
Chapter 1

Explicit One-Step Methods

Remark 1.1 Contents. This class presents methods for the numerical solution of
explicit systems of initial value problems for ordinary differential equations of first
order

y′(x) = f(x,y(x)), y(x0) = y0.

For the most part, only initial value problems for scalar ordinary differential
equations of first order

y′(x) = f(x, y(x)), y(x0) = y0, (1.1)

considered, for simplicity of presentation. The extension of the results and the
methods to systems is generally straightforward. 2

1.1 Consistency and Convergence

Definition 1.2 Grid, step size. A grid is a decomposition Ih of the interval
I = [x0, xe]

Ih = {x0, x1, . . . , xN = xe}

with x0 < x1 < . . . < xN . The differences between neighboring grid points hk =
xk+1 − xk are called step sizes. 2

Definition 1.3 Explicit and implicit methods. Let y(xk) denote the solution
of (1.1) in the node xk and yk a numerical approximation of y(xk). A numerical
method for the solution of (1.1) on a grid Ih is called explicit, if an approximation
yk+1 in xk+1 can be calculated directly from already computed values yi, i < k.
Otherwise, the method is called implicit method. Implicit methods require in each
step the solution of a generally nonlinear equation for computing yk+1. 2

Definition 1.4 One-step method, incremental function. A one-step method
for the computation of an approximation yk+1 of the solution of (1.1) on a grid Ih
has the form

yk+1 = yk + hkΦ (x, y, hk) , k = 0, 1, . . . , y0 = y(x0). (1.2)

Here, Φ(·, ·, ·) is called incremental function of the one-step method. 2
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Example 1.5 One-step methods, incremental functions. The explicit or forward
Euler method

yk+1 = yk + hkf (xk, yk) , k = 0, 1, 2, . . . , y0 = y(x0),

is an explicit one-step method with the incremental function

Φ (x, y, hk) = f (xk, yk) .

The computation of yk+1 requires only the substitution of already computed values
into the function f(x, y).

The implicit or backward Euler method

yk+1 = yk + hkf (xk+1, yk+1) , k = 0, 1, 2, . . . , y0 = y(x0),

is an implicit one-step method with the incremental function

Φ (x, y, hk) = f (xk+1, yk+1) .

One has to solve an equation for computing yk+1. The complexity of this step
depends on f(x, y). 2

Remark 1.6 Representation of implicit one-step methods. Explicit one-step meth-
ods have an incremental function of the form Φ (xk, yk, hk). For the considerations
in this section, one can adopt the point of view that also implicit one-step methods
can be written as explicit one-step methods, but generally one does not know the
concrete form of the incremental function. 2

Example 1.7 Incremental function of the implicit Euler method. The incremental
function of the implicit Euler method can be written in the form

Φ (x, y, h) = f (x+ h, y + hΦ (x, y, h)) ,

which allows formally the representation of this method as explicit one-step scheme.
2

Definition 1.8 Local error. Let ŷk+1 be the result of one step of an explicit
one-step method (1.2) with the initial value at the solution y(x), i.e.,

ŷk+1 = y(xk) + hkΦ (xk, y(xk), hk) .

Then,
le (xk+1) = lek+1 = y (xk+1)− ŷk+1

is called local error, see Figure 1.1 2

Remark 1.9 The local error. In the literature, sometimes

y (xk+1)− y(xk)

hk
− Φ (xk, y(xk), hk)

is defined to be the local error.
One should require for a reasonable method that the local error is small in an

appropriate sense. 2
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Figure 1.1: The local error.

Definition 1.10 Consistent method. Let y(x) be the solution of the initial value
problem (1.1), hmax = maxk hk and

S := {(x, y) : x ∈ [x0, xe], y ∈ R} .

The one-step method (1.2) is said to be consistent, if for all f ∈ C(S), that satisfy
in S a Lipschitz condition with respect to y, it holds

lim
hmax→0

(

max
xk∈Ih

|le (xk+1)|

hk

)

= 0

or

lim
hmax→0

(

max
xk∈Ih

|f(xk, y(xk))− Φ (xk, y(xk), hk)|

)

= 0.

Both conditions are equivalent. problem for exercises 2

Remark 1.11 Approximation of the derivative with the incremental function. For
bounded incremental functions it is obvious that the local error converges to zero
if hmax → 0, because in this case it holds hK → 0 and ŷk+1 → y(xk). Consistency
requires more, namely that the incremental function approximates the derivative of
the solution sufficiently well

le (xk+1)

hk
=

y (xk+1)− y(xk)

hk
− Φ (xk, y(xk), hk) ≈ y′(xk)− Φ (xk, y(xk), hk) .

