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R. R. - zag. poczatkowe

(1) y' = f(y), y0)=1yo; y=y(t), t=>0, y(t)eRrR™
D1. y. jest punktem statym, p. rownowagi RR. (1) : f(y«) =0.0

D2. vy, jest lokalnie przyciggajacym jesli istnigje takie jego
otoczenie, ze jesli y(¢) wpadnie do niego, to y(t) — y. dla t —oo. O

Rozp. (1) dla y(t) Dblisko vy, y(t) =y« + €(1)

Y (8) = €0) = f(yn +e(t)) 2 Fl) + j—J;(y*) v elt)
= €'(t) = g—f(y*) x €(t) .

Jest to uktad rownan liniowych o statych wspotczynnikach i warunkiem
wystarczajgcym lokalnego przyciggania przez y. jest

VA« Z—‘Z(y*) ; re(\) <O0.
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R. R. - zag. poczatkowe

D3. basenem przyciggania punktu v, nhazywa sie

{yoe R™ : y(t)—y, dla t— oco}. O

Przykiad
At

2) = Ay (l— = A t) = — 2
@ v=ry-y), y0)=w, 0<r = wl)=1— — %

k\ Kkkk e Ly =1 —2y)
; = : ® yit)=1
/ / ® L1)y=-x

: : j ® y(t)=0
A e

______________
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R. R. - metoda numeryczna

(3) Yn+1 = F(yn)y Yo, F:R™ — R™.
D1'. y, jest punktem statym metody (3) : y. = F(yx).

D2. wy. jest lokalnie przyciagajgcym jeSliistnieje takie jego

otoczenie, ze jesli y,, do niego wpadnie, to y,,.r — y« dla k — oo.

Rozp. (3) dla wy, Dblisko vy, Yn = Ysx + €y,
N dF
Ynt1 =Ys + €np1 = F(ys +€,) = Flys) + d—y(y*) * €n
= €ntl = Cfl—g(y*) * €y -

Warunkiem wystarczajgcym lokalnego przyciggania punktu . jest
dF
- sk ]. .
p ( a7 (y )) <
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y = Ay (1 —y) . jawna metoda Eulera

Metoda: yni1 = yn + hf(yn), Yo — zadane,

Unt1 =Yn + AR yn (1 —yp); Wnt1 = F(yn)).

Punkt staly:  y. =y + Ahys (1 — ys)

® 0)=1+X 0 > 1,

® |9 =1—-An| <1
dF 4y |
d_y(y):1+>\h—2>\hy dla 0< M\ <2

® ajesli 2 < \h?
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y = Ay (1 —y) . jawna metoda Eulera

m. Euleradla 1 <A h<3 m. Eulera dla 2.44 < A h< 2.585
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1 1.2 1.4 1.6 1.8 2 22 24 26 28 3 2.44 2.46 2.48 25 2.52 2.54 2.56 2.58
Ah Ah

Dla Ah bliskiego 2.0 wyznaczane 1y, winne byc bliskimi 1.0;
przyjmijmy vy, = 1 4 €. Otrzymujemy:

Yni1 = F(14+e) 2 F(1)+ —(1)xe=14+(1—Ah)*xe =2 1—c¢

punkty 1+¢ i 1—¢ wystepujaw {y,} naprzemian...
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y =My (1 —y) : metoda RK rzedu 2

Metoda: ki1 = f(yn) , ko= f(yn + O5hl€1) v YUn+l = Yn + hf( kg) :

Dla R.R.(2) otrzymujemy wzér y,.1 = F(y,) W postaci

1 1 1 1

| rownanie punktu statego

0 = \hy. (1 + %Ah(l - y*)> ((1 — Ys) (1 - %Ahy*)) .

® y =0, %(y*):1+>\h+%()\h)2, nie przyciaga,
® y=1+2%, LE)=1-2020 " 0<ih<-1+V5,
® y =1, & (ye) = 1=\, 0 <M <2,

® y. =2, B (y,) =1- 2202 2 < A < 1+ V5.
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y =My (1 —y) : metoda RK rzedu 2

m. Rungego-Kutty rzedu 2
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Un+1 = Ayn (1 —yn) © M. Iteracyjna

(3) YUn+1 = F(Yn), Yo F:R™ — R™.
Model Verhulsta (1845)

(4)  Ype1 =Ayn (1 —yn), yo - zadane, 0< A\ < 4.

