n = \mathbf{y}_n(h)$, $n = 0, 1, \dots, \lfloor t^*/h \rfloor$, converges if, as $h \rightarrow 0$ and $n_k(h)h \xrightarrow{k \rightarrow \infty} t$, it is true that $\mathbf{y}_{n_k} \rightarrow \mathbf{y}(t)$, the exact solution of (3.1), uniformly for $t \in [0, t^*]$.

Theorem 3.5 Suppose that \mathbf{f} satisfies the Lipschitz condition: there exists $\lambda \geq 0$ such that

$$\|\mathbf{f}(t, \mathbf{v}) - \mathbf{f}(t, \mathbf{w})\| \leq \lambda \|\mathbf{v} - \mathbf{w}\|, \quad t \in [0, t^*], \quad \mathbf{v}, \mathbf{w} \in \mathbb{R}^N.$$

Then the Euler method (3.2) converges.

Proof Let $\mathbf{e}_n = \mathbf{y}_n - \mathbf{y}(t_n)$, the error at step n , where $0 \leq n \leq t^*/h$. Thus,

$$\mathbf{e}_{n+1} = \mathbf{y}_{n+1} - \mathbf{y}(t_{n+1}) = [\mathbf{y}_n + h\mathbf{f}(t_n, \mathbf{y}_n)] - [\mathbf{y}(t_n) + h\mathbf{y}'(t_n) + \mathcal{O}(h^2)].$$

By the Taylor theorem, the $\mathcal{O}(h^2)$ term can be bounded uniformly for all $[0, t^*]$ (in the underlying norm $\|\cdot\|$) by ch^2 , where $c > 0$. Thus, using (3.1) and the triangle inequality,

$$\begin{aligned} \|\mathbf{e}_{n+1}\| &\leq \|\mathbf{y}_n - \mathbf{y}(t_n)\| + h\|\mathbf{f}(t_n, \mathbf{y}_n) - \mathbf{f}(t_n, \mathbf{y}(t_n))\| + ch^2 \\ &\leq \|\mathbf{y}_n - \mathbf{y}(t_n)\| + h\lambda \|\mathbf{y}_n - \mathbf{y}(t_n)\| + ch^2 = (1 + h\lambda) \|\mathbf{e}_n\| + ch^2. \end{aligned}$$

Consequently, by induction,

$$\|\mathbf{e}_{n+1}\| \leq (1 + h\lambda)^m \|\mathbf{e}_{n+1-m}\| + ch^2 \sum_{j=0}^{m-1} (1 + h\lambda)^j, \quad m = 0, 1, \dots, n+1.$$

¹Please email all corrections and suggestions to these notes to A.Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL <http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html>.

In particular, letting $m = n + 1$ and bearing in mind that $\mathbf{e}_0 = \mathbf{0}$, we have

$$\|\mathbf{e}_{n+1}\| \leq ch^2 \sum_{j=0}^n (1+h\lambda)^j = ch^2 \frac{(1+h\lambda)^{n+1} - 1}{(1+h\lambda) - 1} \leq \frac{ch}{\lambda} (1+h\lambda)^{n+1}.$$

But for small $h > 0$ it is true that $0 < 1+h\lambda \leq e^{h\lambda}$. This and $(n+1)h \leq t^*$ imply that $(1+h\lambda)^{n+1} \leq e^{t^*\lambda}$, therefore

$$\|\mathbf{e}_n\| \leq \frac{ce^{t^*\lambda}}{\lambda} h \rightarrow 0, \quad h \rightarrow 0, \quad \text{uniformly for } 0 \leq nh \leq t^*$$

and the theorem is true. \square

Definition 3.6 The *order* of a general numerical method $\mathbf{y}_{n+1} = \varphi_h(t_n, \mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n)$ for the solution of (3.1) is the largest integer $p \geq 0$ such that

$$\mathbf{y}(t_{n+1}) - \varphi_h(t_n, \mathbf{y}(t_0), \mathbf{y}(t_1), \dots, \mathbf{y}(t_n)) = \mathcal{O}(h^{p+1})$$

for all $h > 0$, $n \geq 0$ and all sufficiently smooth functions \mathbf{f} in (3.1). Note that, unless $p \geq 1$, the ‘method’ is an unsuitable approximation to (3.1): in particular, $p \geq 1$ is necessary for convergence.