2

Example 1.12 Consistency of the explicit Euler method. For the explicit Euler
method is Φ (xk, y(xk), hk) = f (xk, y(xk)) . Hence, the second condition from Defi-
nition 1.10 is satisfied and the method is consistent. 2

Remark 1.13 Quality of the approximation of the incremental function. For prac-
tical purposes, not only the consistency itself but the quality of the approximation
of the derivative by the incremental function is essential. The quality allows a com-
parison of different one-step methods. For simplicity of presentation, let hk = h for
all k. 2

Definition 1.14 Order of consistency. An explicit one-step method (1.2) has
the consistency order p ∈ N if p is the largest natural number such that for all
functions f ∈ C(S), which satisfy a Lipschitz condition with respect to y, it holds

|le (xk + h)| ≤ chp+1

for all xk ∈ Ih, for all Ih with h ∈ (0, H], and where the constant c > 0 is indepen-
dent of h. The constant c might depend on derivatives of y(x), on f(x, y), and on
partial derivatives of f(x, y). 2
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Example 1.15 Order of consistency of the explicit Euler method. Consider the
explicit Euler method and assume that the function y(x) is two times continously
differentiable. Then it follows with Taylor series expansion and using the differential
equation that

|le (xk + h)| = |y(xk + h)− ŷk+1|

= |y(xk) + hy′(xk) +
h2

2
y′′(xk + θh)− y(xk)− h f (xk, y(xk))

︸ ︷︷ ︸

=y′(xk)

|

=
h2

2
|y′′(xk + θh)| ≤

h2

2
‖y‖C2([x0,xe])

,

with θ ∈ (0, 1). Hence, the method has consistency order 1. 2

Remark 1.16 Consistency and convergence. The consistency is a local property
of a one-step method. For practical purposes it is important that the computed
solution converges to the analytical solution if the grid becomes finer and finer. Of
course, the order of convergence is of importance, too.

It will be shown that, under certain conditions, the convergence of a one-step
method follows from its consistency and that the order of convergence equals the
consistency order. 2

Definition 1.17 Convergent method, order of convergence. A one-step
method (1.2) converges for the initial value problem (1.1) on the interval I = [x0, xe],
if for each sequence of grids {Ih} with hmax = maxhk

hk → 0 for the global error

e(xk, h) = y(xk)− yk, xk ∈ Ih,

it follows that
max
xk∈Ih

|e(xk, h)| → 0 for hmax → 0.

The one-step method has the order of convergence p∗, if p∗ is the largest natural
number such that for all step lengths hmax ∈ (0, H] it holds

|e(xk, h)| ≤ chp∗

max ∀ xk ∈ Ih,

where c > 0 is independent of hmax. 2

Lemma 1.18 Estimate for a sequence of real numbers. Assume that for real
numbers xn, n = 0, 1, . . ., the inequality

|xn+1| ≤ (1 + δ) |xn|+ β

holds with constants δ > 0, β ≥ 0. Then, it follows that

|xn| ≤ enδ |x0|+
enδ − 1

δ
β, n = 0, 1, . . .

Proof: With induction, problem for exercises.

Theorem 1.19 Connection of consistency and convergence. Let y(x) be the
solution of the initial value problem (1.1) with f ∈ C(S). Let a Lipschitz condition
hold for the second argument of the incremental function

|Φ(x, y1, h)− Φ(x, y2, h)| ≤ M |y1 − y2| ∀ (x, y) ∈ S, h ∈ (0, H].

5



Assume that for the local error the estimate

|le (xk + h)| ≤ chp+1 ∀ x ∈ Ih, h ∈ (0, H]

is valid and assume that y0 = y(x0).
Then, it follows for the global error that

|e(xk+1, h)| ≤ c
eM(xk+1−x0) − 1

M
hp,

where c is indepent of h.

Proof: It holds

yk+1 = yk + hΦ (xk, yk, h) ,

y(xk+1) = y(xk) + hΦ (xk, y(xk), h) + le (xk+1) , k = 0, 1, . . . .

Then, it follows with the triangle inequality and the Lipschitz condition of the incremental
function that

|e(xk+1, h)| = |y(xk+1)− yk+1|

=
∣

∣y(xk)− yk + le (xk+1) + h
(

Φ (xk, y(xk), h)− Φ (xk, yk, h)
)
∣

∣

=
∣

∣e(xk, h) + le (xk+1) + h
(

Φ (xk, y(xk), h)− Φ (xk, yk, h)
)
∣

∣

≤ |e(xk, h)|+ |le (xk+1)|+ h |Φ (xk, y(xk), h)− Φ (xk, yk, h)|

≤ |e(xk, h)|+ ch
p+1 + hM |y(xk)− yk|

= (1 + hM) |e(xk, h)|+ ch
p+1

.

This sequence of inequalities has the form that was considered in Lemma 1.18. One obtains
with e(x0) = 0

|e(xk+1, h)| ≤ e
(k+1)hM |e(x0)|+ c

e(k+1)hM − 1

hM
h
p+1 = c

eM(xk+1−x0) − 1

M
h
p
.

