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3 Ordinary differential equations

Problem 3.1We wish to approximate the exact solution of theordinary differential equation (ODE)

y′ = f(t,y), t ≥ 0, (3.1)

wherey ∈ R
N and the functionf : R × R

N → R
N is sufficiently ‘nice’. (In principle, it is enough forf

to be Lipschitz to ensure that the solution exists and is unique. Yet, for simplicity, we henceforth assume
thatf is analytic: in other words, we are always able to expand locally into Taylor series.) The equation
(3.1) is accompanied by the initial conditiony(0) = y0.
Our purpose is to approximateyn+1 ≈ y(tn+1), n = 0, 1, . . ., wheretm = mh and thetime steph > 0 is
small, fromy0,y1, . . . ,yn and equation (3.1).

Definition 3.2 A one-step methodis a mapyn+1 = ϕh(tn,yn), i.e. an algorithm which allowsyn+1 to
depend only ontn, yn, h and the ODE (3.1).

Method 3.3 (Euler’s method) We knowy and its slopey′ at t = 0 and wish to approximatey at t =
h > 0. The most obvious approach is to truncatey(h) = y(0) + hy′(0) + 1

2h2y′′(0) + · · · at theh2

term. Sincey′(0) = f(t0,y0), this procedure approximatesy(h) ≈ y0 + hf(t0,y0) and we thus set
y1 = y0 + hf(t0,y0).
By the same token, we may advance fromh to 2h by lettingy2 = y1 + hf(t1,y1). In general, we obtain
theEuler method

yn+1 = yn + hf(tn,yn), n = 0, 1, . . . . (3.2)

Definition 3.4 Let t∗ > 0 be given. We say that a method, which for everyh > 0 produces the solution

sequenceyn = yn(h), n = 0, 1, . . . , bt∗/hc, convergesif, as h → 0 andnk(h)h
k→∞

−→ t, it is true that
ynk

→ y(t), the exact solution of (3.1), uniformly fort ∈ [0, t∗].

Theorem 3.5 Suppose thatf satisfies the Lipschitz condition: there existsλ ≥ 0 such that

‖f(t,v) − f(t,w)‖ ≤ λ‖v − w‖, t ∈ [0, t∗], v,w ∈ R
N .

Then the Euler method (3.2) converges.

Proof Let en = yn − y(tn), the error at stepn, where0 ≤ n ≤ t∗/h. Thus,

en+1 = yn+1 − y(tn+1) = [yn + hf(tn,yn)] − [y(tn) + hy′(tn) + O
(

h2
)

].

By the Taylor theorem, theO
(

h2
)

term can be bounded uniformly for all[0, t∗] (in the underlying norm
‖ · ‖) by ch2, wherec > 0. Thus, using (3.1) and the triangle inequality,

‖en+1‖ ≤ ‖yn − y(tn)‖ + h‖f(tn,yn) − f(tn,y(tn))‖ + ch2

≤ ‖yn − y(tn)‖ + hλ‖yn − y(tn)‖ + ch2 = (1 + hλ)‖en‖ + ch2.

Consequently, by induction,

‖en+1‖ ≤ (1 + hλ)m‖en+1−m‖ + ch2
m−1
∑

j=0

(1 + hλ)j , m = 0, 1, . . . , n + 1.

1Please email all corrections and suggestions to these notes toA.Iserles@damtp.cam.ac.uk. All handouts are available on
the WWW at the URLhttp://www.damtp.cam.ac.uk/user/na/PartII/Handouts.html.

17



In particular, lettingm = n + 1 and bearing in mind thate0 = 0, we have

‖en+1‖ ≤ ch2
n

∑

j=0

(1 + hλ)j = ch2 (1 + hλ)n+1 − 1

(1 + hλ) − 1
≤

ch

λ
(1 + hλ)n+1.

But for smallh > 0 it is true that0 < 1+hλ ≤ ehλ. This and(n+1)h ≤ t∗ imply that(1+hλ)n+1 ≤ et∗λ,
therefore

‖en‖ ≤
cet∗λ

λ
h → 0, h → 0, uniformly for 0 ≤ nh ≤ t∗

and the theorem is true. 2

Definition 3.6 Theorder of a general numerical methodyn+1 = ϕh(tn,y0,y1, . . . ,yn) for the solution
of (3.1) is the largest integerp ≥ 0 such that

y(tn+1) − ϕh(tn,y(t0),y(t1), . . . ,y(tn)) = O
(

hp+1
)

for all h > 0, n ≥ 0 and all sufficiently smooth functionsf in (3.1). Note that, unlessp ≥ 1, the ‘method’
is an unsuitable approximation to (3.1): in particular,p ≥ 1 is necessary for convergence.

Remark 3.7 (The order of Euler’s method) We now haveϕh(t,y) = y + hf(t,y). Substituting the exact
solution of (3.1), we obtain from the Taylor theorem

y(tn+1)− [y(tn)+hf(tn,y(tn))] = [y(tn)+hy′(tn)+ 1
2h2y′′(tn)+ · · ·]− [y(tn)+hy′(tn)] = O

(

h2
)

and we deduce that Euler’s method is of order 1.

Definition 3.8 (Theta methods) We consider methods of the form

yn+1 = yn + h[θf(tn,yn) + (1 − θ)f(tn+1,yn+1)], n = 0, 1, . . . , (3.3)

whereθ ∈ [0, 1] is a parameter:

• If θ = 1, we recover Euler’s method.

• if θ ∈ [0, 1) then thetheta method(3.3) is implicit: Each time step requires the solution ofN (in
general, nonlinear) algebraic equations for the unknown vectoryn+1.

• The choicesθ = 0 andθ = 1
2 are known as

Backward Euler: yn+1 = yn + hf(tn+1,yn+1),

Trapezoidal rule: yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)].

Solution of nonlinear algebraic equations can be done by iteration. For example, for backward Euler, letting
y

[0]
n+1 = yn, we may use

Direct iteration y
[j+1]
n+1 = yn + hf(tn+1,y

[j]
n+1);

Newton–Raphson: y
[j+1]
n+1 = y

[j]
n+1 −

[

I − h
∂f(tn+1,y

[j]
n+1

)

∂y

]

−1

[y
[j]
n+1 − yn − hf(tn+1,y

[j]
n+1)];

Modified Newton–Raphson:y[j+1]
n+1 = y

[j]
n+1 −

[

I − h∂f(tn,yn)
∂y

]

−1

[y
[j]
n+1 − yn − hf(tn+1,y

[j]
n+1)]

We will return to this topic later.

Remark 3.9 (The order of the theta method) It follows from (3.3) and Taylor’s theorem that

y(tn+1) − y(tn) − h[θy′(tn) + (1 − θ)y′(tn+1)]

= [y(tn) + hy′(tn) + 1
2h2y′′(tn) + 1

6h3y′′′(tn)] − y(tn) − θhy′(tn)

− (1 − θ)h[y′(tn) + hy′′(tn) + 1
2h2y′′′(tn)] + O

(

h4
)

= (θ − 1
2 )h2y′′(tn) + (1

2θ − 1
3 )h3y′′′(tn) + O

(

h4
)

.

Therefore the theta method is of order 1, except that the trapezoidal rule is of order 2.
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