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Streszczenie

W poniższej pracy opisane są struktury danych wykorzystywane w algorytmach
śledzenia promieni.

We wprowadzeniu znajdują się ogólne informacje o metodzie śledzenia promie-
ni. Można w nim przeczytać, gdzie i dlaczego się ją stosuje, są tam zilustrowane
i opisane przykładowe efekty jakie można dzięki tej metodzie uzyskać. Jest tam
również podana motywacja, która towarzyszyła mi przy pisaniu tej pracy.

Pierwszy rozdział opisuje teorię. Jest to krótkie wprowadzenie do aktualnego
stanu w dziedzinie generowania obrazów metodą śledzenia promieni. Są w nim
opisane podstawowe algorytmy i struktury, które były do tej pory wykorzystywane.
Zawarte są w nim również techniki budowy i przeglądania oraz kilka szczegółów
implementacyjnych.

Kolejny rozdział zawiera opis nowych struktur. Zostały one przeze mnie zapro-
jektowane i zaimplementowane. Są w nim dokładnie przedstawione algorytmy ich
budowy i przeglądania.

W trzecim rozdziale opisane są szczegółowe wyniki testów przeprowadzonych
na opisanych w rozdziałach pierwszym i drugim strukturach. Wyniki te przedsta-
wiają rozmaite porównania działania tych struktur dla kilku wybranych scen.

Ostatni, czyli czwarty rozdział zawiera podsumowanie, są to moje osobiste
wnioski dotyczące działania i możliwości rozwoju opisanych w rozdziale drugim
struktur.

Do pracy dołączony jest także program, a jego dokładniejszy opis znajduje się
w dodatku na końcu pracy.

Słowa kluczowe

ray tracing, śledzenie promieni, SBVH, BVH, BIH, kdTree
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Wprowadzenie

Technika śledzenia promieni jest używana do generowania realistycznych obrazów.
Obecnie zdobywa ona coraz większe uznanie w świecie grafiki komputerowej.
Dzieje się to głównie dzięki efektom jakie możemy osiągnąć przy jej wykorzysta-
niu. Przykłady takich efektów przedstawiam na zamieszczonych poniżej rysunkach
(rys.1, rys.2, rys.3 i rys.4). Wzrastające zainteresowanie doprowadziło do dużego
rozwoju algorytmów w tej dziedzinie. Implementacje tych algorytmów stały się
bardzo efektywne, wykorzystują bowiem maksymalnie sprzęt komputerowy. Na-
leży również wspomnieć, że rozwój tej techniki wiele zawdzięcza rozwojowi prze-
mysłu komputerowego, miniaturyzacji i ciągłemu wzrostowi mocy obliczeniowej.
Jeszcze kilka lat temu nikt nawet nie myślał o stosowaniu jej w czasie rzeczywistym.
Teraz dla mniejszych scen z prostszymi efektami można osiągać interaktywne cza-
sy animacji już na dobrej klasy komputerach osobistych. Oczywiście o wiele więcej
można uzyskać na klastrach komputerowych, które są wykorzystywane w prze-
myśle filmowym. Zastosowanie klastrów w tej technice ma uzasadnienie w tym,
że algorytm śledzenia promieni można w bardzo naturalny sposób urównoleglić.
To znaczy, że każdy promień może być liczony osobno i przetwarzany przez inną
jednostkę.

(a) (b)

Rysunek 1. Obrazy przedstawiające realizm efektów możliwych do osiągnięcia przy
zastosowaniu techniki śledzenia promieni. Niektóre widoczne efekty: załamanie obrazu
przy przechodzeniu przez przezroczyste powierzchnie zgodne z prawami fizyki,
częściowe odbicia sceny od szklanych powierzchni, „miękkie” cienie i kaustyki.

Źródła: Rysunek 1(a) pochodzi ze strony: http://www.fizyka.umk.pl/∼milosz/,
rysunek 1(b) pochodzi z artykułu [SWS05].
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Realizm widoczny na załączonych rysunkach można osiągnąć dzięki temu, że
promienie generowane w programie symulują w pewien sposób rozchodzenie się
światła w przestrzeni. W algorytmie nie dzieje się to dokładnie w taki sam sposób
jak w rzeczywistości, ale jakby od drugiej strony. Jest to tak zwane wsteczne śle-
dzenie promieni. Promienie generowane są z kamery przez każdy piksel obrazu
i śledzona jest ich ścieżka do światła. Ścieżka ta powinna zachowywać jak najwię-
cej znanych własności fizycznych. Odwzorowanie idealne rzeczywistego światła
jest praktycznie niemożliwe. W rzeczywistości promienie świetlne mają postać fal
elektromagnetycznych, z których tylko część trafia do ludzkiego oka. Fale te mają
różne długości, odbijają się od niektórych przedmiotów, a przez niektóre prze-
chodzą zmieniając jedynie kierunek. W programie komputerowym ograniczamy
się do pewnego podzbioru tych fal i każdą z nich reprezentujemy jako promień.
W celu przyspieszenia obliczeń i uzyskania jak najlepszych efektów, najlepiej jest
wybrać te promienie, które mają największy wkład w powstanie obrazu. Z tego
powodu śledzi się je, zaczynając właśnie od kamery. Sekret ogromnej skalowalno-
ści algorytmu względem liczby procesorów kryje się w tym, że każdy z promieni
ma pewien, zupełnie niezależny od innych wkład w powstanie obrazu, dlatego
każdy z nich można obliczać równolegle na osobnych jednostkach.

(a) metalowe kule (b) złoty Budda

Rysunek 2. Wyrenderowane obiekty z zastosowaniem fizycznych właściwości
odbijających metali.

Źródło: Rysunki pochodzą ze strony internetowej: http://www.pbrt.org.

Mimo powyżej opisanych ograniczeń technika ta wciąż jest zbyt wolna do in-
teraktywnych zastosowań. Nie jest też wspierana sprzętowo, tak jak standardowa
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grafika rastrowa przez karty graficzne. Powstały już jednak prototypowe urządze-
nia mogące sprzętowo przyspieszyć śledzenie promieni [SWS05]. W przyszłości
można się spodziewać jeszcze lepszych rozwiązań.

Realizm powstałych obrazów jest na tyle dobry, iż stosuje się technikę śledzenia
promieni mimo problemów związanych z wydajnością. Robi się to jednak głów-
nie przy tworzeniu filmów, animacji, reklam, czy wizualizacji, gdzie nie wymaga
się żadnej interaktywności. Często tworzy się obrazy poświęcając wydajność dla
relistycznego wyglądu. Właśnie w tym celu korzysta się z ogromnych mocy obli-
czeniowych oferowanych przez klastry komputerowe.

Za ciekawostkę pokazującą relację efektywności do otrzymywanych wyników
może posłużyć tutaj fakt, że w 1995 roku średni czas potrzebny na wyrenderowanie
jednej klatki filmu „Toy Story” wynosił 2 godziny. W 2005 roku średni czas po-
trzebny na wygenerowanie jednej klatki filmu „Cars”, z którego kadry znajdują się
na rysunku 3, wynosił aż 15 godzin! Stało się to, mimo iż w tym czasie wydajność
komputerów wzrosła o jakieś 300 razy. Zalety jakie daje artystom ta technologia
sprawiają, że czas przestaje grać zasadniczą rolę i poświęca się go dla uzyskania
lepszych efektów.

(a) Mater i Lightning McQueen (b) Doc Hudson

Rysunek 3. Obrazy wygenerowane podczas tworzenia filmu „Cars”.

Źródła: Rysunek 3(a) pochodzi ze strony: http://www.meeko.org, rysunek 3(b) pochodzi
z artykułu [CFLB06].

Pomimo tego, że technika śledzenia promieni została użyta po raz pierwszy
około 40 lat temu, dalej znajdowane są w niej nowe ścieżki rozwoju. Proponowane
są rozwiązania polepszające zarówno wydajność, jak i jakość generowanych ob-
razów. W tym miejscu chcę napisać o motywacji, która mi towarzyszyła podczas
pisania tej pracy. Zastanawiałem się dość długo, co jeszcze można zrobić, by pro-
ces generowania obrazów bardziej przyspieszyć. Dzięki temu mogłoby powstać
więcej filmów, czy animacji z pięknymi efektami graficznymi w znacznie krót-
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szym czasie. Duże korporacje mogłyby zaoszczędzić sporo czasu i tworzyć jeszcze
więcej. Na rynek realistycznych animacji mogłyby zacząć wchodzić nowe firmy
niedysponujące tak ogromnym sprzętem. Nieco inną kwestią jest możliwość uzy-
skania interaktywnych czasów dla prostszych scen i animacji. Dobra grafika nawet
w prostych grach, czy programach może zachwycać i być dla nich ogromnym plu-
sem. Ingo Wald w swojej rozprawie doktorskiej [Wal04] opisał wiele możliwych
sposobów na przyspieszenie całego algorytmu, rozwiązań zarówno algorytmicz-
nych, jak i sprzętowych. Wyżej opisane cele można osiągnąć przez przyspieszenie
działania głównej części całego algorytmu, czyli silnika, który jest odpowiedzialny
za efektywne znajdowanie przecięcia danego promienia ze sceną. Najważniejszą
częścią tego silnika jest struktura przechowująca scenę. Właśnie o takich struktu-
rach będzie ta praca. Opiera się ona głównie na bardzo interesującym artykule,
który ukazał się w roku 2008 [DHK08]. Struktura w nim opisana wykorzystuje
większość zalet współczesnych procesorów. Została ona przeze mnie zaimplemen-
towana. Wprowadziłem również kilka pomysłów na jej modyfikację. Pomysły te
są dokładnie opisane w poniższej pracy, a więcej na temat implementacji można
znaleźć w dodatku A.

Rysunek 4. Rozchodzenie się światła w zacienionych miejscach pokazane na przykładzie
modelu elektrowni.

Źródło: Rysunek pochodzi z artykułu [DHK08]
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ROZDZIAŁ 1

Technika śledzenia promieni

Po raz pierwszy technika śledzenia promieni na komputerach została użyta w roku
1968. Zastosował ją Arthur Appel do rozwiązywania problemu niewidocznych po-
wierzchni [App68]. Do dnia dzisiejszego bardzo wiele wysiłku zostało włożonego
w polepszenie tej techniki. Polepszyła się zarówno jakość generowanych obrazów,
jak i wydajność działania algorytmów. Wiele osób wprowadziło w tej dziedzinie
mnóstwo rewelacyjnych pomysłów. Implementacje algorytmów, które na początku
pojawiały się tylko w teorii, stały się bardzo efektywne. W tym rozdziale opi-
szę krótko dotychczasową pracę dotyczącą generowania obrazów metodą śledze-
nia promieni, skupiając się głównie na strukturach drzewiastych wykorzystywa-
nych do przyspieszania znajdowania przecięć promieni ze sceną. Bardzo aktualny
stan całej opisywanej dziedziny można znaleźć dość dobrze przedstawiony w pra-
cy [WMG+07].