Remark 1.20 To Theorem 1.19.

• The consideration of a constant step length is only for simplicity of presentation.
The result of the theorems holds also for non-constant step lengths with h =
maxk hk.

• The one-step methods computes an approximation yk of the solution in the grid
points xk, k = 0, 1, . . . , N . To enable a better comparison with the analyti-
cal solution, one connects these points linearly form (xk, yk) to (xk+1, yk+1).
One obtains a piecewise linear approximation of the solution that is defined on
[x0, xe]. This function is called yh(x). The considerations from above can be
extended to the function yh(x).

2

1.2 Explicit Runge–Kutta Schemes

Remark 1.21 Idea. The Euler methods are only of first order. The idea of
Runge1–Kutta2 methods consists in using an incremental function Φ(x, y, h) that is
a linear combination of values of f(x, y) in discrete points. With this approach, one
obtains methods of higher order for the cost of evaluating more values of f(x, y).

1Carle David Tolmé Runge (1856 – 1927)
2Martin Kutta (1867 – 1944)
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This approach can be illustrated well at the integral equation that is equivalent
to the initial value problem (1.1). For simplicity, let the right hand side of (1.1)
depend only on x. Then, the integral equation has the form

y(x) = y0 +

∫ x

x0

f(t) dt. (1.3)

The idea of the Runge–Kutta methods consists in approximating the right hand
side by a quadrature rule, e.g., in the interval [xk, xk+1] by

∫ xk+1

xk

f(t) dt ≈ hk

s∑

j=1

bjf (xk + cjhk)

with the weights bj and the nodes xk + cjh.
In the following, only hk = h for all k will be considered for the reason of

simplicity. 2

Definition 1.22 Runge–Kutta methods, increments, stages. ARunge–Kutta
method has the form

yk+1 = yk + hΦ(x, y, h), k = 0, 1, . . . , y0 = y(x0),

where the incremental function is defined with the help of

Ki(x, y, h) = f



xk + cih, yk + h

s∑

j=1

aijKj(x, y, h)





by

Φ(x, y, h) =

s∑

i=1

biKi(x, y, h),

with c1, . . . , cs, b1, . . . , bs, aij ∈ R, i, j = 1, . . . , s. The quantities Ki(x, y, h), i =
1, . . . , s, are called increments. The natural number s ∈ N is the number of stages
of the method.

An equivalent definition is as follows

y
(i)
k+1 = yk + h

s∑

j=1

aijf
(

xk + cjh, y
(j)
k+1

)

,

Φ(x, y, h) =

s∑

i=1

bif
(

xk + cih, y
(i)
k+1

)

.

The intermediate values y
(i)
k+1 are called stages. 2

Remark 1.23 Butcher3 tableau. For the reason of clearity, one writes a Runge–
Kutta scheme in general in form of a tableau, the so-called Butcher tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
c3 a31 a32 · · · a3s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

=⇒
c A

bT . (1.4)

Here, c are the nodes, A is the matrix of the method, and b are the weights. 2

3John C. Butcher, born. 1933
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Remark 1.24 Increments and Butcher tableau. For explicit Runge–Kutta schemes,
the increments can be computed one after another

K1(x, y, h) = f(xk, yk),

K2(x, y, h) = f (xk + c2h, yk + ha21K1(x, y, h)) ,

...

Ks(x, y, h) = f



xk + csh, yk + h
s−1∑

j=1

asjKj(x, y, h)



 .

The Butcher tableau has the form

0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

.

2

Example 1.25 Explicit Euler scheme. The explicit Euler scheme is an explicit
Runge–Kutta scheme with the Butcher tableau

0
1
.

In the integral equation, the approximation
∫ xk+1

xk

f(t, y(t)) dt ≈ hf (xk, yk(xk))

is used, see the proof of the Theorem of Peano, lectures notes of Numerical Mathe-
matics I. 2

Theorem 1.26 Consistency of explicit Runge–Kutta schemes. Let f ∈
C(S), see Definition 1.10. An explicit Runge–Kutta scheme is consistent if and
only if

s∑

i=1

bi = 1. (1.5)

Proof: From the continuity of f(x, y) it follows that

lim
h→0

Ki(x, y, h) = f(xk, y(xk)), ∀ (x, y) ∈ S, i = 1, . . . , s,

for the case that the initial value of this step is yk = y(xk). The continuity of the absolute
value function gives

lim
h→0

|f(xk, y(xk))− Φ (xk, y(xk), hk)| = lim
h→0

∣

∣

∣

∣

∣

f(xk, y(xk))−
s
∑

i=1

biKi(x, y, h)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f(xk, y(xk))−
s
∑

i=1

bi lim
h→0

Ki(x, y, h)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f(xk, y(xk))