Réwnanie punktu statego
Y = )\y*(l — y*)

® y. =0 F'(0) = X,
® y=1-1 F(l-5)=2-2),
zatem
® 0<x<1 = {0} - przyciagajacy,
® 1<x1<3 = {1-1} -przyciagajacy,

® 3<)A = - nie ma punktow przyciagajacych.
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Un+1 = Ayn (1 —yn) © M. Iteracyjna

Niech
4) Ypye1 =Ayn (1 —yn), 0<A<4, 1y - zadane.
llustracjedla A=29 1 y9=0.2

yn=29*y*(1-y) yn=29*y*(1-y)
T T T T T T T 1 T T T T T T T
0.8
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yn ' YN sk
0.5
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0.1
50
y y
n
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yn+1 = F(yn) © M. Iteracyjna

® (R™, F) - uktad dynamiczny z czasem dyskretnym.

® Wytworzony ciag {y,} - trajektoria punktu v,
np. zapis:  yo,F(vo), F%(yo), F3(yo), ...

D4. JeSli istnieje liczba naturalna p > 2 i punkt y, takie, ze

y():Fp(yo) A\ yo#Fk(yo) dla k:L ...p—l,

to yo nazywamy punktem okresowym z minimalnym okresem p.

D5. Wtedy p-elementowy podciag  yo, F (o), ..., FP~1(yo)
nazywa sie okresowa orbitg punktu yq .

D6. Zbior I ¢ R™ nazywa sie zbiorem niezmienniczym
uktadu dynamicznego (R™, F') jeSli F(I)=1.

Zbiory niezmiennicze (np. pkty state, orbity,...)
jesli przyciagaja - to atraktory, jeSli odpychaja - to repelery.
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Un+1 = Ayn (1 —yn) © M. Iteracyjna

A=3.2

yn=32*y*(1-y)

\ —

3.9

yn=35*y*(1-y)

A = 3.56

yn=356*y*(1-y)
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09 0.9 0.9 b
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0.7k 0.7 0.7 b
061 0.6 0.6 b
Y5 Y5 Y5 1
0.4 0.4 0.4 g
03 03 03 b
0.2 0.2 0.2 b
01f 0.1 0.1 b
0 L L L L L L L L L 0 L L L L L L L L L 0 L L L L L L L L L
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
y y y
A = 3.628 A = 3.688 A= 3.834
yn=3.628*y*(1-y) yn=3.688*y*(1-y) yn=3834*y*(1-y)
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X X X
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Yn+1 — Ayn (1 — yn

. M. Iteracyjna

Zjawisko podwajania okresu orbit

0.8
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yn=1*y*(1-y)

3.2 A 3.56 .628 .688 3.834 4
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Historia

® (1845) Pierre Francois Verhulst
- badat wzrost populacji w ograniczonym srodowisku,

® (1920) Gaston Maurice Julia (3.02.1893 - 19.03.1978)
- uktady dynamiczne, zbiory Julii,

® (1964) Aleksander Nikotajewicz Szarkowski (7.12.1936 Kijow)
-Tw.dla F: R— R,

® o Edward Norton Lorenz (23.05.1917 - 16.04.2008)
- Chaos theory, Lorenz attractor, Butterfly effect (1969),

# Benoit B. Mandelbrot (20.11.1924 Warszawa)
- (1975-1989) geometria fraktalna = "workable geometric
middle ground between the excessive geometric order of
Euclid and the geometric chaos of general mathematics”,

® (1975) Mitchell Jay Feigenbaum (19.12.1944)
- teoria chaosu, (1978) opisat przyktady podajac staig,

® (1980) Pierre Collet, Jean-Pierre Eckmann i Oscard Lanford Il
- podali petny dowdd dla statej Feigenbauma.
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Yn+1 = Ayn (1 —yp) © M. Iteracyjna
1 yn=a*y*(1-y)
0.8
06
yn
0.4
0.2
0
0 0.5 1 1.5 Y 2.5
N — M1 N — M1
K Ak A:+1—k>\k K Ak A:+1—k>\k
1 3.0 5 | 3.568759 | 4.664523
2 | 3.449490 | 4.751479 || 6 | 3.569692 | 4.688442
3 | 3.544090 | 4.656199 || 7 | 3.569891 | 4.627906
4 | 3.564407 | 4.668428 || 8 | 3.569934
Moo = 3.569945... st. Feigenbauma = 4.6692016...
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Un+1 = Ayn (1 —yn) © M. Iteracyjna