1.1. Podstawy ogólne

Wyróżnia się trzy główne metody śledzenia promieni:

• rzutowanie promieni (ang. ray casting) – w tej technice śledzi się jeden pro-
mień na każdy piksel obrazu, szukając jedynie jego pierwszego przecięcia
ze sceną; w łatwy sposób można dodać cienie, robi się to przez śledzenie
promienia z obliczonego punktu przecięcia do każdego źródła światła znaj-
dującego się w scenie; jakość uzyskanego obrazu podobna jest do obrazów
generowanych przez zwykłą kartę graficzną z buforem głębokości;

• rekurencyjne śledzenie promieni (ang. Whitted ray tracing) – technika za-
proponowana przez Turnera Whitteda, opisana w artykule [Whi80], w tej
technice również jest śledzony pojedyńczy promień na każdy piksel obra-
zu, jednak dodatkowo występuje tutaj rekursja, tj. promień może się odbijać
lub załamywać, dzięki temu można uzyskać bardziej realistyczne efekty, ta-
kie jak odbicia lustrzane, czy załamanie obrazu przy przechodzeniu przez
przezroczyste obiekty;

• rozproszone śledzenie promieni (ang. distributed ray tracing) – jest to najbar-
dziej zaawansowana metoda, jak również najbardziej kosztowna; śledzonych
może być wiele promieni na każdy piksel obrazu, dodatkowo w każdym
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punkcie przecięcia jednego promienia ze sceną może zostać wygenerowa-
nych bardzo wiele nowych promieni, które dalej są rekursywnie śledzone,
w związku z tym złożoność obliczeniowa tej metody jest ogromna, pozwala
ona jednak uzyskać najbardziej realistyczne obrazy, a w nich takie efekty jak:
miękkie cienie, globalne oświetlenie sceny, mieszanie kolorów przy odbiciach,
głębię ostrości, czy kaustyki;

Schematy działania wyżej opisanych metod przedstawione są na rysunku 1.1,
a przykładowe obrazy pokazujące różnice w uzyskanych obrazach widoczne są
na rysunku 1.2.

1.1.1. Algorytm rzutowania promieni

Podstawowy algorytm rzutowania promieni jest bardzo prosty. Składa się z kilku
niżej opisanych kroków.
Dla każdego piksela p z płaszczyzny obrazu ip wykonaj kolejno:

1. wygeneruj promień r z kamery c przechodzący przez piksel p

2. znajdź najbliższe przecięcie i promienia r ze sceną s

3. dla obliczonego przecięcia i oblicz kolor col (generując promień cienia i śle-
dząc jego ścieżkę)

4. zapisz kolor col w pikselu p

Algorytmy rekurencyjnego, czy rozproszonego śledzenia promieni nie różnią
się zbytnio od wyżej opisanego. Najważniejszą różnicą jest sposób obliczania natę-
żenia oświetlenia w punkcie przecięcia oraz liczba śledzonych promieni i długości
ścieżek mających wpływ na kolor danego piksela. Właśnie od liczby promieni
i długości ścieżek zależy liczba wywołań funkcji szukającej najbliższego przecię-
cia promienia ze sceną. Wywołania tej funkcji pochłaniają najwięcej czasu tego
algorytmu. Więcej o złożoności znajduje się w kolejnym punkcie.

1.1.2. Złożoność

Złożoność metody śledzenia promieni można oszacować w prosty sposób rozbija-
jąc algorytm na mniejsze składowe:

• generowanie promienia przechodzącego przez dany piksel obrazu, jest zwy-
kłą operacją różnicy dwóch punktów w przestrzeni 3D (czyli jest to kilka
mnożeń i dodawań);

• obliczanie koloru piksla także odbywa się w czasie stałym, jednak czasem,
gdy mamy do czynienia z teksturami, potrzebnych jest nieco więcej operacji;
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(a) rzutowanie promieni (b) metoda rekurencyjna

(c) metoda rozproszona

Rysunek 1.1. Porównanie schematów działania metod śledzenia promieni.

Źródło: Opracowanie własne.

• operacja znajdowania najbliższego przecięcia promienia ze sceną jest najbar-
dziej kosztowna; złożoność tej operacji zależy w głównej mierze od wielko-
ści sceny; przeważnie sceny składają się z trójkątów, dlatego na nich zamie-
rzam się skupić; trywialnym sposobem znalezienia najlepszego przecięcia jest
sprawdzenie wszystkich możliwości;

Z tej krótkiej analizy wynika, że złożoność najprostszego algorytmu śledzenia
promieni dla obrazu o wysokości w, szerokości h i sceny zawierającej n trójkątów
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(a) rzutowanie promieni (b) metoda rekurencyjna

(c) metoda rozproszona

Rysunek 1.2. Porównanie efektów uzyskiwanych przy różnych metodach śledzenia
promieni.

Źródło: Rysunek pochodzi z artykułu [BEL+07]

przedstawia się następująco:

O(wh) · T(n)

Gdzie T(n) oznacza złożoność algorytmu szukania najbliższego przecięcia promie-
nia ze sceną o n trójkątach. Najprostsza metoda sprawdzająca wszystkie możliwo-
ści ma liniową złożoność. O tym jak znajdować takie przecięcie szybciej, opisałem
w rozdziale 1.2.2.

Złożoność algorytmu rekurencyjnego śledzenia promieni w teorii jest taka
sama, gdyż dla każdego promienia liczymy rekurencyjnie pojedyńczą ścieżkę,
której długość nie przkracza 5–8 poziomów. Wynika stąd, że algorytm ten jest
do kilku razy wolniejszy.

Algorytm rozproszonego śledzenia promieni, w teorii również ma identyczną
złożoność. Tutaj również liczba wywołań funkcji szukania najbliższego przecięcia
może być ograniczona, jednak stała ograniczająca musiałaby być ogromna. W nie-
których technikach śledzi się nawet od kilkuset do kilku tysięcy promieni na każdy
piksel obrazu. Każdy z tych promieni podczas odbicia lub załamania może gene-
rować nowe promienie. Właśnie tej metody używa się przy produkcji najbardziej
realistycznych obrazów.
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1.2. Silnik

W tym punkcie opiszę zasadę działania silnika całego algorytmu. Czyli to, jak
całość funkcjonuje, jak są znajdowane przecięcia i jak można to działanie przy-
spieszyć. Bardzo wiele w tej dziedzinie zostało już zrobione, a dokładniejsze in-
formacje na temat dotychczasowych prac można znaleźć w artykule podsumowu-
jącym [WMG+07].

1.2.1. Obliczanie przecięć

W celu wygenerowania obrazu należy znaleźć najbliższe przecięcie promienia
z trójkątem. W punkcie 1.1.2 jest napisane, że najprostszym sposobem na to jest
przejrzenie wszystkich możliwości, czyli obliczenie przecięcia danego promienia
z każdym trójkątem ze sceny.

Ta podstawowa operacja algorytmu śledzenia promieni, została już dokładnie
przeanalizowana pod względem efektywności. Jednym z najlepszych rozwiązań
jest algorytm zaproponowany przez Möllera i Trumborea. Szczegóły można zna-
leźć w artykule [MT97]. Przebadali oni kilka różnych algorytmów pod względem
optymalności i właśnie ich okazał się jednym z najlepszych. Dokładna implemen-
tacja tego algorytmu w języku C znajduje się na stronie internetowej1. Podczas
implementacji przetestowałem jeszcze algorytm Plückera. Korzysta on z iloczynów
wektorowych i skalarnych. Dokładny opis można znaleźć na stronie internetowej2.

Ostatecznie zdecydowałem się na użycie rozwiązania zaproponowanego przez
Möllera i Trumborea, gdyż daje ono bardzo dobre rezultaty. Algorytm ten moż-
na również łatwo przebudować tak, by w jednym przebiegu obliczał przecięcie
z czterema różnymi trójkątami. Takie rozwiązanie wykorzystuje instrukcje SIMD
(ang. Single Instruction Multiple Data) procesora, dzięki czemu przyspiesza cały
algorytm średnio o około 3 razy. Wiecej o tej technice w punkcie 1.2.4 na stronie 20.

Należy tutaj również wspomnieć o tym, że istnieją bardziej efektywne algoryt-
my, korzystają one jednak z wcześniej obliczonych wartości dla każdego trójkąta.
Takie trójkąty zajmują więcej miejsca w pamięci komputera, przez co algorytmy te
wykorzystuje się tylko w niektórych przypadkach.

1.2.2. Struktury

Małe sceny w grafice komputerowej składają się z kilku tysięcy trójkątów, w tych
największych trójkąty liczy się w milionach. Oczywistym jest, że dla takich scen
nie można sprawdzać przecięć danego promienia z każdym trójkątem, gdyż nie

1http://jgt.akpeters.com/papers/Chirkov05/
2http://www.flipcode.org/archives/Introduction To Plcker Coordinates.shtml
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doczekamy się wyniku w rozsądnym czasie. W tym celu powstały różne struktury
grupujące trójkąty w sposób umożliwiający bardziej efektywne znajdowanie naj-
bliższego przecięcia poprzez eliminowanie sprawdzania przecięć z jak największą
liczbą trójkątów. Struktury te zostały zaprojektowane dla najróżniejszych rodzajów
scen. W tej pracy skupię się wyłącznie na strukturach drzewiastych, które potrafią
radzić sobie z grupowaniem trójkątów w najczęściej spotykanych scenach. Istnieją
jednak sceny z trójkątami rozmieszczonymi w sposób powodujący nieefektywne
działanie struktur.

KD–drzewo

KD–drzewo uważane jest za najlepszą strukturę do przyspieszania śledzenia pro-
mieni. Jest to drzewo binarne, które dzieli przestrzeń na części za pomocą płasz-
czyzn. Przykład w 2D pokazuje rysunek 1.3.

(a) (b)

(c) (d)

Rysunek 1.3. Schemat powstawania kd–drzewa. W kolejnych krokach przestrzenie
dzielone są płaszczyzną na dwie podprzestrzenie.

Źródło: Prezentacja Gordona Stolla z konferencji SIGGRAPH 2005.

Każdy węzeł wewnętrzny drzewa posiada informację o osi i płaszczyznie po-
działu oraz wskaźnik na „dziecko”. Z kolei liść drzewa posiada liczbę znajdujących
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się w nim trójkątów oraz wskaźnik na pierwszy z nich. Wszystkie te informacje
można zmieścić w zaledwie 8 bajtach, dzięki czemu struktura ta jest bardzo kom-
paktowa. Ta własność pomaga zmieścić bardzo dużo węzłów, czyli sporą część
drzewa w bardzo szybkiej pamięci cache procesora nawet dla ogromnych scen.