(

1−

s
∑

i=1

bi

)
∣

∣

∣

∣

∣

= 0

if and only if
∑s

i=1 bi = 1. Hence, the second condition in Definition 1.10 is satisfied.
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Theorem 1.27 Interpretation of the increments. Let for the solution of (1.1)
hold y ∈ C2([x0, xe]), let f ∈ C(S), and let f be Lipschitz continuous in the second
argument. If yk = y(xk) and

ci =

i−1∑

j=1

aij , i ≥ 2, (1.6)

holds, then Ki(x, y, h) is an approximation of at least first order to y′(x+ cih), i.e.,

y′(xk + cih)−Ki(x, y, h) = O
(
h2
)
.

Proof: The proof follows by induction.
i = 2. For i = 2 follows with (1.1), the Lipschitz continuity, and Taylor series expansion

that

∣

∣y
′(xk + c2h)−K2(x, y, h)

∣

∣

= |f (xk + c2h, y(xk + c2h))− f (xk + c2h, y(xk) + ha21f(xk, y(xk)))|

≤ L |y(xk + c2h)− y(xk)− ha21f(xk, y(xk))|

= L
∣

∣y(xk) + c2hy
′(xk) +O(h2)− y(xk)− ha21y

′(xk)
∣

∣

= L
∣

∣(c2 − a21)hy
′(xk) +O(h2)

∣

∣ .

Hence, in the case c2 = a21 the error is of order O(h2).
i > 2. Let the asymptotic order of the errors be proved for all indices 2, . . . , i − 1.

Then, one gets in the same way as for i = 2

∣

∣y
′(xk + cih)−Ki(x, y, h)

∣

∣

=

∣

∣

∣

∣

∣

f (xk + cih, y(xk + cih))− f

(

xk + cih, y(xk) + h

i−1
∑

j=i

aijKj(x, y, h)

)
∣

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

∣

y(xk + cih)− y(xk)− h

i−1
∑

j=i

aijKj(x, y, h)

∣

∣

∣

∣

∣

= L

∣

∣

∣

∣

∣

y(xk) + cihy
′(xk) +O(h2)− y(xk)− h

i−1
∑

j=i

(

aij

(

y
′(xk + cjh) +O(h2)

))

∣

∣

∣

∣

∣

= L

∣

∣

∣

∣

∣

cihy
′(xk) +O(h2)− h

i−1
∑

j=i

(

aij

(

y
′(xk) +O(h)

))

∣

∣

∣

∣

∣

= L

∣

∣

∣

∣

∣

h

(

ci −

i−1
∑

j=i

aij

)

y
′(xk) +O(h2)

∣

∣

∣

∣

∣

.

The order of the error O(h2) is given, if ci =
∑i−1

j=i
aij .

Remark 1.28 Conditions on the coefficients for certain orders of convergence. The
conditions from Theorems 1.26 and 1.27 are satisfied for many explicit Runge–Kutta
schemes. The goal consists in determining the coefficients b1, . . . , bs, and aij in such
a way that one obtains an order of consistency as high as possible. The consistency
order of a Runge–Kutta scheme with s stages can be derived from the Taylor series
expansion of the local error. Let (1.5) be valid, then one obtains, e.g.,

• A Runge–Kutta scheme with the parameters (A,b, c) has at least consistency
order p = 2 if

s∑

j=1

bjcj =
1

2
. (1.7)

This condition will be shown in Example 1.29 for s = 2.
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• If in addition
s∑

j=1

bjc
2
j =

1

3
and

s∑

j=1

bj

s∑

k=1

ajkck =
1

6

hold, then the order of consistency is at least p = 3.

The proof of the last statement and conditions for even higher order consistency
can be found in the literature, e.g. in (Strehmel and Weiner, 1995; Strehmel et al.,
2012, Section 2.4.2). 2

Example 1.29 Runge–Kutta methods with 2 stages. For the investigation of 2-
stage Runge–Kutta schemes one considers for simplicity the so-called autonomous
initial value problem

y′(x) = f(y(x)), y(x0) = y0.

One has for the increments

K1(y, h) = f(yk),

K2(y, h) = f (yk + ha21K1(yk, h)) = f (yk + ha21f(yk))

= f(yk) + ha21f(yk)fy(yk) +O(h2).

If the initial value is exact, it follows for the incremental function that

Φ(y(xk)) = b1K1(y, h) + b2K2(y, h)

= (b1 + b2)f(y(xk)) + hb2a21f(y(xk))fy(y(xk)) +O(h2).

The Taylor series expansion of the solution has the form

y(xk + h) = y(xk) + h y′(xk)
︸ ︷︷ ︸

=f(y(xk))

+
h2

2
y′′(xk) +O

(
h3
)
.

