Numerical Analysis - Lecture $\mathbf{9}^{1}$

3 Ordinary differential equations

Problem 3.1 We wish to approximate the exact solution of the ordinary differential equation (ODE)

$$
\begin{equation*}
\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \quad t \geq 0 \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{y} \in \mathbb{R}^{N}$ and the function $\boldsymbol{f}: \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is sufficiently 'nice'. (In principle, it is enough for \boldsymbol{f} to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume that f is analytic: in other words, we are always able to expand locally into Taylor series.) The equation (3.1) is accompanied by the initial condition $\boldsymbol{y}(0)=\boldsymbol{y}_{0}$.

Our purpose is to approximate $\boldsymbol{y}_{n+1} \approx \boldsymbol{y}\left(t_{n+1}\right), n=0,1, \ldots$, where $t_{m}=m h$ and the time step $h>0$ is small, from $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}$ and equation (3.1).

Definition 3.2 A one-step method is a map $\boldsymbol{y}_{n+1}=\boldsymbol{\varphi}_{h}\left(t_{n}, \boldsymbol{y}_{n}\right)$, i.e. an algorithm which allows \boldsymbol{y}_{n+1} to depend only on $t_{n}, \boldsymbol{y}_{n}, h$ and the ODE (3.1).
Method 3.3 (Euler's method) We know \boldsymbol{y} and its slope \boldsymbol{y}^{\prime} at $t=0$ and wish to approximate \boldsymbol{y} at $t=$ $h>0$. The most obvious approach is to truncate $\boldsymbol{y}(h)=\boldsymbol{y}(0)+h \boldsymbol{y}^{\prime}(0)+\frac{1}{2} h^{2} \boldsymbol{y}^{\prime \prime}(0)+\cdots$ at the h^{2} term. Since $\boldsymbol{y}^{\prime}(0)=\boldsymbol{f}\left(t_{0}, \boldsymbol{y}_{0}\right)$, this procedure approximates $\boldsymbol{y}(h) \approx \boldsymbol{y}_{0}+h \boldsymbol{f}\left(t_{0}, \boldsymbol{y}_{0}\right)$ and we thus set $\boldsymbol{y}_{1}=\boldsymbol{y}_{0}+h \boldsymbol{f}\left(t_{0}, \boldsymbol{y}_{0}\right)$.
By the same token, we may advance from h to $2 h$ by letting $\boldsymbol{y}_{2}=\boldsymbol{y}_{1}+h \boldsymbol{f}\left(t_{1}, \boldsymbol{y}_{1}\right)$. In general, we obtain the Euler method

$$
\begin{equation*}
\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+h \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right), \quad n=0,1, \ldots \tag{3.2}
\end{equation*}
$$

Definition 3.4 Let $t^{*}>0$ be given. We say that a method, which for every $h>0$ produces the solution sequence $\boldsymbol{y}_{n}=\boldsymbol{y}_{n}(h), n=0,1, \ldots,\left\lfloor t^{*} / h\right\rfloor$, converges if, as $h \rightarrow 0$ and $n_{k}(h) h \xrightarrow{k \rightarrow \infty} t$, it is true that $\boldsymbol{y}_{n_{k}} \rightarrow \boldsymbol{y}(t)$, the exact solution of (3.1), uniformly for $t \in\left[0, t^{*}\right]$.
Theorem 3.5 Suppose that \boldsymbol{f} satisfies the Lipschitz condition: there exists $\lambda \geq 0$ such that

$$
\|\boldsymbol{f}(t, \boldsymbol{v})-\boldsymbol{f}(t, \boldsymbol{w})\| \leq \lambda\|\boldsymbol{v}-\boldsymbol{w}\|, \quad t \in\left[0, t^{*}\right], \quad \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{N}
$$

Then the Euler method (3.2) converges.
Proof Let $\boldsymbol{e}_{n}=\boldsymbol{y}_{n}-\boldsymbol{y}\left(t_{n}\right)$, the error at step n, where $0 \leq n \leq t^{*} / h$. Thus,

$$
\boldsymbol{e}_{n+1}=\boldsymbol{y}_{n+1}-\boldsymbol{y}\left(t_{n+1}\right)=\left[\boldsymbol{y}_{n}+h \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)\right]-\left[\boldsymbol{y}\left(t_{n}\right)+h \boldsymbol{y}^{\prime}\left(t_{n}\right)+\mathcal{O}\left(h^{2}\right)\right]
$$