W artykule [WH06] jest dokładnie opisana bardzo efektywna budowa kd–
drzewa. Podczas tej budowy wykorzystuje się kilka technik umożliwiających szyb-
ką i bardziej optymalną budowę drzewa, m.in. heurystykę pól powierzchni (SAH,
ang. Surface Area Heuristics), która jest opisana w punkcie 1.2.3 w dalszej części
pracy. W tym miejscu opiszę tylko kilka charakterystycznych własności kd–drzewa.
Największą zaletą jest czas szukania przecięcia promienia ze sceną, który jest nie-
co lepszy niż w strukturach opartych na hierarchiach ograniczających o których
będzie mowa w kolejnych punktach tego rozdziału. Do słabych stron kd–drzewa
należy skomplikowana implementacja. Utrudnia ją prosty fakt, że podczas budowy
przestrzeń dzielona jest płaszczyznami na podprzestrzenie. Trójkąty znajdujące się
na granicy tych podprzestrzeni muszą znaleźć się w obu poddrzewach wychodzą-
cych z danego węzła. Fakt ten utrudnia również oszacowanie pamięci, którą może
zająć gotowa struktura (występują podwójne odwołania do trójkątów). Kolejnym
negatywnym wnioskiem wynikającym z tego faktu jest utrudniona przebudowa
już gotowego drzewa, która mogłaby być bardzo pomocna przy renderowaniu ko-
lejnych klatek animacji, w których nie doszło do zbyt dużych zmian w scenie.

Hierarchiczne bryły ograniczające

Struktura hierarchicznych brył ograniczających (BVH, ang. Bounding Volume Hie-
rarchies) jest również drzewem binarnym. Bryła ograniczająca (BV, ang. Bounding
Volume) jest najczęściej prostopadłościanem o ścianach biegnących wzdłuż osi
układu współrzędnych (AABB, ang. Axis Aligned Bounding Box), która ograni-
cza pewną ważną dla nas przestrzeń. Jak nazwa wskazuje, drzewo jest hierarchią
tych brył ograniczających, co znaczy, że każdy węzeł zawiera bryłę, która ogra-
nicza jego „dzieci”. W liściach drzewa znajdują się trójkąty. Dla każdego z tych
trójkątów w prosty sposób znajduje się bryłę ograniczającą AABB. Przykład takiej
struktruktury można zobaczyć na rysunku 1.4.

Najważniejszą różnicą w porównaniu do kd–drzewa jest tu fakt, że podczas bu-
dowy drzewa w jednym kroku zamiast rozdzielania przestrzeni dzielimy zbiór trój-
kątów na dwa rozłączne podzbiory. Dzięki temu rozwiązaniu eliminujemy moż-
liwość podwójnych wystąpień trójkątów w drzewie. Umożliwia to także oszaco-
wanie pamięci potrzebnej do skonstruowania drzewa i zarezerwowanie jej przed
budową. Podczas rozdzielania trójkątów na dwa podzbiory teoretycznie dla n trój-
kątów istnieje 2n możliwości podziału, jednak dość oczywiste jest, że nie trzeba
ich wszystkich sprawdzać. Patrząc na położenie trójkątów w przestrzeni można
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Rysunek 1.4. Przykład struktury BVH.

Źródło: Opracowanie własne.

zejść do liniowej liczby możliwości (3n możliwości przy przeglądaniu wszystkich
trzech osi). W dalszej części pracy zostanie omówiona technika podziału na koszy-
ki, dzięki której nie trzeba tak dokładnie sprawdzać położenia wszystkich trójką-
tów. Do zalet struktury BVH należy również błyskawiczna możliwość aktualizacji,
która bardzo pomaga w interaktywnych animacjach. Wszystkie te własności moż-
na wykorzystać podczas budowy, która jest zdecydowanie bardziej efektywna od
budowy kd–drzewa. Do negatywnych cech należy z pewnością rozmiar pojedyń-
czego węzła i co jest z tym związane całej struktury. Węzeł drzewa BVH zajmuje
zdecydowanie więcej miejsca niż węzeł kd–drzewa. Samo trzymanie pojedyńczej
bryły AABB wymaga 24 bajtów. Efektywne implementacje korzystają z węzłów
32 bajtowych. Przez taki rozmiar zdecydowanie mniej węzłów może zmieścić się
w pamięci cache procesora i przeglądanie BVH dla większych scen może być wol-
niejsze niż przeglądanie kd–drzewa. Negatywną własnością jest również fakt, że
dwie bryły ograniczające mogą na siebie nachodzić, przez co podczas trawersowa-
nia drzewa może zajść potrzeba częstszego przeglądania obojga dzieci. Może być
to konieczne nawet wówczas, gdy w bliższej bryle otaczającej znajdziemy trójkąt
przecinany przez dany promień.

Powstały już bardzo efektywne implementacje BVH, które wykorzystują za-
czerpniętą z kd–drzew i nieco zmodyfikowaną heurystykę SAH o której więcej
znajduje się w punkcie 1.2.3 na stronie 15. Najwięcej ciekawych i bardzo przydat-
nych informacji na temat budowy struktury hierarchicznych brył ograniczających
można znaleźć w artykule [Wal07].

Hierarchiczne przedziały ograniczające

Struktura hierarchicznych przedziałów ograniczających (BIH, ang. Bounding In-
terval Hierarchies) została zaprojektowana specjalnie do renderowania animacji.
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Charakteryzuje się krótkim czasem budowy, przez co idealnie pasuje do rende-
rowania scen, dla których czas budowy struktury przyspieszającej ma wyraźny
wpływ na sumaryczny czas przetwarzania jednej klatki. Jak już nazwa wskazuje
jest ona bardzo podobna do struktury BVH. Różnicą są jedynie obszary ogranicza-
jące, które tutaj maja postać przedziałów, a nie prostopadłościennych brył, jak to
było w przypadku BVH. Przedziały te tworzone są przez dwie płaszczyzny rów-
noległe do jednej z osi układu współrzędnych. Dla każdego węzła ta oś może być
inna. Przykład tej struktury w dwóch wymiarach można znaleźć na rysunku 1.5.

Rysunek 1.5. Przykład budowy struktury BIH.

Źródło: Rysunek zapożyczony z artykułu [WK06]

Budowa jest oparta na bryłach AABB trójkątów, podobnie jak było to w drze-
wie BVH. Przebiega ona jednak zdecydowanie szybciej. Płaszczyzny podziału pod-
czas budowy wybierane są z wcześniej wyliczonych propozycji, dzięki tej operacji
oszczędza się mnóstwo czasu. Węzły drzewa BIH w dobrej implementacji zajmują
zaledwie 12 bajtów pamięci, co jak już wspominałem jest dużym plusem, gdyż mo-
że przyspieszyć przeglądanie drzewa. Zyskując na czasie budowy i zmniejszając
pamięć potrzebną na jeden węzeł przez ucięcie czterech ścian bryły AABB, drzewo
straciło na jakości. Strata ta widoczna jest przy szukaniu najbliższego przecięcia
promienia ze sceną. Więcej informacji o całej strukturze, jej budowie, przeglądaniu
i porównaniu z innymi można znaleźć w pracy [WK06].

Spłaszczone hierarchiczne bryły ograniczające

Struktury opisane wyżej należą do najczęściej stosowanych struktur przyspie-
szających w technice śledzenia promieni. W roku 2008 ludzie z Uniwersytetu
w Ulm wpadli na pomysł przebudowania drzew binarnych na drzewa czwórko-
we [DHK08], zwane spłaszczonymi hierarchiami brył ograniczających (SBVH, ang.
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Shallow Bounding Volume Hierarchies). Gotowa konstrukcja drzewa SBVH różni
się od konstrukcji drzewa BVH jedynie liczbą dzieci danego węzła. Sama budowa
polega na skonstruowaniu binarnego drzewa BVH, a następnie przekształceniu go
w drzewo czwórkowe SBVH. Bardzo dobrze pokazuje to rysunek 1.6.

Rysunek 1.6. Przykład przebudowy struktury BVH w strukturę SBVH.

Źródło: Rysunek pochodzi z artykułu [DHK08]

Za takim rozwiązaniem budowy drzewa przemawia architektura dzisiejszych
procesorów. Procesory są w stanie wykonywać operacje na słowach 128 bitowych.
Instrukcje takie zwane są SIMD. Przy ich użyciu, operacje mnożenia, dodawania,
odejmowania, czy dzielenia 4 liczb zmiennoprzecinkowych zajmują prawie 4 razy
mniej czasu niż przy wykorzystaniu zwykłych instrukcji. We wcześniej opisanych
strukturach instrucje te były wykorzystywane do efektywniejszego śledzenia pa-
kietów promieni. Rozwiązanie to zwiększało efektywność głównie w metodzie
rzutowania promieni. W przypadku pozostałych metod zysk nie był już tak zna-
czący. Dzięki nowej strukturze spłaszczonych hierarchicznych brył ograniczających
instrukcje te zyskują większe znaczenie właśnie w metodach rekurencyjnego i roz-
proszonego śledzenia promieni, gdzie mogą być wykorzystane na całej długości
śledzonej ścieżki. Więcej o instrukcjach SIMD znajduje się w punkcie 1.2.4 na stro-
nie 20.

Węzły powstałe po spłaszczeniu struktury zwiększyły rozmiar. W dobrej im-
plementacji jeden węzeł drzewa SBVH zajmuje 128 bajtów. Rozmiar ten jest dość
duży, ale mniejsza liczba węzłów powoduje zmniejszenie rozmiaru całej struktury.

W artykule opisującym efektywną budowę drzewa BVH [Wal07] porównane
są przedstawione do tej pory struktury, za wyjątkiem drzew SBVH. Czas budowy
liczony na jednym wątku jest zdecydowanie najsłabszy dla kd–drzew. Na wybra-
nym przez autorów artykułu komputerze, drzewo to jest budowane ze średnią
prędkością około 150 do 300 tysięcy trójkątów na sekundę. Zdecydowanie lepsze
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czasy budowy można osiągnąć dla drzew BVH, które powstają z prędkością od
1,35 do 2,3 miliona trójkątów na sekundę. Wydajność przeglądania tych struktur
przy podanych czasach budowy jest zbliżona. Najlepsze czasy budowy uzyskano
dla drzew BIH, wynoszą one od 2 do 3 milionów trójkątów na sekundę. Niestety
stało się to kosztem wydajności przeglądania, która według autorów wynosi od
60% do 80% wydajności osiąganej dla optymalnych drzew BVH.

1.2.3. Techniki budowy i przeglądania

Podczas opisywania struktur przyspieszających wspomniałem o różnych techni-
kach ich budowy. W kolejnych puntach techniki te zostaną dokładniej omówione.
Dzięki nim można w krótszym czasie uzyskać dobrze zbalansowane drzewa, które
umożliwiają szybkie znalezienie przecięcia danego promienia ze sceną.

Heurystyka pól powierzchni

Heurystyka pól powierzchni (SAH, ang. Surface Area Heuristics) została stworzona
dla kd–drzew, a następnie zaadoptowana do struktur opartych na bryłach ograni-
czających. Obecnie jest to najlepsza znana metoda pomagająca zbudować optymal-
ne drzewo. Dokładny opis jej zastosowania w budowie obu rodzajów drzew można
znaleźć w artykułach [WH06] i [Wal07]. Heurystyka pól powierzchni wykorzystuje
zasadę prawdopodobieństwa. Najlepsze miejsce podziału oblicza się minimalizując
koszt z wzoru 1.1.