One obtains with the chain rule

y′′(x) =
d

dx
y′(x) =

d

dx
f(y(x)) = fy(y)y

′(x) = fy(y)f(y(x)).

Now, it follows for the local error that

le(xk + h) = y(xk + h)− y(xk)− hΦ(y(xk))

= y(xk) + hf(y(xk)) +
h2

2
(fy(y(xk))f(y(xk))) +O

(
h3
)
− y(xk)

−h
(

(b1 + b2)f(y(xk)) + hb2a21f(y(xk))fy(y(xk)) +O(h2)
)

= h
(
1− (b1 + b2)

)
f(y(xk)) + h2

(
1

2
− b2a21

)

f(y(xk))fy(y(xk))

+O
(
h3
)
.

To achieve an order of consistency as large as possible, the first two terms have to
vanish. One obtains with the condition c2 = a21 that

b1 + b2 = 1, b2a21 =
1

2
⇐⇒ b2c2 =

1

2
.

The first equation is the general condition for consistency (1.5) and the second
condition is exactly (1.7) for s = 2. These two conditions characterize all 2-stage
explicit Runge–Kutta methods that possess consistency and convergence order 2

c2 c2
1− 1

2c2
1

2c2

, with c2 6= 0.
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In the case c2 = 1/2, one obtains the method of Runge (1895)

1/2 1/2
0 1

.

This method corresponds with respect to the approximation of the integral in (1.3)
to the application of the mid point rule.

For c2 = 1 one gets the method of Heun4 (1900)

1 1
1/2 1/2

,

which corresponds to the use of the trapezoidal rule for the numerical quadrature
in (1.3). 2

Remark 1.30 Autonomous ordinary differential equations. Every explicit first or-
der ordinary differential equation

y′(x) = f(x,y(x))

can be transformed into an autonomous form

ỹ′(x) = f̃ (ỹ(x)) =

(
f(x,y(x))

1

)

by introducing the function

y(x) := x and ỹ(x) :=

(
y(x)
y(x)

)

.

2

Theorem 1.31 Consistency and convergence of explicit Runge–Kutta

methods. Let y(x) be the solution of the initial value problem (1.1) with f ∈ C(S)
and let f(x, y) satisfy a Lipschitz condition in the second argument. Then, an ex-
plicit Runge–Kutta scheme that is consistent of order p converges also with order p.

Proof: The incremental function of an explicit Runge–Kutta scheme is a linear com-

bination of values of the right hand side f(x, y). Thus, the assumptions of Theorem 1.19

are satisfied since the Lipschitz condition in this theorem follows from the required Lips-

chitz condition on the right hand side of the differential equation. The statement of the

theorem follows now directly from Theorem 1.19.

Remark 1.32 Explicit Runge–Kutta methods of higher order. Analogously to 2-
stage methods, it is possible to derive conditions on the coefficients of an explicit
Runge–Kutta scheme in order to construct methods of higher order. An important
question is the minimal number of stages that is necessary to be able to reach a
certain order. Some answers to this question are from Butcher (1963, 1965, 1985)

p 1 2 3 4 5 6 7 8
min s 1 2 3 4 6 7 9 11

.

2

4Karl Heun (1859 – 1929)

11



Example 1.33 Classical Runge–Kutta scheme (1901). The so-called classical Run-
ge–Kutta scheme has four stages and the Butcher tableau

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

.

It is based on the Simpson5 rule. The center node of the Simpson rule is used
twice, c2 = c3, but with a different second argument for the computation of the
increments. This method is of fourth order. 2

1.3 Step Length Control

Remark 1.34 Motivation. The considerations so far did not provide a way for es-
timating a good step length for solving a given initial value problem with prescribed
accuracy and with as little work as possible. A good step length depends certainly
on the concrete problem and generally it will change within the considered interval.
For these reasons, the step length has to be controlled during the numerical solution
of the initial value problem.

A typical approach consists in computing two approximations of the solution in
a node with different methods and to draw conclusions on the size of the local error
based on the difference of these approximations. Of course, the consideration of the
global error would be better. However, Theorem 1.19 shows that on the one hand
the global error is influenced by problem-dependent terms, like the length of the
interval [0, T ] or the Lipschitz constant. On the other hand, the global error can be
small only if the local errors are small. 2

1.3.1 The Richardson Method

Remark 1.35 Idea. Given a numerical method for solving an initial value problem
and given a step length h. The Richardson6 method consists of the following steps,
see also Figure 1.2:

1. Starting from a node (x0, y0) and using a step length of 2h, an approximation
y2h at the node x0 + 2h will be computed.

