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R. R. - zag. początkowe

(1) y′ = f(y), y(0) = y0 ; y = y(t), t ≥ 0, y(t) ∈ Rm.

D1. y∗ jest punktem stałym, p. równowagi RR. (1) : f(y∗) = 0 . 2

D2. y∗ jest lokalnie przyciągającym jeśli istnieje takie jego
otoczenie, że jeśli y(t) wpadnie do niego, to y(t) → y∗ dla t → ∞ . 2

Rozp. (1) dla y(t) blisko y∗ : y(t) = y∗ + ε(t)

y′(t) = ε′(t) = f( y∗ + ε(t) ) ∼= f(y∗) +
df

dy
(y∗) ∗ ε(t)

⇒ ε′(t) = df
dy

(y∗) ∗ ε(t) .

Jest to układ równań liniowych o stałych współczynnikach i warunkiem
wystarczającym lokalnego przyciągania przez y∗ jest

∀λ ↔ df

dy
(y∗) : re(λ) < 0 .
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R. R. - zag. początkowe

D3. basenem przyciągania punktu y∗ nazywa się

{y0 ∈ Rm : y(t) → y∗ dla t → ∞} . 2

Przykład

(2) y′ = λ y (1 − y) , y(0) = y0 , 0 < λ ⇒ y(t) =
y0e

λt

1 − y0 − y0eλt
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R. R. - metoda numeryczna

(3) yn+1 = F (yn), y0 ; F : Rm → Rm.

D1’. y∗ jest punktem stałym metody (3) : y∗ = F (y∗) . 2

D2’. y∗ jest lokalnie przyciągającym jeśli istnieje takie jego
otoczenie, że jeśli yn do niego wpadnie, to yn+k → y∗ dla k → ∞ . 2

Rozp. (3) dla yn blisko y∗ : yn = y∗ + εn

yn+1 = y∗ + εn+1 = F ( y∗ + εn ) ∼= F (y∗) +
dF

dy
(y∗) ∗ εn

⇒ εn+1 = dF
dy

(y∗) ∗ εn .

Warunkiem wystarczającym lokalnego przyciągania punktu y∗ jest

ρ

(

dF

dy
(y∗)

)

< 1 .
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y′ = λ y (1 − y) : jawna metoda Eulera

Metoda: yn+1 = yn + hf(yn), y0 − zadane,

yn+1 = yn + λh yn (1 − yn) ; (yn+1 = F (yn)).

Punkt stały: y∗ = y∗ + λh y∗ (1 − y∗)

⇒ y∗ = 0 , y∗ = 1 .

dF

dy
(y) = 1 + λh − 2λhy

dF
dy

(0) = 1 + λh > 1 ,

|dF
dy

(1)| = |1 − λh| < 1 ,
dla 0 < λh < 2

a jeśli 2 < λh ?
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y′ = λ y (1 − y) : jawna metoda Eulera

Dla λh bliskiego 2.0 wyznaczane yn winne być bliskimi 1.0 ;
przyjmijmy yn = 1 + ε . Otrzymujemy:

yn+1 = F (1 + ε) ∼= F (1) +
dF

dy
(1) ∗ ε = 1 + (1 − λh) ∗ ε ∼= 1 − ε

punkty 1 + ε i 1 − ε występują w {yn} na przemian...
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y′ = λ y (1 − y) : metoda RK rzędu 2

Metoda: k1 = f(yn) , k2 = f(yn + 0.5hk1) , yn+1 = yn + hf( k2) .

Dla R.R. (2) otrzymujemy wzór yn+1 = F (yn) w postaci

yn+1 = yn + λhyn

(

1 +
1

2
λh − 1

2
λhyn

)(

1 − yn

(

1 +
1

2
λh

)

+
1

2
λhy2

n

)

i równanie punktu stałego

0 = λhy∗

(

1 +
1

2
λh(1 − y∗)

)(

(1 − y∗)

(

1 − 1

2
λhy∗

))

.

y∗ = 0 , dF
dy

(y∗) = 1 + λh + 1
2 (λh)2 , nie przyciąga,

y∗ = 1 + 2
λh

, dF
dy

(y∗) = 1 − λh(λh+2)
2 , 0 < λh < −1 +

√
5 ,

y∗ = 1 , dF
dy

(y∗) = 1 − λh , 0 < λh < 2 ,

y∗ = 2
λh

, dF
dy

(y∗) = 1 − λh(λh−2)
2 , 2 < λh < 1 +

√
5 .
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y′ = λ y (1 − y) : metoda RK rzędu 2
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yn+1 = λ yn (1 − yn) : m. iteracyjna

(3) yn+1 = F (yn), y0 ; F : Rm → Rm.

Model Verhulsta (1845)

(4) yn+1 = λ yn (1 − yn) , y0 - zadane, 0 < λ < 4 .

Równanie punktu stałego
y∗ = λy∗(1 − y∗)

y∗ = 0 F ′(0) = λ ,

y∗ = 1 − 1
λ

F ′(1 − 1
λ
) = 2 − λ ,

zatem

0 < λ ≤ 1 ⇒ {0} - przyciągający,

1 < λ ≤ 3 ⇒ {1 − 1
λ
} - przyciągający,

3 < λ ⇒ - nie ma punktów przyciągających.
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yn+1 = λ yn (1 − yn) : m. iteracyjna

Niech

(4) yn+1 = λ yn (1 − yn) , 0 < λ < 4 , y0 - zadane.