Koszt(V → {L,R}) = KT +KI(
SA(VL)
SA(V )

NL +
SA(VR)
SA(V )

NR) (1.1)

Wzór ten oblicza koszt trawersowania drzewa powstałego przy podziale bryły
V na dwie bryły L i R, które zawierają odpowiednio NL i NR trójkątów. KT określa
koszt przejścia do niższego poziomu drzewa, czyli jest to koszt metody przecięcia
promienia z bryłą AABB.KI natomiast określa koszt przecięcia promienia z jednym
trójkątem. Funkcja SA oblicza pole powierzchni danej bryły. Jak łatwo zauważyć
z wzoru 1.1 wynika, że jej wynik jest mniejszy, gdy większa liczba trójkątów jest
ograniczona przez mniejszą bryłę. Praktycznym przykładem może być sytuacja,
w której promień trawersując strukturę z większym prawdopodobieństwem trafi
w większą bryłę, dlatego lepiej, gdy bryła ta ma jak najmniej trójkątów. W dobrze
zbudowanym drzewie puste obszary są duże, dzięki czemu mogą zostać szybko
przeglądnięte. Przykładem może być rysunek 1.7.

Najlepszym miejscem podziału jest więc minimum funkcji Koszt. Znajduje się
je przez obliczenie wyniku tej funkcji dla różnych podziałów (dyskretna aproksy-
macja). Takie obliczenia zajmują sporo czasu, dlatego często bada się tylko wybrane
podziały. O tym jak zrobić to efektywnie będzie opisane w następnym punkcie.
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(a) (b)

(c) (d)

Rysunek 1.7. Przykład kroku podziału trójkątów na dwie części. Rysunek 1.7(a)
przedstawia scenę z trójkątami. Rysunek 1.7(b) przedstawia podział przestrzeni na dwie
równe części, ale nie bierze pod uwagę liczby trójkątów występującej w obu tych
częściach. Rysunek 1.7(c) przedstawia podział trójkątów w medianie, tu z kolei nie jest
brany pod uwagę podział przestrzeni. Na rysunku 1.7(d) jest przedstawiony podział
korzystający z heurystyki SAH, zawiera on duży prawie pusty obszar, przez co maleje
prawdopodobieństwo wystąpienia wielu wywołań funkcji obliczającej przecięcie
promienia z trójkątami.

Źródło: Rysunek zapożyczony z prezentacji Gordona Stalla z konferencji SIGGRAPH 2005

Istnieje jeszcze dość często wykorzystywana przy prostych implementacjach
struktur heurystyka mediany. Wyróżnia się heurystykę mediany przestrzeni, po-
kazaną na rys.1.7(b) i mediany trójkątów, pokazaną na rys.1.7(c). Budowa przy
pomocy tych heurystyk jest błyskawiczna, ponieważ ogranicza się liczbę operacji
wykonywanych na każdym poziomie budowy drzewa. Metoda ta ma jednak jedną
ogromną wadę, którą jest dużo wolniejsze trawersowanie. Trawersowanie nieco le-
piej działa w przypadku użycia heurystyki mediany przestrzennej, w której lepiej
rozdzielane są puste przestrzenie. W heurystyce mediany trójkątów otrzymujemy
dobrze zbalansowane drzewa, ze względu na liczbę trójkątów.
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Koszyki na trójkąty

Dobrą techniką przyspieszającą budowę drzewa jest podział trójkątów na koszy-
ki. Przy podziale trójkątów danego węzła na dwie części, aby policzyć minimum
funkcji kosztu dla heurystyki SAH należałoby obliczać wzór 1.1 dla każdego moż-
liwego podziału. Zajmuje to bardzo dużo czasu. Badania wykazały, że dokładne
znajdowanie minimum nie jest konieczne. Wystarczy znaleźć w miarę dobry punkt
podziału. Czas działania można więc zmniejszyć dzieląc na początku trójkąty na
równo oddalone w przestrzeni koszyki. Wszystkie kolejne obliczenia, takie jak
liczenie minimum funkcji kosztu, wykonuje się na tych koszykach. W aktykule
[Wal07] zostało napisane, że już drzewo zbudowane przy pomocy 8 koszyków da-
je zbliżone rezultaty do drzewa, w którym minimum szukane jest dla wszystkich
możliwych podziałów. Czasy budowy takich drzew różnią się jednak znacznie,
oczywiście na korzyść tego z zastosowaniem koszyków.

Kolejność przeglądania drzewa

Poza budową ważne jest też przeglądanie drzewa. Warto to robić optymalnie, dlate-
go należy zwrócić uwagę na kolejność przeglądania dzieci danego węzła. Oczywi-
ście lepiej trawersować jako pierwsze dziecko to, którego bryła otaczająca znajduje
się bliżej początku promienia. W przypadku znalezienia przecięcia z trójkątem na-
leżącym do tej bryły, trawersowanie kolejnego dziecka może okazać się zbędne,
dzięki czemu można zaoszczędzić sporo czasu. Przykład prawidłowego wyboru
kolejności trawersowania dzieci w drzewie SBVH znajduje się na rysunku 1.8.

Rysunek 1.8. Przykład prawidłowego wyboru kolejności trawersowania dzieci dla
danego promienia w drzewie SBVH.

Źródło: Rysunek pochodzi z artykułu [DHK08]
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Trawersowanie pakietów promieni

Interesującą techniką przyspieszania przeglądania drzewa jest śledzenie pakietów
promieni. Pakiet taki składa się przeważnie z 4, a czasem z 16 promieni. Wykorzy-
stywana jest tu zbieżność promieni pierwotnych i instrukcje SIMD, o których więcej
znajduje się w punkcie 1.2.4. Dzięki instrukcjom SIMD można szybciej znajdować
przecięcia promieni z kolejnymi węzłami struktury. Zbieżność promieni pozwala
na ograniczenie liczby trawersowań struktury. Możliwe jest to w związku z tym, że
promienie z sąsiadujących pikseli w wielu przypadkach trafiają w ten sam obiekt,
a czasem nawet w ten sam trójkąt w scenie. Taki obiekt znajduje się przeważ-
nie w jednym bądź dwóch sąsiednich liściach, przez co nie trzeba dla kolejnych
promieni trawersować początkowej ścieżki danego drzewa.

Problem pojawia się dla promieni odbitych bądź załamanych. Pakiet takich
promieni może stać się rozbieżny, przez co traci się dla tych promieni możliwość
zmniejszenia liczby trawersowań struktury. Zdecydowanie bardziej opłaca się w ta-
kim wypadku trawersować osobno każdy z promieni. Przykład takiej sytuacji znaj-
duje się na rysunku 1.9.

Rysunek 1.9. Przykład rozbieżności pakietu promieni po odbiciu od kulistej powierzchni.

Źródło: Rysunek pochodzi z artykułu [BEL+07]

1.2.4. Szczegóły implementacji

Dobra struktura, przemyślana budowa i dobra technika trawersowania może bar-
dzo poprawić wydajność algorytmu śledzenia promieni. Jednak detale implemen-
tacji w tym przypadku róznież mają bardzo duże znaczenie. Napisanie efektyw-
nego kodu nie jest zadaniem łatwym. W tym rozdziale opiszę kilka szczegółów
implementacyjnych, na które warto zwrócić uwagę, gdyż stosowanie lub nie, opisa-
nych poniżej rozwiązań może dość znacznie wpłynąć na szybkość działania całego
silnika.
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Usunięcie rekursji

Algorytm śledzenia promieni nadaje się znakomicie do zaimplementowania za
pomocą rekursji. Nie chodzi tu tylko o metodę rekuryncyjnego śledzenia promieni,
ale samą budowę drzewa, czy sposób jego trawersowania.
Rekurencyjny algorytm budowy drzewa dla danego zbioru trójkątów S:

1. jeśli zbiór S jest dość mały, utwórz liść i zakończ algorytm budowy

2. podziel zbiór trójkątów S na dwa podzbiory S1 oraz S2 i utwórz węzeł
wewnętrzny N

3. wywołaj procedurę budowy drzewa dla zbioru S1, gotowe drzewo podepnij
do węzła N jako lewe dziecko

4. wywołaj procedurę budowy drzewa dla zbioru S2, gotowe drzewo podepnij
do węzła N jako prawe dziecko

Rekurencyjny algorytm przeglądania drzewa dla danego promienia r:

1. jeśli aktualny węzeł jest liściem przetnij promień r ze wszystkimi trójkątami,
które się w nim znajdują i zakończ procedurę

2. sprawdź przecięcie promienia r z lewym dzieckiem, jeśli przecina, to wywołaj
procedurę przeglądania dla lewego dziecka

3. sprawdź przecięcie promienia r z prawym dzieckiem, jeśli przecina, to wy-
wołaj procedurę przeglądania dla prawego dziecka

Wywołania rekurencyjne zajmują sporo czasu, jedną z przyczyn jest potrzeba
rezerwowania pamięci na stosie dla takich wywołań. Wyjściem w tej sytuacji jest
przerobienie obu wyżej opisanych rozwiązań na algorytmy, które w pętli, korzysta-
jąc z wcześniej przygotowanego stosu sprawnie poradzą sobie zarówno z budową
drzewa jak i z jego przeglądaniem. W rozwiązaniu tym zamiast wywołania re-
kuryncyjnego funkcji wystarczy wrzucić odpowiednie dane na stos i przejść do
początku pętli, gdzie dane te są ze stosu zdejmowane i wykonuje się na nich
wszystkie żądane operacje.

Podział trójkątów „w miejscu”

W każdym kroku budowy drzewa potrzebne jest podzielenie trójkątów na dwa
podzbiory według pewnej zasady. Przeważnie polega to na wyborze jednej płasz-
czyzny. Następnie trójkąty, których środki ciężkości znajdują się po jednej jej stronie
trafiają do jednego zbioru, pozostałe do drugiego. Jak już wcześniej wspomniałem,
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trójkątów może być bardzo dużo, dlatego ich sortowanie mija się z celem szybkie-
go algorytmu. W takim wypadku najlepszym wyjściem jest przyjęcie rozwiązania
z algorytmu quicksort. Scena trzymana jest w pojedyńczej tablicy jako wskaźniki na
trójkąty. W momencie podziału, na jej początku i końcu umieszcza się wskaźniki,
które pomogają przy podziale. Wskaźniki te iteruje się zatrzymując na niepasu-
jących do danej części trójkątach. Trójkąty te są ze sobą zamieniane miejscami.
Rozwiązanie to poza optymalną liniową złożonością ma zaletę w dużej efektyw-
ności, gdyż w pamięci zamieniane miejscami są tylko wskaźniki.