2. Two approximations yh and y2×h in x0 + h and x0 +2h are computed with two
steps of length h.

3. The step length will be controlled by comparing y2h and y2×h.

In general, the more accurate approximation will be y2×h. In addition, it will be
demonstrated that it is possible to improve the accuracy of y2×h with the informa-
tion obtained by this method. 2

Example 1.36 Richardson method for an explicit 2-stage Runge–Kutta method.
Consider an explicit 2-stage Runge–Kutta scheme. One obtains in the first step of
the Richardson method

y
(1)
2h = y0,

y
(2)
2h = y0 + 2ha21f(x0, y0),

y2h = y0 + 2h [b1K1(x, y) + b2K2(x, y)]

= y0 + 2h
[

b1f(x0, y
(1)
2h ) + b2f

(

x0 + 2c2h, y
(2)
2h

)]

,

5Thomas Simpson (1710 – 1761)
6Lewis Fry Richardson (1881 – 1953)
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Figure 1.2: Sketch of the Richardson method.

or written as Butcher tableau

0
2c2 2a21

2b1 2b2

.

The second step of the Richardson method yields

y
(1)
2×h = y0,

y
(2)
2×h = y0 + ha21f(x0, y0),

y
(3)
2×h = yh = y0 + h

[

b1f
(

x0, y
(1)
2×h

)

+ b2f
(

x0 + c2h, y
(2)
2×h

)]

,

y
(4)
2×h = yh + ha21f(x0 + h, yh),

y2×h = yh + h
[

b1f(x0 + h, yh) + b2f
(

x0 + h+ c2h, y
(4)
2×h

)]

.

The Butcher tableau of this method is

0
c2 a21
1 b1 b2

1 + c2 b1 b2 a21
b1 b2 b1 b2

.

That means, the computation of y2×h is equivalent to the computation of an ap-
proximation with the help of an explicit 4-stage Runge–Kutta scheme.

Altogether, 5 function evaluations are needed:

f(x0, y0), f
(

x0 + 2c2h, y
(2)
2h

)

, f
(

x0 + c2h, y
(2)
2×h

)

,

f(x0 + h, yh), f
(

x0 + h+ c2h, y
(4)
2×h

)

.

In the case of a s-stage Runge–Kutta method, 3s − 1 function evaluations are
required. This number is rather large and the high costs per time step are a disad-
vantage of the Richardson method. 2

Remark 1.37 Comparison of both approximations. Consider a one-step method

yk+1 = yk + hΦ(x, y, h)

of order p. Let the initial value x0 be exact, then it follows for the local error in
x0 + 2h that

y(x0 + 2h)− y2h = c(x0)(2h)
p+1 +O

(
hp+2

)
. (1.8)

For estimating the local error in y2×h it will be assumed that the incremental func-
tion Φ(x, y, h) is Lipschitz continuous in the second argument. This assumption is

13



always satisfied for explicit Runge–Kutta schemes if f(x, y) possesses this property,
see the proof of Theorem 1.31. It is

y2×h = yh + hΦ (x+ h, yh, h) . (1.9)

Let
ŷ2×h = y(x0 + h) + hΦ (x+ h, y(x0 + h), h) (1.10)

the iterate which is computed with the exact starting value. Using the definition of
the consistency order, one obtains with (1.9) and (1.10)

y(x0 + 2h)− y2×h

= (y(x0 + 2h)− ŷ2×h) + (ŷ2×h − y2×h)

=
[

c(x0 + h)hp+1 +O
(
hp+2

) ]

+
[

y(x0 + h) + hΦ (x+ h, y(x0 + h), h)

−yh − hΦ (x+ h, yh, h)
]

.

For the terms with the incremental function, one gets from the Lipschitz continuity
and the consistency order

|hΦ (x+ h, y(x0 + h), h)− hΦ (x+ h, yh, h)| ≤ hL |y(x0 + h)− yh| = O
(
hp+2

)
.

It follows that

y(x0 + 2h)− y2×h

= c(x0 + h)hp+1 + y(x0 + h)− yh +O
(
hp+2

)

= c(x0 + h)hp+1 + c(x0)h
p+1 +O

(
hp+2

)
+O

(
hp+2

)

= 2c(x0)h
p+1 +O

(
hp+2

)
, (1.11)

where one assumes that c(x0 + h) = c(x0) + O(h), i.e., that the constants do not
change too rapidly.

Neglecting in (1.8) and (1.11) the higher order terms allows to eliminate the
constant. One obtains

c(x0) =
1

2

(
y2×h − y2h
2p − 1

)
1

hp+1
. (1.12)

It follows for the local error of the more accurate method that

y(x0 + 2h)− y2×h =
y2×h − y2h
2p − 1

+O
(
hp+2

)
. (1.13)

2

Remark 1.38 Increasing the accuracy. Rearranging terms in (1.13) gives

y(x0 + 2h)−

(

y2×h +
y2×h − y2h
2p − 1

)

= O
(
hp+2

)
.