By the Taylor theorem, the $\mathcal{O}\left(h^{2}\right)$ term can be bounded uniformly for all [$0, t^{*}$] (in the underlying norm $\|\cdot\|$) by $c h^{2}$, where $c>0$. Thus, using (3.1) and the triangle inequality,

$$
\begin{aligned}
\left\|\boldsymbol{e}_{n+1}\right\| & \leq\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\left(t_{n}\right)\right\|+h\left\|\boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)-\boldsymbol{f}\left(t_{n}, \boldsymbol{y}\left(t_{n}\right)\right)\right\|+c h^{2} \\
& \leq\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\left(t_{n}\right)\right\|+h \lambda\left\|\boldsymbol{y}_{n}-\boldsymbol{y}\left(t_{n}\right)\right\|+c h^{2}=(1+h \lambda)\left\|\boldsymbol{e}_{n}\right\|+c h^{2}
\end{aligned}
$$

Consequently, by induction,

$$
\left\|\boldsymbol{e}_{n+1}\right\| \leq(1+h \lambda)^{m}\left\|\boldsymbol{e}_{n+1-m}\right\|+c h^{2} \sum_{j=0}^{m-1}(1+h \lambda)^{j}, \quad m=0,1, \ldots, n+1
$$

[^0]In particular, letting $m=n+1$ and bearing in mind that $\boldsymbol{e}_{0}=\mathbf{0}$, we have

$$
\left\|\boldsymbol{e}_{n+1}\right\| \leq \operatorname{ch}^{2} \sum_{j=0}^{n}(1+h \lambda)^{j}=\operatorname{ch}^{2} \frac{(1+h \lambda)^{n+1}-1}{(1+h \lambda)-1} \leq \frac{c h}{\lambda}(1+h \lambda)^{n+1}
$$

But for small $h>0$ it is true that $0<1+h \lambda \leq \mathrm{e}^{h \lambda}$. This and $(n+1) h \leq t^{*}$ imply that $(1+h \lambda)^{n+1} \leq \mathrm{e}^{t^{*} \lambda}$, therefore

$$
\left\|\boldsymbol{e}_{n}\right\| \leq \frac{c \mathrm{e}^{t^{*} \lambda}}{\lambda} h \rightarrow 0, \quad h \rightarrow 0, \quad \text { uniformly for } \quad 0 \leq n h \leq t^{*}
$$

and the theorem is true.
Definition 3.6 The order of a general numerical method $\boldsymbol{y}_{n+1}=\boldsymbol{\varphi}_{h}\left(t_{n}, \boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}\right)$ for the solution of (3.1) is the largest integer $p \geq 0$ such that

$$
\boldsymbol{y}\left(t_{n+1}\right)-\varphi_{h}\left(t_{n}, \boldsymbol{y}\left(t_{0}\right), \boldsymbol{y}\left(t_{1}\right), \ldots, \boldsymbol{y}\left(t_{n}\right)\right)=\mathcal{O}\left(h^{p+1}\right)
$$

for all $h>0, n \geq 0$ and all sufficiently smooth functions \boldsymbol{f} in (3.1). Note that, unless $p \geq 1$, the 'method' is an unsuitable approximation to (3.1): in particular, $p \geq 1$ is necessary for convergence.

Remark 3.7 (The order of Euler's method) We now have $\boldsymbol{\varphi}_{h}(t, \boldsymbol{y})=\boldsymbol{y}+h \boldsymbol{f}(t, \boldsymbol{y})$. Substituting the exact solution of (3.1), we obtain from the Taylor theorem

$$
\boldsymbol{y}\left(t_{n+1}\right)-\left[\boldsymbol{y}\left(t_{n}\right)+h \boldsymbol{f}\left(t_{n}, \boldsymbol{y}\left(t_{n}\right)\right)\right]=\left[\boldsymbol{y}\left(t_{n}\right)+h \boldsymbol{y}^{\prime}\left(t_{n}\right)+\frac{1}{2} h^{2} \boldsymbol{y}^{\prime \prime}\left(t_{n}\right)+\cdots\right]-\left[\boldsymbol{y}\left(t_{n}\right)+h \boldsymbol{y}^{\prime}\left(t_{n}\right)\right]=\mathcal{O}\left(h^{2}\right)
$$

and we deduce that Euler's method is of order 1.
Definition 3.8 (Theta methods) We consider methods of the form

$$
\begin{equation*}
\boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+h\left[\theta \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)+(1-\theta) \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}\right)\right], \quad n=0,1, \ldots \tag{3.3}
\end{equation*}
$$

where $\theta \in[0,1]$ is a parameter:

- If $\theta=1$, we recover Euler's method.
- if $\theta \in[0,1)$ then the theta method (3.3) is implicit: Each time step requires the solution of N (in general, nonlinear) algebraic equations for the unknown vector \boldsymbol{y}_{n+1}.
- The choices $\theta=0$ and $\theta=\frac{1}{2}$ are known as

$$
\begin{aligned}
\text { Backward Euler: } & \boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+h \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}\right) \\
\text { Trapezoidal rule: } & \boldsymbol{y}_{n+1}=\boldsymbol{y}_{n}+\frac{1}{2} h\left[\boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)+\boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}\right)\right] .
\end{aligned}
$$

Solution of nonlinear algebraic equations can be done by iteration. For example, for backward Euler, letting $\boldsymbol{y}_{n+1}^{[0]}=\boldsymbol{y}_{n}$, we may use
Direct iteration

$$
\boldsymbol{y}_{n+1}^{[j+1]}=\boldsymbol{y}_{n}+h \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}^{[j]}\right)
$$

Newton-Raphson:

$$
\boldsymbol{y}_{n+1}^{[j+1]}=\boldsymbol{y}_{n+1}^{[j]}-\left[I-h \frac{\partial \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}^{[j]}\right)}{\partial \boldsymbol{y}}\right]^{-1}\left[\boldsymbol{y}_{n+1}^{[j]}-\boldsymbol{y}_{n}-h \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}^{[j]}\right)\right]
$$

Modified Newton-Raphson: $\quad \boldsymbol{y}_{n+1}^{[j+1]}=\boldsymbol{y}_{n+1}^{[j]}-\left[I-h \frac{\partial \boldsymbol{f}\left(t_{n}, \boldsymbol{y}_{n}\right)}{\partial \boldsymbol{y}}\right]^{-1}\left[\boldsymbol{y}_{n+1}^{[j]}-\boldsymbol{y}_{n}-h \boldsymbol{f}\left(t_{n+1}, \boldsymbol{y}_{n+1}^{[j]}\right)\right]$
We will return to this topic later.
Remark 3.9 (The order of the theta method) It follows from (3.3) and Taylor's theorem that

$$
\begin{aligned}
& \boldsymbol{y}\left(t_{n+1}\right)-\boldsymbol{y}\left(t_{n}\right)-h\left[\theta \boldsymbol{y}^{\prime}\left(t_{n}\right)+(1-\theta) \boldsymbol{y}^{\prime}\left(t_{n+1}\right)\right] \\
= & {\left[\boldsymbol{y}\left(t_{n}\right)+h \boldsymbol{y}^{\prime}\left(t_{n}\right)+\frac{1}{2} h^{2} \boldsymbol{y}^{\prime \prime}\left(t_{n}\right)+\frac{1}{6} h^{3} \boldsymbol{y}^{\prime \prime \prime}\left(t_{n}\right)\right]-\boldsymbol{y}\left(t_{n}\right)-\theta h \boldsymbol{y}^{\prime}\left(t_{n}\right) } \\
& -(1-\theta) h\left[\boldsymbol{y}^{\prime}\left(t_{n}\right)+h \boldsymbol{y}^{\prime \prime}\left(t_{n}\right)+\frac{1}{2} h^{2} \boldsymbol{y}^{\prime \prime \prime}\left(t_{n}\right)\right]+\mathcal{O}\left(h^{4}\right) \\
= & \left(\theta-\frac{1}{2}\right) h^{2} \boldsymbol{y}^{\prime \prime}\left(t_{n}\right)+\left(\frac{1}{2} \theta-\frac{1}{3}\right) h^{3} \boldsymbol{y}^{\prime \prime \prime}\left(t_{n}\right)+\mathcal{O}\left(h^{4}\right) .
\end{aligned}
$$

Therefore the theta method is of order 1, except that the trapezoidal rule is of order 2.

[^0]: ${ }^{1}$ Please email all corrections and suggestions to these notes to A. Iserles@damtp.cam.ac.uk. All handouts are available on the WWW at the URL http://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