Instrukcje SIMD

W punkcie 1.2.2 wspomniałem o instrukcjach, które umożliwiają szybsze wykony-
wanie wielu operacji arytmetycznych. Instrukcje te noszą nazwę SIMD (ang. Single
Instruction Multiple Data). Istnieją wyspecjalizowane procesory, stworzone właśnie
dla architektury SIMD. Wykorzystywane są one w komputerach wektorowych, do
obliczeń naukowo–technicznych, gdzie przetwarzanych jest wiele strumieni danych
w oparciu o jeden strumień rozkazów. Dzisiejsze procesory skonstruowane w ar-
chitekturze x86 posiadają listę standardowych rozkazów poszerzoną o zestawy
instrukcji takie jak MMX, SSE, SSE2 itp. Właśnie te instrukcje wykorzystują archi-
tekturę SIMD i umożliwiają wykonywanie podstawowych operacji arytmetycznych
na czterech 4-bajtowych liczbach w pojedyńczej instrukcji.

W teorii rozkazy takie powinny przyspieszyć cały program o 4 razy. W praktyce
jest to mniej więcej 3-krotne przyspieszenie. W algorytmie, gdzie liczy się każdy
szczegół przy poprawie efektywności jest to ogromny postęp. Instrukcje te mogą
być wykorzystywane podczas trawersowania struktur drzewiastych, zarówno przy
pomocy pakietów promieni dla drzew binarnych, jak i dla jednego promienia.
W przypadku drzew czwórkowych, co jest zdecydowanie lepszym rozwiązniem,
dla rekurencyjnej i rozproszonej metody śledzenia promieni. Przy trawersowaniu
liścia można liczyć przecięcie promienia z czterema trójkątami na raz. Warto
wykorzystać zestaw instrukcji SIMD również podczas budowy. Miejsce do ich
wykorzystania można znaleźć bez większego problemu.

Alokowanie i wyrównywanie pamięci

Ważną zasadą podczas implementacji szybkich algorytmów jest wyeliminowanie
z programu funkcji rezerwujących pamięć. Wywołania takie zajmują sporo czasu.
Dlatego w dobrym rozwiązaniu warto zadbać o wstępną rezerwację pamięci na
wszystkie potrzebne w czasie działania obiekty. Jest to trochę bardziej utrudnione
w przypadku kd–drzew, gdzie jak pisałem w punkcie 1.2.2, nie zawsze wiadomo
ile dokładnie miejsca może zająć gotowa struktura zbudowana dla sceny złożonej
z n trójkątów. Ostatnim szczegółem implementacyjnym o którym chciałem wspo-
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mnieć jest wyrównywanie wstawianych do pamięci obiektów do odpowiedniej
wartości, przeważnie do liczby podzielnej przez 32. Takie rozmieszczenie umoż-
liwia procesorowi lepsze poukładanie obiektów w pamięci cache, dzięki czemu
program może działać nieco szybciej.
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ROZDZIAŁ 2

Spłaszczone hierarchiczne przedziały
ograniczające

W tym rozdziale opiszę dokładnie strukturę, która powstała jako połączenie wy-
branych cech z już wcześniej istniejących i omówionych w poprzednim rozdziale
drzew. Struktura ta ze względu na swój wygląd nosi nazwę spłaszczonych hie-
rarchicznych przedziałów ograniczających (SBIH, ang. Shallow Bounding Interval
Hierarchies).

2.1. Pomysł

Czytając artykuł o strukturze SBVH [DHK08] i mając wiedzę na temat wcześniej
powstałej struktury BIH [WK06], pomyślałem, że można spróbować połączyć oba
rozwiązania. To znaczy zbudować strukturę, która będzie umożliwiała:

• efektywne trawersowanie przy pomocy instrukcji SIMD, nie tylko dla pakie-
tów promieni pierwotnych;

• lepsze umieszczenie struktury w pamięci cache procesora przez zmiejszenie
rozmiaru węzłów drzewa;

• szybką budowę, co może być wykorzystywane w przypadku interaktywnego
renderowania animacji;

Struktura ta podobnie jak drzewo BIH miałaby w węzłach jedynie płaszczyzny
ograniczające obszary z dwóch stron na jednej osi. Płaszczyzny te dzieliłyby jednak
bryłę węzła wewnętrznego na 4 części tworząc drzewo czwórkowe, tak jak to jest
w drzewie SBVH. Przykład tej struktury znajduje się na rysunku 2.1.

Zgodnie z powyższym opisem, węzeł wewnętrzny struktury SBIH musi za-
wierać conajmniej 6 płaszczyzn ograniczających. Dwie zewnętrzne można przeko-
piować z wyższego poziomu, a dla korzenia drzewa, z bryły ograniczającej całą
scenę. Dodatkowo potrzebne jest oznaczenie osi, na której wykonywany jest po-
dział i wskaźnik na pierwsze „dziecko” („dzieci” mogą być umieszczone w pamięci
obok siebie, dlatego więcej wskaźników nie jest potrzebnych). Liście muszą zawie-
rać liczbę trójkątów w nich zawartych oraz wskaźnik na pierwszy z nich.
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Przy założeniu, że mamy dla całej sceny skonstruowaną bryłę ograniczającą,
podczas trawersowania i wchodzenia do kolejnych węzłów bryła ta zostaje syste-
matycznie zmniejszana. W wyniku tego, w każdym węźle mamy dostępną bryłę
AABB. Sposób w jaki struktura ta jest skonstruowana, uniemożliwia jednak ide-
alne ograniczenie danego poddrzewa, tak jak jest to możliwe w drzewie SBVH.
W związku z tym można spodziewać się mniejszej wydajności podczas trawerso-
wania.

Rysunek 2.1. Przykład sceny w 2D i stworzonej na niej struktury SBIH.

Źródło: Opracowanie własne.

Opisana w artykule [DHK08] konstrukcja drzewa SBVH przebiega w dwóch
etapach. Na początku budowane jest drzewo BVH. Drzewo to następnie jest szyb-
ko przekształcane w drzewo SBVH. Autorzy, dzięki takiej budowie wykorzystali
dokładnie wszystko to, co do tej pory istniało dla drzew BVH, między innymi
heurystykę pól powierzchni opisaną w punkcie 1.2.3. Dzięki temu drzewo SBVH
jest zbudowane optymalnie. Zastanawiałem się, czy można to rozwiązać w inny
sposób, ponieważ w nowym drzewie SBIH nie będzie możliwe skonstruowanie go
na przykład z drzewa BIH. Podziały w drzewie na dwóch kolejnych poziomach
musiałyby być wykonywane na tej samej osi. Takie założenie można oczywiście
przyjąć podczas budowy pierwszego drzewa, ale zdecydowanie ładniejsze byłoby
rozwiązanie, w którym będzie od razu konstruowane drzewo czwórkowe.

2.2. Realizacja

Na początku zostało zrealizowane najprostsze rozwiązanie pomysłu opisanego
w punkcie 2.1, w którym każdy liść trzymany był jako osobny węzeł. Podczas
implementacji okazało się, że to rozwiązanie nie jest zbyt efektywne. Liście w drze-
wie można trzymać w sposób zaprezentowany w artykule [DHK08] opisującym
drzewa SBVH. Każdy liść jest tam trzymany w wewnętrznym węźle, który jest dla
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niego ojcem. Dzięki temu rozwiązaniu można ograniczyć całkowitą liczbę węzłów
drzewa. Jednak wymaga ono również dwukrotnego zwiększenia pamięci potrzeb-
nej na jeden węzeł. Obie struktury zostały dalej rozwijane i doprowadzone do
końca. Ze względu na niewielkie różnice w budowie i w trawersowaniu są one
w kolejnych punktach opisane równolegle.

2.2.1. Wygląd struktury

Pracę należy rozpocząć od projektu wyglądu węzła. Pierwszym pomysłem była
minimalizacja jego rozmiaru. Jak już zostało opisane w punkcie 2.1, w węźle
wewnętrznym trzeba trzymać conajmniej 6 liczb zmiennoprzecinkowych, wskaźnik
na dziecko oraz oś, w której dokonano podziału. Jak łatwo policzyć taki węzeł
zmieści się w 32 bajtach, co jest bardzo dobrym wynikiem. Należy przy tym
rozwiązaniu wziąć pod uwagę fakt, że każdy liść musi być trzymany w osobnym
węźle, co zwiększa dość znacznie rozmiar struktury.

Listing 2.1. Przykładowy kod źródłowy węzła drzewa SBIH.

s t r u c t
{

f l o a t plaszczyznaMin [ 3 ] ;
f l o a t plaszczyznaMax [ 3 ] ;
in t wskaznik ;
in t dane ;

} ;

Kolejny pomysł był zaczerpnięty z artykułu [DHK08], gdzie liście były prze-
chowywane w węzłach, będących ich ojcami. Przy tym rozwiązaniu trzeba było
zwiększyć rozmiar węzła do 64 bajtów. W takim węźle można już bez proble-
mów trzymać 8 liczb zmiennoprzecinkowych określających płaszczyzny podziału,
4 wskaźniki, po jednym dla każdego dziecka, na kolejny węzeł lub na pierwszy
trójkąt (w zależności, od tego, czy dziecko jest liściem, czy węzłem wewnętrznym)
oraz liczbę trójkątów dla dzieci, które są liśćmi. Dodatkowo przeznacza się 2 bity
na przetrzymywanie osi podziału.
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Listing 2.2. Przykładowy kod źródłowy węzła drzewa SBIH2.

s t r u c t
{

f l o a t plaszczyznaMin [ 4 ] ;
f l o a t plaszczyznaMax [ 4 ] ;
in t wskaznik [ 4 ] ;
in t l i czbaTro jkatow [ 4 ] ;

} ;

2.2.2. Budowa struktury

Budowa struktury SBIH jest bardzo podobna do budowy hierarchicznych struktur
drzewiastych opisanych w punkcie 1.2.2. W tym punkcie budowa ta zostanie
opisana dokładnie.
Opis zmiennych pomocniczych:

ni liczba trójkątów w i-tym kubełku;

bbi bryła AABB otaczająca wszystkie trójkąty znajdujące się w i-tym kubełku;

Ci środek ciężkości i-tego trójkąta;

BBi bryła AABB i-tego trójkąta;

NL,j suma wszystkich ni od 0 do j, NL,j =
∑i=j
i=0 ni;

NR,j suma wszystkich ni od j + 1 do n, gdzie n to liczba wszystkich kubełków,
NR,j =

∑i=n
i=j+1 ni;

AL,j pole powierzchni bryły otaczającej trójkąty znajdujące się w kubełkach od 0
do j, AL,j = SA(

∪i=j
i=0 bbi);

AR,j pole powierzchni bryły otaczającej trójkąty znajdujące się w kubełkach od
j + 1 do n, AR,j = SA(

∪i=n
i=j+1 bbi);

Algorytm budowy:

1. oblicz bryły otaczające dla wszystkich trójkątów (można to zrobić efektywnie
z wykorzystaniem instrukcji SIMD), w tym kroku oblicz również środki
ciężkości wszystkich trójkątów oraz bryłę V otaczającą całą scenę

2. wrzuć na stos węzeł zawierający wszystkie trójkąty

3. wykonuj poniższą pętlę dopóki stos jest niepusty:

(a) ściągnij z wierzchołka stosu węzeł z danymi do stworzenia drzewa;

(b) jeśli w danym węźle jest mało trójkątów, to stwórz z niego liść i zakończ;
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(c) dla kazdej z trzech osi:

i. podziel trójkąty na kubełki według wzoru znajdującego się w arty-
kule [Wal07] (dla każdego kubełka obliczaj podczas tej operacji ni
oraz bbi);

ii. za pomocą zmiennych ni i bbi wylicz NL,j , NR,j oraz AL,j i AR,j ;
iii. korzystając ze zmiennych NL,j , NR,j , AL,j i AR,j oblicz z wykorzy-

staniem SAH najlepszy podział (niech to będzie miejsce l);
iv. uaktualnij zmienne NL,j , NR,j , AL,j i AR,j tak jakby kubełki 0, ..., l

oraz l + 1, ..., n tworzyły osobne węzły;
v. oblicz z wykorzystaniem nowych zmiennych dwa najlepsze podzia-

ły (jeden dla koszyków od 0 do l, drugi dla koszyków od l + 1
do n);

vi. zapamiętaj wszystkie 3 podziały, jeśli wynik SAH jest lepszy niż dla
pozostałych osi;

(d) posortuj trójkąty w tablicy według otrzymanego podziału metodą po-
daną w punkcie 1.2.4;

(e) wrzuć na stos dane potrzebne do stworzenia poddrzew z 4 otrzymanych
podzbiorów trójkątów.