® Twierdzenie Szarkowskiego dotyczgce wystepowania punktow
okresowych dla ciggtych funkcji prostej rzeczywiste] (1964):

Niech f: I — R bedzie funkcjg ciagta, a I C R to domkniety odcinek
lub cata prosta R. JeSli f ma punkt okresowy o okresie k oraz k<l
w porzadku Szarkowskiego, to f ma punkt okresowy o okresie /.

3 ) a7 N
32 < Hx2 4 Tx2 «
3x22 g 5x22 g 7x22 4«

q 22 q 21 4 1

® \Whniosek: dla rozpatrywanej funkcji iteracyjnej istnienie orbity
state] o okresie 3 wymusza istnienie orbit statych o wszystkich
iInnych mozliwych okresach wystepujgcych w ciggu liczb
naturalnych z uporzadkowaniem Szarkowskiego.
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Znt1 = 22 + ¢ . zuk Mandelbrota

Na ptaszczyznie zespolonej C' pracujemy z przeksztatceniem
Zni1 = Fe(zp) gdzie F.(2) =2 +c.

Na rysunku czarny punkt ¢ oznacza, ze wygenerowany ciag {z,} jest
ograniczony. Inne kolory oznaczajg nieograniczonosc ciagu oraz
iInformuja o liczbie wykonanych iteracii.

12

Rec
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Znt1 = 22 + ¢ . zuk Mandelbrota

Czy F.(z) posiada punkty state? Przyciggajace? Orbity?
1
ze =z224c¢ N |Fi(2)] < 1 = c:z*—zf/\|z*|<§

brzeg zbioru zawierajgcego punkty state:

{ c:oe 62 7 01 64 7 01 }
z =72%+c
n+ n
0.2
b
0.25
0.8
06 SRR 8 -0.3
0.4
0.35
0.2 ;
Imc | < ] imz .1
02t
0.45
04t
06 e . 05}
08}
0.55
ab
| | | | | | -0.6 1 1 1 1 1 1 1 1
-2 -15 -1 -05 0 05 -055 05 045 -04 -035 03 025 -02 -015 01  -0.05

Rec Rez
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Znt1 = 22 + ¢ . zuk Mandelbrota

Otrzymujemy orbity okresowe

zn =22+ (-1.32-0.04i )
.

zn =272+ (-1.065-0.08i ) zn =722 + (-0.09+0.755i )
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006 \
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-14 12 -1 08 06 04 02 ) 02 04 06 -12 -1 -08 -06 04 -02 ) 02 0.7 -06 -05 04 -03 -02 -01 0
Rez Re z Re z
c = —0.09 + 0.755i
C 1.32 4+ 0.041i
" N
4

c = —1.065 — 0.08i

c = 0.115+ 0.065i
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Znt1 = 22 + ¢ . zuk Mandelbrota

Okresy orbit - rozmaite miejsca wyboru parametru c
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F: 6 =4.6692016091029906718532028:

Powiekszamy zuka Mandelbrota za pomoca statej Feigenbauma

1 2 4 38

[-0.03315, 0.03315] x [ -1.43431 , -1.368 ]

x5

[-3.375,3.375] x [ -4.77616, 1.97385] [-0.7228 ,0.7228 ] x [ -2.12398 , —0.678333 | [-0.1548 , 0.1548 ] x [ -1.55596 , ~1.24635 ]

250

300
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450

£

300 350 400 450

50 100 150 200 250

16 32 64 128

-1.40083] [ -6.9755-005 , 6.9755¢-005 | x [ -1.40122 , ~1.40109 ]

e

[-0.007101, 0.007101 ] x [ ~1.40826 , ~1.39405 ] [-1.5208e-003 , 1.5208e-003 | x [ -1.40268 , —1.39963 ] [-3.2570e-004 , 3.2570e-004 ] x [ -1.40148

¥ S 3 ;
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F: 6 =4.6692016091029906718532028:

Po przeskalowaniu...

asz - p. 22/ 23



dziekuje...

-1.0712

-0.5175

Re c
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