Ilustracje dla λ = 2.9 i y0 = 0.2
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yn+1 = F (yn) : m. iteracyjna

(Rm, F ) - układ dynamiczny z czasem dyskretnym.

Wytworzony ciąg {yn} - trajektoria punktu y0 ,
np. zapis: y0 , F (y0) , F 2(y0) , F 3(y0) , ...

D4. Jeśli istnieje liczba naturalna p ≥ 2 i punkt y0 takie, że

y0 = F p(y0) ∧ y0 6= F k(y0) dla k = 1, ... p − 1 ,

to y0 nazywamy punktem okresowym z minimalnym okresem p . 2

D5. Wtedy p-elementowy podciąg y0 , F (y0) , ..., F p−1(y0)
nazywa się okresową orbitą punktu y0 . 2

D6. Zbiór I ⊂ Rm nazywa się zbiorem niezmienniczym
układu dynamicznego (Rm, F ) jeśli F (I) = I . 2

Zbiory niezmiennicze (np. pkty stałe, orbity,...)
jeśli przyciągają - to atraktory, jeśli odpychają - to repelery.
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yn+1 = λ yn (1 − yn) : m. iteracyjna

λ = 3.2 λ = 3.5 λ = 3.56
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yn+1 = λ yn (1 − yn) : m. iteracyjna
Zjawisko podwajania okresu orbit
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Historia

(1845) Pierre Francois Verhulst
- badał wzrost populacji w ograniczonym środowisku,

(1920) Gaston Maurice Julia (3.02.1893 - 19.03.1978)
- układy dynamiczne, zbiory Julii,

(1964) Aleksander Nikołajewicz Szarkowski (7.12.1936 Kijów)
- Tw. dla F : R → R ,

Edward Norton Lorenz (23.05.1917 - 16.04.2008)
- Chaos theory, Lorenz attractor, Butterfly effect (1969),
Benoît B. Mandelbrot (20.11.1924 Warszawa)
- (1975-1989) geometria fraktalna = ”workable geometric
middle ground between the excessive geometric order of
Euclid and the geometric chaos of general mathematics”,

(1975) Mitchell Jay Feigenbaum (19.12.1944)
- teoria chaosu, (1978) opisał przykłady podając stałą,

(1980) Pierre Collet, Jean-Pierre Eckmann i Oscard Lanford III
- podali pełny dowód dla stałej Feigenbauma.
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yn+1 = λ yn (1 − yn) : m. iteracyjna

k λk
λk−λk−1

λk+1−λk

1 3.0
2 3.449490 4.751479
3 3.544090 4.656199
4 3.564407 4.668428

k λk
λk−λk−1

λk+1−λk

5 3.568759 4.664523
6 3.569692 4.688442
7 3.569891 4.627906
8 3.569934

λ∞ = 3.569945... st. Feigenbauma = 4.6692016...
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yn+1 = λ yn (1 − yn) : m. iteracyjna

Twierdzenie Szarkowskiego dotyczące występowania punktów
okresowych dla ciągłych funkcji prostej rzeczywistej (1964):

Niech f : I → R będzie funkcją ciągłą, a I ⊂ R to domknięty odcinek
lub cała prosta R. Jeśli f ma punkt okresowy o okresie k oraz k / l

w porządku Szarkowskiego, to f ma punkt okresowy o okresie l.

3 / 5 / 7 / ...

3 ∗ 2 / 5 ∗ 2 / 7 ∗ 2 / ...

3 ∗ 22 / 5 ∗ 22 / 7 ∗ 22 / ...

...

... / 22 / 21 / 1

Wniosek: dla rozpatrywanej funkcji iteracyjnej istnienie orbity
stałej o okresie 3 wymusza istnienie orbit stałych o wszystkich
innych możliwych okresach wystepujących w ciągu liczb
naturalnych z uporządkowaniem Szarkowskiego.
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zn+1 = z2
n + c : żuk Mandelbrota

Na płaszczyźnie zespolonej C pracujemy z przekształceniem

zn+1 = Fc(zn) gdzie Fc(z) ≡ z2 + c .

Na rysunku czarny punkt c oznacza, że wygenerowany ciąg {zn} jest
ograniczony. Inne kolory oznaczają nieograniczoność ciągu oraz
informują o liczbie wykonanych iteracji.

z
n+1

 = z
n
2 + c

Re c

Im c

−2.2 0.9 

 1.2

−1.2
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zn+1 = z2
n + c : żuk Mandelbrota

Czy Fc(z) posiada punkty stałe? Przyciągające? Orbity?

z∗ = z2
∗

+ c ∧ |F ′

c(z)| < 1 ⇒ c = z∗ − z2
∗

∧ |z∗| <
1

2

brzeg zbioru zawierającego punkty stałe:

{c : c =
1

2
e2 π θi − 1

4
e4 π θi } .
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zn+1 = z2
n + c : żuk Mandelbrota

Otrzymujemy orbity okresowe
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zn+1 = z2
n + c : żuk Mandelbrota

Okresy orbit - rozmaite miejsca wyboru parametru c
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F: δ = 4.66920160910299067185320283...

Powiększamy żuka Mandelbrota za pomocą stałej Feigenbauma
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F: δ = 4.66920160910299067185320283...

Po przeskalowaniu...
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dziękuję...

z
n+1

 = z
n
2 + c

Re c

Im c

 −0.5 0.282
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