Struktury SBIH i SBIH2 różnią się jedynie szczegółami implementacyjnymi
w tworzeniu węzłów wewnętrznych i liści. Ogólny schemat algorytmu jest iden-
tyczny. Jak łatwo zauważyć, techniki budowy hierarchicznych drzew opisane
w punkcie 2.2.2 zostały tu umiejętnie wykorzystane. Większa zmiana była po-
trzebna jedynie w przypadku implementacji heurystyki SAH, która w tym wy-
padku jest wywoływana trzykrotnie podczas tworzenia jednego węzła. Dzieje się
tak, ponieważ każdy z tych trzech podziałów musi odbywać się wzdłuż jednej osi.
Dokładna implementacja algorytmu budowy opisanych drzew znajduje się w pliku
traversetree.cpp, który znajduje się w źródłach programu. Plik ten jest dołączony
do pracy, więcej informacji można znaleźć w dodatku A.

2.2.3. Uaktualnianie struktury

Poza budową struktura ta nadaje się idealnie do szybkiego uaktualniania. Uak-
tualnianie takie jest bardzo przydatne w scenach animacji, gdy mało obiektów
w kolejnych klatkach zmienia swoje położenie. Najlepsze efekty można osiągnąć,
gdy położenie to zmieniają w podobny sposób trójkąty do siebie przylegające. Takie
uaktualnienie drzewa można zrobić w liniowym czasie względem liczby trójkątów
w drzewie. Możliwe i bardzo intuicyjne jest tu rozwiązanie rekurencyjne, jednak
jak już wcześniej wspominałem, warto się go pozbyć.
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Algorytm przedstawia się następująco:

1. wrzuć na stos korzeń drzewa z wyzerowaną bryłą otaczającą (bryła ta zosta-
nie uaktualniona)

2. wykonaj poniższą pętlę dopóki stos jest niepusty:

(a) zdejmij węzeł z wierzchołka stosu;

(b) jeśli to liść, to oblicz dla niego nową bryłę otaczającą i uaktualnij bryłę
otaczającą ojca danego węzła;

(c) jeśli to węzeł wewnętrzny, to wrzuć na stos jego kolejne dziecko z wy-
zerowaną bryłą otaczającą, jeśli to ostatnie dziecko, to po uaktualnieniu
go, uaktualnij również bryłę otaczającą jego rodzica (ewentualnie bryłę
otaczającą całą scenę).

W pliku traversetree.cpp można znaleźć implementację tego rozwiązania.
Jak już wspomniałem w poprzednim punkcie, plik ten znajduje się w źródłach
programu opisanego w dodatku A.

2.2.4. Trawersowanie struktury

Ostatnim interesującym algorytmem jest trawersowanie drzewa przez dany pro-
mień. Optymalny algorytm bierze pod uwage dwie kwestie:

• kolejność przeglądania poddrzew danego węzła — faktem jest, że przecię-
cie liczymy za jednym zamachem dla wszystkich 4 poddrzew, ale warto je
przeglądać w prawidłowej kolejności, można dzięki takiemu rozwiązaniu za-
oszczędzić sporo czasu

• właściwe ograniczanie sprawdzanego obszaru podczas zagłębiania się w drze-
wie — tu trzeba uważać na to, by nie liczyć przecięć z przedziałami ogra-
niczającymi znajdującymi się poza bryłą otaczającą wynikającą z hierarchii
drzewa, można to zrobić przez odpowiednie zarządzanie wartością określa-
jącą koniec promienia

Mój algorytm przedstawia się następująco:

1. wrzuć korzeń drzewa na stos;

2. dopóki stos jest niepusty wykonaj:

(a) zdejmij węzeł ze stosu;

(b) jeśli to liść, to przetnij promień ze wszystkimi trójkątami, które się w nim
znajdują (jeśli przecięcie znalezione, to uaktualnij promień) i kontynuuj
pętlę;
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(c) jeśli to węzeł wewnętrzny, to:

i. ustaw kolejność trawersowania dzieci w zależności od kierunku
promienia na osi, wzdłuż której istnieje podział w danym węźle;

ii. ustaw tymczasowe (na czas przecinania z płaszczyznami) maksi-
mum promienia (w tym miejscu trzeba uważać, by maksimum pro-
mienia było ustawione na minimalną wartość z jego aktualnej dłu-
gości i otaczającej ten fragment sceny bryły AABB, jeśli się to usta-
wienie zaniedba, to w praktyce odwiedzimy prawie każdy węzeł,
ponieważ tylko promień równoległy do danej płaszczyzny jej nie
przetnie);

iii. policz przecięcie z płaszczyznami;
iv. wrzuć dzieci, z którymi przecięcie dało wynik pozytywny na stos,

na stos pomocniczy wrzuć bryłę AABB ograniczającą te dzieci.

Implementacja algorytmów trawersowania zaimplementowanych struktur znaj-
duje się w pliku tracer.cpp w źródłach programu dołączonego w dodatku A.
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ROZDZIAŁ 3

Wyniki

Testy zostały przeprowadzone na 4 zaimplementowanych strukturach:

• hierarchicznych bryłach ograniczających (BVH);

• spłaszczonych hierarchicznych bryłach ograniczających (SBVH);

• hierarchicznych przedziałach ograniczających (BIH);

• spłaszczonych hierarchicznych przedziałach ograniczających z węzłem o mi-
nimalnym rozmiarze (SBIH);

• spłaszczonych hierarchicznych przedziałach ograniczających, w których liście
wewnętrzne zawarte są w „rodzicu” (SBIH2).

Do testów zostały wykorzystane sceny pobrane z repozytorium animacji Uni-
wersytetu w Utah, które można znaleźć na stronie internetowej1. Przykładowe
zrzuty ekranu wybranych klatek animacji znajdują się na rysunku 3.1. Dokładniej-
sze dane dotyczące scen, animacji można znaleźć w tabeli 3.1.

nazwa sceny liczba trójkątów liczba klatek
wooddoll 6658 29
marbles 8800 500
toasters 11141 246
hand 17135 44
ben 78029 30
fairy forest 174117 21
exploding dragon 252572 16

Tabela 3.1. Statystyka scen użytych w testach.

Źródło: Opracowanie własne.

Wybór scen nie jest przypadkowy. Zostały one stworzone w celach testowych.
Przedstawiają najczęściej spotykane w animacjach rodzaje ruchu. W scenie hand
występuje naturalny ruch palców ręki. Ruch biegnącej postaci możemy znaleźć

1http://www.sci.utah.edu/∼wald/animrep/
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w scenach ben i wooddoll. W animacjach zawsze występują pewne obiekty stałe,
takie jak ściany, czy podłogi. Nie zmieniają one położenia w czasie. W scenach
testowych znaleźli miejsce reprezentanci właśnie takich scen, są to fairy forest oraz
toasters, gdzie pewne obiekty poruszają się po ograniczonym obszarze, który także
jest renderowany. Inną często spotykaną sytuacją w animacjach są obiekty poru-
szające się niezależnie od siebie, zmieniające kierunki ruchu pod wpływem odbić.
Można je zobaczyć w scenie marbles, w której piłeczki wpadają do niewidzialnego
pojemnika i odbijając się od siebie układają się na jego dnie. Ostatnia scena explo-
ding dragon przedstawia smoka rozpadającego się w drobny pył. Taka sekwencja
jest bardzo trudna do utrzymania w efektywnej strukturze. Trójkąty, które na po-
czątku były blisko siebie, były połączone, w kolejnych klatkach mogą poruszać się
zupełnie niezależnie w różnych kierunkach.

Większość testów została przeprowadzona na komputerze z procesorem AMD
Sempron 2500+ obsługującym instrukcje SSE i SSE2 taktowanym z częstotliwością
1,4 GHz i wyposażonym w 1 GB pamięci RAM DDR. W celu sprawdzenia równo-
ległości zastosowanych algorytmów został wykorzystany komputer z procesorem
Intel Core 2 Quad Q9300 taktowany z częstotliwością 2,5 GHz, również wykorzy-
stującym instrukcje SSE i SSE2, posiadającym 4 GB pamięci RAM DDR2.

3.1. Budowa

Pierwszym testem było porównanie czasów budowy całej struktury. Wyniki dla
scen testowych znajdują się w tabeli 3.2. Budowa struktury SBVH jest minimal-
nie dłuższa niż budowa struktury BVH. Tak jak zostało opisane w punkcie 1.2.2,
drzewo SBVH powstaje przez przebudowanie drzewa BVH. Kolejną ciekawą ob-
serwacją jest czas budowy drzew, których budowa opiera się na spłaszczonym
podziale przestrzeni płaszczyznami, czyli SBIH i SBIH2. Dla mniejszych scen cza-
sy te są większe niż czasy budowy drzew opartych na bryłach ograniczających,
ale wraz ze wzrostem wielkości scen, czasy te rosną dużo wolniej. Jest to spowo-
dowane tym, że podczas budowy struktury hierarchicznych brył ograniczających,
na każdym etapie dzielimy zbiór trójkątów na 2 podzbiory, a przy spłaszczonych
hierarchicznych przedziałach ograniczających na 4. Dzięki temu początkowy duży
zbiór trójkątów dość szybko rozdziela się na więcej mniejszych, na których opera-
cje wykonywane są już znacznie szybciej. Różnicę tę również widać porównując
strukturę BIH, w której podczas budowy również dochodzi do podziału na 2 czę-
ści, z SBIH. Budowa struktury BIH jest dużo wolniejsza.