Then,

y2×h = y2×h +
y2×h − y2h
2p − 1

is an approximation of the solution of order p+ 1. 2

Remark 1.39 Automatic step length control. From (1.12) it follows that

err =
|y2×h − y2h|

2p − 1
≈ 2c(x0)h

p+1 (1.14)
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is a computable approximation of the local error. This approximation will be com-
pared with a prescribed tolerance. Often, a so-called scaled tolerance sc is used,
(Hairer et al., 1993, p. 167) or (Strehmel et al., 2012, p. 61). The scaled tolerance
is a combination of an absolute tolerance atol and a relative tolerance rtol

sc = atol + max {|y0| , |y2×h|} rtol.

Then, the scaled error

errsc =
|y2×h − y2h|

(2p − 1)sc

is defined.

• If errsc ≤ 1 ⇐⇒ err ≤ sc, then the performed step will be accepted. Starting
from y2×h or y2×h, the next step will be performed. If y2×h is used, this approach
is also called local Richardson extrapolation.
An important aspect is the choice of the step length hnew for the next step. The
guideline is that the scaled error for the next step should be on the one hand
still smaller than 1 but on the other hand as close as one as possible. Following
(1.14), it should hold

1 =
errnew
sc

=
2c (x0 + 2hnew)h

p+1
new

sc
≈

2c(x0)h
p+1
new

sc

=
2c(x0)h

p+1

sc

(
hnew

h

)p+1

≈ errsc

(
hnew

h

)p+1

,

i.e. hnew has to be chosen such that

hnew ≈

(
1

errsc

)1/(p+1)

h. (1.15)

• If errsc > 1, then the performed step will be rejected. The Richardson is repeated
from (x0, y0) with a step length hnew < h.
That means, the work which was spent for performing the step with step length
h was wasted. One likes to avoid this situation.

2

Remark 1.40 Issues of the practical implementation. In practical simulations, one
uses some modifications of (1.15) for stabilizing the algorithm.

• A safety factor α ∈ (0, 1) is introduced

hnew = α

(
1

errsc

)1/(p+1)

h,

often α ∈ [0.8, 0.9].
• One likes to avoid large oscillations of the sizes of subsequent steps. For this
reason, a factor for the maximal increase αmax of the new step size with respect
to the current step size and a factor for the maximal decrease αmin < αmax are
used. Then, one obtains

hnew = hmin

{

αmax,max

{

αmin, α

(
1

errsc

)1/(p+1)
}}

.

If a very large step length is proposed

α

(
1

errsc

)1/(p+1)

> αmax,

then the factor αmax becomes effective and similarly for the case that a very
small step length is proposed.
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• Usually, one describes a minimal step length hmin and a maximal step length
hmax and requires for all step lengths that hk ∈ [hmin, hmax].

• In the first step, one has to estimate h. Generally, this estimate has to be cor-
rected. In practice, this correction is done very fast by algorithms for automatic
step length control. An algorithm for determining a good initial step length can
be found in (Hairer et al., 1993, p. 168).

2

1.3.2 Embedded Runge–Kutta Schemes

Remark 1.41 Motivation, embedded Runge–Kutta schemes. Richardson extrapo-
lation is quite expensive in terms of evaluations of the incremental function. It is
possible to construct a step length control that needs less evaluations, with so-called
embedded Runge–Kutta schemes.

The idea of embedded Runge–Kutta schemes consists in computing numerical
approximations of the solution at the next time with two one-step methods with
different order. The methods are chosen in such a way that it is possible to use
certain evaluations of the incremental function for both of them. That means, one
has to construct a Runge–Kutta scheme of the form

0
c2 a21
...

. . .

cs as1 · · · as,s−1

b1 · · · bs−1 bs
b̃1 · · · b̃s−1 b̃s

,

such that

y1 = y0 + h
s∑

i=1

biKi(x, y)

is order of p and

ỹ1 = y0 + h

s∑

i=1

b̃iKi(x, y)

is of order q, see Figure 1.3. In general, it is q = p− 1 or q = p+ 1. 2

Figure 1.3: Sketch of embedded Runge–Kutta schemes.
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Example 1.42 Runge–Kutta–Fehlberg 2(3). Consider explicit Runge–Kutta schemes
with 3 stages

0
c2 a21
c3 a31 a32

b1 b2 b3 p = 2

b̃1 b̃2 b̃3 q = 3

.

One of the schemes should be of order 2 and the other one of third order. There are
11 parameters to choose. From Theorem 1.26, Theorem 1.27 , and Remark 1.28 it
follows that 8 equations have to be satisfied

c2 = a21,

c3 = a31 + a32,

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1

2
,

b̃1 + b̃2 + b̃3 = 1,

b̃2c2 + b̃3c3 =
1

2
,

b̃2c
2
2 + b̃3c

2
3 =

1

3
,

b̃3a32c2 =
1

6
.