Remark 3.7 (The order of Euler’s method) We now have $\varphi_h(t, \mathbf{y}) = \mathbf{y} + h\mathbf{f}(t, \mathbf{y})$. Substituting the exact solution of (3.1), we obtain from the Taylor theorem

$$\mathbf{y}(t_{n+1}) - [\mathbf{y}(t_n) + h\mathbf{f}(t_n, \mathbf{y}(t_n))] = [\mathbf{y}(t_n) + h\mathbf{y}'(t_n) + \frac{1}{2}h^2\mathbf{y}''(t_n) + \dots] - [\mathbf{y}(t_n) + h\mathbf{y}'(t_n)] = \mathcal{O}(h^2)$$

and we deduce that Euler’s method is of order 1.

Definition 3.8 (Theta methods) We consider methods of the form

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h[\theta\mathbf{f}(t_n, \mathbf{y}_n) + (1-\theta)\mathbf{f}(t_{n+1}, \mathbf{y}_{n+1})], \quad n = 0, 1, \dots, \quad (3.3)$$

where $\theta \in [0, 1]$ is a parameter:

- If $\theta = 1$, we recover Euler’s method.
- if $\theta \in [0, 1)$ then the *theta method* (3.3) is *implicit*: Each time step requires the solution of N (in general, nonlinear) algebraic equations for the unknown vector \mathbf{y}_{n+1} .
- The choices $\theta = 0$ and $\theta = \frac{1}{2}$ are known as

Backward Euler: $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(t_{n+1}, \mathbf{y}_{n+1})$,

Trapezoidal rule: $\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{1}{2}h[\mathbf{f}(t_n, \mathbf{y}_n) + \mathbf{f}(t_{n+1}, \mathbf{y}_{n+1})]$.

Solution of nonlinear algebraic equations can be done by iteration. For example, for backward Euler, letting $\mathbf{y}_{n+1}^{[0]} = \mathbf{y}_n$, we may use

$$\begin{aligned} \text{Direct iteration: } \mathbf{y}_{n+1}^{[j+1]} &= \mathbf{y}_n + h\mathbf{f}(t_{n+1}, \mathbf{y}_{n+1}^{[j]}); \\ \text{Newton–Raphson: } \mathbf{y}_{n+1}^{[j+1]} &= \mathbf{y}_{n+1}^{[j]} - \left[I - h \frac{\partial \mathbf{f}(t_{n+1}, \mathbf{y}_{n+1}^{[j]})}{\partial \mathbf{y}} \right]^{-1} [\mathbf{y}_{n+1}^{[j]} - \mathbf{y}_n - h\mathbf{f}(t_{n+1}, \mathbf{y}_{n+1}^{[j]})]; \\ \text{Modified Newton–Raphson: } \mathbf{y}_{n+1}^{[j+1]} &= \mathbf{y}_{n+1}^{[j]} - \left[I - h \frac{\partial \mathbf{f}(t_n, \mathbf{y}_n)}{\partial \mathbf{y}} \right]^{-1} [\mathbf{y}_{n+1}^{[j]} - \mathbf{y}_n - h\mathbf{f}(t_{n+1}, \mathbf{y}_{n+1}^{[j]})] \end{aligned}$$

We will return to this topic later.

Remark 3.9 (The order of the theta method) It follows from (3.3) and Taylor’s theorem that

$$\begin{aligned} &\mathbf{y}(t_{n+1}) - \mathbf{y}(t_n) - h[\theta\mathbf{y}'(t_n) + (1-\theta)\mathbf{y}'(t_{n+1})] \\ &= [\mathbf{y}(t_n) + h\mathbf{y}'(t_n) + \frac{1}{2}h^2\mathbf{y}''(t_n) + \frac{1}{6}h^3\mathbf{y}'''(t_n)] - \mathbf{y}(t_n) - \theta h\mathbf{y}'(t_n) \\ &\quad - (1-\theta)h[\mathbf{y}'(t_n) + h\mathbf{y}''(t_n) + \frac{1}{2}h^2\mathbf{y}'''(t_n)] + \mathcal{O}(h^4) \\ &= (\theta - \frac{1}{2})h^2\mathbf{y}''(t_n) + (\frac{1}{2}\theta - \frac{1}{3})h^3\mathbf{y}'''(t_n) + \mathcal{O}(h^4). \end{aligned}$$

Therefore the theta method is of order 1, except that the trapezoidal rule is of order 2.