Kolejnym testem było sprawdzenie czasu aktualizacji struktury. Taka aktuali-
zacja powinna być błyskawiczna, ponieważ odbywa się to przez zwykłe przegląd-
nięcie drzewa i aktualizację jego węzłów. Złożoność czasowa tej operacji jest li-



33

(a) ben (b) hand (c) toasters

(d) fairy forest (e) wooddoll (f) exploding dragon

(g) marbles

Rysunek 3.1. Przykładowe zrzuty ekranu z rendrowanych animacji.

Źródło: Sceny pochodzą z Utah Animation Repository.

niowa względem rozmiaru sceny (przejrzenie wszystkich trójkątów) i względem
rozmiaru struktury (przejrzenie wszystkich węzłów). Z tabeli 3.3 porównując cza-
sy aktualizacji do czasów budowy drzew (patrz tab. 3.2), można wywnioskować,
że ta operacja rzeczywiście jest błyskawiczna i w przypadku wszystkich struktur
czasy są zbliżone z lekkim wskazaniem na struktury spłaszczonych hierarchicz-
nych przedziałów ograniczających. Dzieje się tak, ponieważ drzewa tych struktur
mają zdecydowanie mniej węzłów wewnętrznych do przeglądnięcia, a ich mniej-
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nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 34,3 26,9 44,9 32,4 21,8
marbles 38,8 39,2 64,7 72,9 74,4
toasters 51,5 50,8 83,9 91,5 96,8
hand 77,8 79 126,6 110,6 80
ben 426,2 424,9 639,1 277,2 214,6
fairy forest 1029,4 1055,2 1474,2 903,8 741,0
exploding dragon1 1371,2 1372,1 2026,1 665,9 582,0
exploding dragon2 1406 1406,6 2076,2 782,4 677

Tabela 3.2. Porównanie średnich czasów budowy od podstaw dla różnych struktur
(czasy podane w ms).

Źródło: Opracowanie własne.

szy rozmiar pozwala na umieszczenie całych struktur w szybkiej pamięci cache
procesora.

nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 1,6 2 1,6 1,3 1,6
marbles 2,3 2,8 2 2,1 2,6
toasters 2,8 3,5 2,4 2,6 3,3
hand 4,6 5,6 4,2 3,8 4,8
ben 20,6 25 18,2 14,3 19,5
fairy forest 51,4 61,8 43,3 38,2 51,2
exploding dragon1 77,8 91,4 67,4 50,6 69
exploding dragon2 75 91,6 66 51,6 69,8

Tabela 3.3. Średnie czasy uaktualniania struktury dla jednej klatki (czasy podane w ms).

Źródło: Opracowanie własne.

Ważnym aspektem, o którym wspomniałem kilka razy w drugim rozdziale jest
rozmiar pamięci jaki zajmuje cała struktura. Rozmiar ten w testach został policzony
dokładnie przez przemnożenie liczby zajętych węzłów przez rozmiar jednego
węzła. Wynik tego działania został uśredniony dla wszystkich klatek animacji.
W tym wypadku należy zwrócić uwagę na inne rozmiary drzew w zależności od
parametru budowy, jakim jest maksymalna liczba trójkątów w jednym liściu. Im
jest ich więcej, tym drzewo może zostać zbudowane szybciej i tym mniej pamięci
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zajmuje. Rozmiary drzew przedstawionych w tabeli 3.4, odnoszą się do drzew
zbudowancyh z identycznym parametrem, z maksymalną liczbą trójkątów w liściu
wynoszącą 16. W tej tabeli warto zwrócić uwagę na bardzo mały rozmiar struktur
SBIH i SBIH2 w pamięci. Węzły tych struktur są bardzo kompaktowe, a dzięki
spłaszczeniu ich liczba utrzymana jest na bardzo niskim poziomie.

nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 73,5 38 76 9,5 6,5
marbles 52 51,5 103 52 27,5
toasters 67 67 131 67,5 36
hand 99,5 100 198 36,5 26,5
ben 453 454 900 43 33
fairy forest 1023 1021 2024 251 172,5
exploding dragon1 1475 1475 2933 57 45
exploding dragon2 1492 1494 2933 91 68

Tabela 3.4. Porównanie pamięci zajmowanej przez struktury. Pamięć liczona
w kilobajtach.

Źródło: Opracowanie własne.

3.2. Trawersowanie

Najważniejszą własnością, od której zależy efektywność działania, czyli jakość
struktury jest czas renderowania jednej klatki. Ważnym aspektem oczywiście jest
rozmiar renderowanej sceny oraz wielkość bryły zawierającej renderowaną scenę
w stosunku do tego co obejmuje widok z kamery. Gdy obiekt zajmuje nieznaczną
część widoku z kamery, wtedy spora liczba promieni pierwotnych może być szyb-
ko odrzucona przez test przecięcia z bryłą otaczającą scenę. Kamera we wszystkich
scenach testowych została jednak ustawiona w taki sposób, by bryła otaczająca całą
scenę obejmowała większą część kadru. Dla wszystkich struktur ustawienia kame-
ry są identyczne. Duży wpływ na czas renderowania jednej klatki, przy korzysta-
niu z opisanych struktur ma również sama budowa sceny, czyli rozmieszczenie
trójkątów. W tabeli 3.5 scena exploding dragon została podzielona na dwie części.
Część pierwsza to 8 pierwszych klatek, część druga to 8 ostatnich. W drugiej części
smok rozpada się na drobne kawałeczki, którymi są pojedyńcze trójkąty. Każdy
taki trójkąt porusza się w innym kierunku, co znacznie utrudnia renderowanie.
Wyniki pokazują, że czasy dla drugiej części tej animacji, szczególnie dla drzew
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SBIH i SBIH2, są dużo większe niż te dla pierwszej jej części. Pokazuje to trudności
jakie struktury te mają przy całkowicie losowo zmieniających się scenach.

nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 255 218 751,6 1216 903
marbles 241 215 253 255,3 191,6
toasters 934,4 699,4 2499 2699 1243
hand 845 417 1988 3066 1158
ben 521,2 395,3 2344 6550 1666
fairy forest 1789 1227 7824 13315 4310
exploding dragon1 451,2 252,7 1196 4435 2215
exploding dragon2 1061 581 10054 27452 23462

Tabela 3.5. Porównanie czasów renderowania obrazów po całkowitej przebudowie
struktury (czasy podane w ms).

Źródło: Opracowanie własne.

Gdy renderowana scena animacji nie zmienia się znacznie, warto zadbać, by
struktura, w której się ona znajduje była dobrze aktaulizowana dla kolejnych klatek.
Aktualizacja taka jest bardzo szybka, co pokazuje tabela 3.3. Efektywność przeglą-
dania zaktualizowanej struktury możemy odczytać z tabeli 3.6. Własność ta została
sprawdzona tylko dla niektórych scen. Szczególną uwagę należy zwrócić na sceny
toasters i fairy forest, w których występują jednocześnie obiekty stałe i obiekty ru-
chome. Tak zbudowane są praktycznie wszystkie sceny w większości dzisiejszych
animacji. W tabeli 3.6 można jeszcze zauważyć dość znaczne różnice dla czasów
renderowania obrazów po aktualizacji z wykorzystaniem struktury SBVH w po-
równaniu do renerowania przy pomocy tej struktury po całkowitej przebudowie.
Być może jest to spowodowane tym, iż bryły otaczające dla węzłów wewnętrznych
muszą zawierać cztery bryły na niższym poziomie. Podczas aktualizacji przy ma-
łej zmianie każdej z tych czterech brył, bryła „rodzica” może dość znacznie się
powiększyć, przez co dużo więcej promieni trafia właśnie w tę bryłę i jest liczone
dużo więcej przecięć. W strukturach SBIH i SBIH2 mamy również drzewa czwór-
kowe, jednak tam budowa oparta jest na podziale płaszczyznami (w jednym węźle
wzdłuż jednej osi), dzięki czemu małe zmiany w węzłach „dzieci” nie powodują
wielkich zmian w węźle „rodzica”.

Innym interesującym parametrem, opisującym w pewien sposób efektywność
działania struktury, jest średnia liczba trójkątów przecinanych w czasie jednej se-
kundy. Wyniki obrazujące tę statystykę znajdują się w tabeli 3.7. Wartości zostały
wyliczone przez podzielenie średniej liczby przecinanych trójkątów podczas ren-
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nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 281,3 843 818 1423 997
marbles 254,2 534,1 310,1 321,5 228,5
toasters 978 3731 2779 2920 1322
hand 916 4274 2284 3478 1258
ben 584 30643 2883 8514 2321
fairy forest 2261 89424 13480 24325 6375

Tabela 3.6. Porównanie czasów renderowania obrazów po aktualizacji struktury, pełna
przebudowa co 4 klatki (czasy podane w ms).

Źródło: Opracowanie własne.

derowania animacji przez czas jej renderowania. Chciałbym dodać w tym miejscu,
że test ten został przeprowadzony na strukturach, których wszystkie liście mają
maksymalnie po 16 trójkątów. Dzięki takiemu założeniu wyniki można porówny-
wać. Jak łatwo odczytać z tabeli 3.7 struktura BVH umożliwia przecinanie średnio
od 0,5M do 1M trójkątów na sekundę. Struktura SBVH od około 0,7M do 1,3M
trójkątów w ciągu jednej sekundy. Dużo lepiej radzą sobie struktury oparte na
podziale płaszczyznami, BIH umożliwia przecinanie od około 2,5M do 3,5M, pod-
czas gdy struktury SBIH i SBIH2 odpowiednio około 3M–5M i 2M–4M przecięć
trójkątów na sekundę. Taki wynik może być spowodowany po pierwsze, mniejszą
liczbą operacji potrzebnych podczas trawersowania drzewa (test przecięcia tylko
z płaszczyznami równoległymi do jednej z osi układu współrzędnych), a po dru-
gie, mniejszym rozmiarem węzłów, dzięki czemu, struktura może być zdecydowa-
nie szybciej przeglądana, przez umieszczenie w pamieci cache, z której czytanie
odbywa się błyskawicznie.

3.3. Parametry w strukturze SBIH2

Struktura SBIH2 została przetestowana dokładniej. W testach zostały sprawdzone
m.in. różne parametry jej budowy. Na końcu zostały wykorzystane oczywiście pa-
rametry dające optymalne wyniki. Z tabeli 3.8 można odczytać prędkość budowy.
Rośnie ona wraz ze zwiększaniem liczby koszyków i maleje wraz ze zwiększa-
niem liczby trójkątów w liściu. Przy dobieraniu odpowiednich parametrów należy
zwrócić również uwagę na czasy trawersowania, które są przedstawione w tabeli
3.9. Widać, że dla pewnych parametrów budowa struktury się nie opłaca. Dla nie-
których parametrów z kolei nie widać wyraźnej różnicy w czasach trawersowań.
Gdy liczba koszyków dochodzi do 64, czasy renderowania niezancznie się zmniej-
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nazwa sceny BVH SBVH BIH SBIH SBIH2
wooddoll 0,45 0,99 2,95 4,1 3,83
marbles 1,1 1,33 2,5 2,5 2,16
toasters 0,92 1,29 2,85 2,79 2,27
hand 1,14 1,08 3,27 4,13 2,84
ben 0,71 1 3 3,96 3,53
fairy forest 0,61 0,9 3 3,8 2,95
exploding dragon1 1,03 0,70 3,3 5,07 4,87
exploding dragon2 0,51 0,37 3,44 5,1 5,06

Tabela 3.7. Porównanie wydajności działania struktur, w tabeli przedstawiona jest
średnia liczba przecinanych trojkątów w ciągu jednej sekundy dla poszczególnych scen
i struktur (liczba podana w milionach).