That means, one has to set three parameters. First, one can choose c2 = 1, b3 = 0.
Then, it follows from the first equation that a21 = 1, from the fourth equation that
b2 = 1/2, and from the third equation that b1 = 1/2. Now, one chooses c3 = 1/2.
From the sixth and seventh equation it follows that b̃2 = 1/6 and b̃3 = 4/6. Then,
one gets from the fifth equation b̃1 = 1/6 and from the eight equation a32 = 1/4.
Finally, the second equation gives a31 = 1/4. The resulting methods have the form

0
1 1

1/2 1/4 1/4
1/2 1/2 0 p = 2
1/6 1/6 4/6 q = 3

.

The method with order q = 3 is the Simpson rule. The complete embedded approach
is called Runge–Kutta–Fehlberg7 2(3) method (RKF 2(3)). 2

Remark 1.43 Error estimate, theoretical drawback. It holds for the embedded
scheme

y1 = y(x0 + h) +O
(
hp+1

)
, ỹ1 = y(x0 + h) +O

(
hq+1

)
.

It follows that

|err| := |ỹ1 − y1| =
∣
∣y(x0 + h) +O

(
hp+1

)
− y(x0 + h) +O

(
hq+1

)∣
∣

=
∣
∣O
(
hp+1

)
+O

(
hq+1

)∣
∣ (1.16)

is an estimate of the main error term of the Runge–Kutta scheme of order q∗ =
min{p, q}. That means, one obtains only an estimate of the error of the lower
order method. To obtain information only on the lower order method is the main
theoretical drawback of the approach, since one is interested actually in the higher
order method and one will continue the computation also from the higher order
approximation. 2

7Erwin Fehlberg (1911 – 1972)
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Remark 1.44 Automatic step length control, I Controller. Let h be the step size
that was used for computing y1 of order p and ỹ1 of order q with p < q. From
(1.16), one has

err = y1 − ỹ1 = chp+1.

Given a tolerance tol for the maximal local error.

• One approach consists in controlling the error per step (EPS). Then, one requires
that

r1 = |err| ≤ tol. (1.17)

If this condition is satisfied, then one requires for the new step size that the local
error is equal to the tolerance

|c|hp+1
new = tol.

This requirement gives

hnew =

(
tol

|c|

)1/(p+1)

=

(
tol

|c|hp+1

)1/(p+1)

h

Thus, the new step length is computed by

hnew =

(
α tol

r1

)1/k

h, (1.18)

where k = p+ 1 and α ∈ (0, 1) is again a safety factor.
• Another way is the consideration of the error relative to the current step length,
the so-called error per unit step (EPUS),

r1 =
|err|

h
.

The satisfaction of a condition of form (1.17) leads to a new step of form (1.18)
with k = p.

• If (1.17) is not satisfied, then the step is rejected and it will be repeated with a
step length smaller than h.

• A generalization of this approach is the so-called I Controller. Replacing in
(1.18) 1/k by kI gives

hnew =

(
α tol

r1

)kI

h.

For obtaining a useful automatic step length control mechanism, the choice
kkI = 1 is not necessary. The following choices can be found in the literature

kkI ∈ [0, 2] ⇐⇒ kI ∈ [0, 2/k] stable control,
kkI ∈ (1, 2) ⇐⇒ kI ∈ (1/k, 2/k) fast and oscillating control,
kkI ∈ (0, 1) ⇐⇒ kI ∈ (0, 1/k) slow and smooth control,

kkI = 1 ⇐⇒ kI = 1/k standard I Controller.

There are more sophisticated controllers that are used in practical simulations,
see Söderlind (2002) for an overview.

2

Remark 1.45 Methods used in practice. In practice, one uses, e.g.,

• RKF 4(5), s = 6, Fehlberg (1964),
• RKF 7(8), s = 13, Fehlberg (1969),
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• DOPRI 4(5) (or DOPRI 5(4) or DOPRI5), s = 6, Dormand8, Prince9: Dormand
and Prince (1980),

• DOPRI 7(8), s = 13, Prince and Dormand (1981).

The standard routine ode45 from MATLAB uses DOPRI 4(5) and the routine ode23
uses RKF 2(3), see Example 1.42. 2

Remark 1.46 Fehlberg trick. The Fehlberg trick requires that

Ks = f

(

xk + csh, yk + h
s−1∑

i=1

asiKi

)

!
= f

(

xk + h, yk + h
s∑

i=1

biKi

)

,

i.e., the last evaluation of the incremental function of the old step can be used as
first value of the incremental function in the new step. The conditions for applying
this trick are

asi = bi, i = 1, . . . , s− 1, bs = 0, cs = 1.

It can be applied, e.g., in DOPRI 4(5). This trick works only if hold ≈ hnew. 2

8John R. Dormand
9P. J. Prince
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