Źródło: Opracowanie własne.

szają. Powyżej tej liczby utrzymują się już na podobnym poziomie. Czasy budowy
powyżej pewnej granicy rosną bardzo wyraźnie, dzieje się to wraz ze wzrostem
liczby koszyków, która oznacza po prostu większą liczbę sortowań.

l.k. \ m.l.t. 4 8 16 32 64 128
16 177 177,8 181,4 181,1 178,9 165,4
32 193,5 186,9 187 187,1 187,2 173,2
64 216 215,4 214,5 220,3 211 189,5
128 270,6 270,7 268,4 267,1 251,2 224
256 390,2 378,7 383,5 371,8 345,9 298,5
512 604,5 598,3 616,2 601,9 540,1 425,5
1024 1062 1080 1060 1049,8 900,5 714,4

Tabela 3.8. Porównanie czasów budowy struktury SBIH2 w zależności od wybranych
parametrów l.k. — liczba koszyków i m.l.t. — maksymalna liczba trójkątów w liściu
(czasy podane w ms).

Źródło: Opracowanie własne.
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l.k. \ m.l.t. 4 8 16 32 64 128
16 1681 1682 1686 1749 1762 2119
32 1582 1580 1584 1588 1649 2006
64 1616 1617 1615 1621 1672 2027
128 1604 1603 1605 1608 1656 2030
256 1584 1585 1584 1590 1636 2012
512 1581 1583 1580 1586 1639 2015
1024 1571 1572 1571 1576 1626 2007

Tabela 3.9. Porównanie czasów renderowania struktury SBIH2 w zależności od
wybranych parametrów l.k. — liczba koszyków i m.l.t. — maksymalna liczba trójkątów
w liściu (czasy podane w ms).

Źródło: Opracowanie własne.

3.4. Wielowątkowość algorytmów

W tabeli tab.3.10 znajdują się wyniki testu wielowątkowości renderowania dla wy-
branych scen. Wielowątkowość została zaimplementowana jedynie dla renderowa-
nia. Został przy tym wykorzystany fakt, że kolor każdego piksela obrazu może być
obliczany niezależnie. Dzięki tej własności metody śledzenia promieni, nie widać
praktycznie żadnych strat podczas urównoleglania programu dla żadnej z zaim-
plementowanych struktur. Wszystkie spisują się bardzo dobrze. W tym teście wy-
korzystano jedynie procesor 4-rdzeniowy, jednak nic nie stoi na przeszkodzie, by
zastosować tę metodę na dużo większej liczbie rdzeni, czy procesorów.

hand marbles ben
struktura \ l. wątków 1 2 4 1 2 4 1 2 4
BVH 1946 981 499 519 260 144 1226 629 327
SBVH 541 267 144 274 140 81 524 274 143
SBIH 3679 1841 939 331 167 91 7301 3687 1854
SBIH2 1398 702 361 250 126 71 1971 1009 515

Tabela 3.10. Porównanie czasów renderowania obrazów dla różnej liczby wątków (czasy
podane w ms).

Źródło: Opracowanie własne.
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ROZDZIAŁ 4

Wnioski i plany rozwoju

Rozwiązanie opisane w tej pracy można jeszcze poprawić. Jedną z ważniejszych
rzeczy może być urównoleglenie budowy. Przykładowe jest opisane w artykule
[Wal07]. Z wyników osiągniętych przez jego autorów, można wywnioskować, że
jest ono dobre.

Kolejnym usprawnieniem może być dodanie pakietów. Patrząc z jednej strony
chcieliśmy to wyeliminować przez budowę struktury opartej na drzewie czwórko-
wym. Jednak w ten sposób przyspieszamy przeglądanie drzewa, czyli znajdowanie
najbliższego przecięcia. dzięki pakietom promieni być może da się takie przecięcie
znaleźć jeszcze szybciej wykorzystując techniki opisane w artykule [BEL+07]. Do-
datkowo, między kolejnymi wywołaniami metod szukania najbliższego przecięcia
wykonywanych jest mnóstwo innych operacji, takich jak odbijanie, załamywanie
promienia, czy przeliczane kolorów. Operacje te mogą być wykonywane z wyko-
rzystaniem instrukcji SIMD podczas trawersowania struktury z wykorzystaniem
pakietów.

W wynikach zaprezentowanych w rozdziale 3 trawersowanie przy pomocy
spłaszczonych hierarchicznych przedziałów ograniczających (SBIH oraz SBIH2) nie
daje najlepszych rezultatów. Co pokazuje szczególnie tabela 3.5. Jednak w tabeli 3.7
widać, że wydajność struktury jest wysoka. Problem jest z jakością. Stąd wniosek,
że być może da się poprawić heurystykę budowy opisaną w punkcie 2.2.2. Dobrym
rozwiązaniem byłaby z pewnością heurystyka, dzięki której możnaby otrzymać
podział trójkątów na 4 dobrze rozdzielone części.

Uważam również, że struktura zbudowana w stylu spłaszczonych hierarchicz-
nych przedziałów ograniczających może być dużo łatwiej i efektywniej zrealizo-
wana sprzętowo. Tu pod uwagę należy wziąć kilka czynników. Jednym jest na
pewno pamięć, jaką struktury zajmują. W tym punkcie struktury BIH spisują się
zdecywdowanie lepiej niż BVH, co widać w tabeli 3.4. Patrząc na pamięć można od
razu wspomnieć kd–drzewa opisywane w punkcie 1.2.2, w których jeden trójkąt
mógł trafić do kilku poddrzew. W tej strukturze jest to niemożliwe. Struktura SBIH
może zostać dużo prościej zrealizowana niż struktura BVH, ponieważ przy prze-
glądaniu drzewa, na każdym poziomie potrzeba tylko przecięcia z płaszczyzną,
a nie z całą bryłą ograniczającą, tak jak to jest w przypadku BVH. Instrukcje SIMD
wykorzystane w pracy i implementacji dla drzew czwórkowych, mogą sprzęto-
wo zostać zrealizowane bardzo podobnie, dzięki czemu struktury te powinny być
bardzo szybkie w przeglądaniu. Ponadto wszystko może odbywać się równolegle.
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Realizacja algorytmiczna takiego rozwiązania jest już dość prosta, a technologia
również idzie dziś w kierunku zwiększania liczby rdzeni w procesorach, zamiast
podwyższania mocy obliczeniowych, więc może już w niedalekiej przyszłości me-
toda śledzenia promieni zyska na zainteresowaniu dzięki realistycznym efektom
i coraz bardziej interaktywnym czasom działania.
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DODATEK A

Program atracer

Do powyższej pracy jest dołączony program atracer. Został on zaimplementowany
specjalnie w celach testowych wszystkich wyżej opisanych struktur. Źródła pro-
gramu oraz wszystkie potzebne pliki do jego uruchomienia, w tym przykładowe
sceny opisane w rozdziale 3 znajdują się na płycie DVD.
W skład całego programu wchodzą:

• kod źródłowy i makefile;

• katalog ze scenami scenes, zawiera on sceny pobrane z repozytorium Uniwer-
sytetu w Utah, niektóre ze scen zostały dopasowane do potrzeb programu;

• skrypt i dodatkowe pliki uruchomieniowe, w skrypcie znajdują się przykła-
dowe wywołania programu;

Program został napisany w języku C++. Działa na systemach Unixowych. Bar-
dzo istotne jest, by procesor obsługiwał instrukcje SSE i SSE2, gdyż program za-
wiera ich wywołania.

Opis działania:

1. zainicjowanie parametrów działania;

2. wczytanie scen wraz z teksturami do pamięci (wczytywanie scen w formacie
.obj);

3. zarezerwowanie pamięci potrzebnej na budowane struktury;

4. dla kolejnych klatek animacji uruchamiane są metody budowy (lub aktuali-
zacji) struktury, a następnie renderowania;

Najbardziej istotne klasy: traversetree i tracer znajdują się w plikach z odpowia-
dającymi im nazwami. W klasie traversetree znajduje się kod źródłowy wykorzy-
stywany przy budowie i aktualizacji wszystkich opisanych struktur. Z kolei klasa
tracer zawiera kod źródłowy służący do przeglądania tychże struktur.
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Kompilacja programu odbywa się przez uruchomienie skryptu make. Wersję
programu można wybrać wykomentowując odpowiednie wiersze w pliku settings.h
(wiersze z deklaracją #define), który znajduje się w katalogu z kodem źródłowym.
Przed wywołaniem polecenia make warto wykonać róznież make clean. Do kompi-
lacji potrzebny jest kompilator g++ w wersji 4.2 lub wyższej.

Program potrzebuje na wejściu kilku parametrów. Mogą one być podane w do-
wolnej kolejności. Nie wszystkie są wymagane, dla niektórych przyjmowane są
wartości domyślne.

Opis parametrów programu (każdy parametr podajemy poprzedzając go zna-
kiem ’-’):

• scn [nazwa sceny] — nazwa sceny zdefiniowanej w pliku ustawienia.info;

• bn [liczba] — określa liczbę koszyków, na jaką są dzielone trójkąty w każdym
kroku budowy drzewa (wartość domyślna 8);

• mlt [liczba] — określa maksymalną liczbę trójkątów, jakie mogą znaleźć się
w liściu drzewa (wartość domyślna 16);

• th [liczba] — określa liczbę wątków, jakie będą wykorzystywane podczas
renderowania obrazów, maksymalnie 8 (domyślnie 1);

• res [liczba] [liczba] — określa rozdzielczość generowanych obrazów, najlepiej
kwadrat o boku potęgi 2 (wartość domyślna 512 na 512);

• fpb [liczba] — określa co ile klatek drzewo ma zostać przebudowane w całości
(wartość domyślna 1);

• f — jeśli podany, to wyświetla daną scenę w nieskończonej pętli (domyślnie
wyłączone);

• save — zapisuje zrzuty ekranu z każdej wygenerowanej klatki (domyślnie
wyłączone);

• statsFile [nazwa pliku] — zapisuje statystyki do podanego pliku (domyślnie
wyłączone).
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[WK06] Carsten Wächter and Alexander Keller. Instant ray tracing: The boun-
ding interval hierarchy. In Rendering Techniques 2006: 17th Eurographics
Workshop on Rendering, pages 139–150, June 2006. 13, 23

[WMG+07] Ingo Wald, William R Mark, Johannes Günther, Solomon Boulos, Thia-
go Ize, Warren Hunt, Steven G Parker, and Peter Shirley. State of the
Art in Ray Tracing Animated Scenes. In Eurographics 2007 State of the
Art Reports, 2007. 5, 9


