Uniwersytet Wroclawski

Wydzial Matematyki i Informatyki

Splaszczone hierarchiczne przedzialy
ograniczajace jako nowa struktura dla
metody Sledzenia promieni

Piotr Leszczynski

Praca magisterska na kierunku:
Informatyka
Promotor:

dr Andrzej Lukaszewski

’

Wroctaw 2009

Streszczenie

W ponizszej pracy opisane sg struktury danych wykorzystywane w algorytmach
Sledzenia promieni.

We wprowadzeniu znajduja sie ogélne informacje o metodzie Sledzenia promie-
ni. Mozna w nim przeczytaé, gdzie i dlaczego sie¢ ja stosuje, sa tam zilustrowane
i opisane przykiadowe efekty jakie mozna dzieki tej metodzie uzyskaé. Jest tam
réwniez podana motywacja, ktéra towarzyszyta mi przy pisaniu tej pracy.

Pierwszy rozdzial opisuje teorie. Jest to krétkie wprowadzenie do aktualnego
stanu w dziedzinie generowania obrazéw metoda Sledzenia promieni. S3 w nim
opisane podstawowe algorytmy i struktury, ktére byly do tej pory wykorzystywane.
Zawarte sg w nim réwniez techniki budowy i przegladania oraz kilka szczegétow
implementacyjnych.

Kolejny rozdziat zawiera opis nowych struktur. Zostaly one przeze mnie zapro-
jektowane i zaimplementowane. S3 w nim dokladnie przedstawione algorytmy ich
budowy i przegladania.

W trzecim rozdziale opisane sg szczegétowe wyniki testéw przeprowadzonych
na opisanych w rozdziatach pierwszym i drugim strukturach. Wyniki te przedsta-
wiaja rozmaite poréwnania dziatania tych struktur dla kilku wybranych scen.

Ostatni, czyli czwarty rozdzial zawiera podsumowanie, s3 to moje osobiste
wnioski dotyczace dziatania i mozliwosci rozwoju opisanych w rozdziale drugim
struktur.

Do pracy dotaczony jest takze program, a jego doktadniejszy opis znajduje sie
w dodatku na koricu pracy.

Stowa kluczowe

ray tracing, §ledzenie promieni, SBVH, BVH, BIH, kdTree

Spis tresci

Wprowadzenie 1
1. Technika $ledzenia promieni 5
1.1. Podstawy ogélne 5
1.1.1. Algorytm rzutowania promieni 6

1.1.2. ZIozono$¢ e 6

12, Silnik . ..o 9
1.2.1. Obliczanie przecie¢ 9

122, Struktury 9

1.2.3. Techniki budowy i przegladania 15

1.2.4. Szczegély implementacji 18

2. Splaszczone hierarchiczne przedzialy ograniczajace 23
21. Pomyst 23
22. Realizacja. 24
221. Wyglad struktury o o o oo 25

222, Budowa struktury 00 L 26

2.2.3. Uaktualnianie struktury 27

2.2.4. Trawersowanie struktury 28

3. Wyniki 31
31. Budowa. 32
32. Trawersowanie. oo 35
3.3. Parametry w strukturze SBIH2 37
3.4. Wielowatkowos§¢ algorytméw L. 39

4. Wnioski i plany rozwoju o Lo 41
A. Program atracer o o 43

Bibliografia o 45

Wprowadzenie

Technika $ledzenia promieni jest uzywana do generowania realistycznych obrazéw.
Obecnie zdobywa ona coraz wigksze uznanie w $wiecie grafiki komputerowej.
Dzieje sie to gtéwnie dzigki efektom jakie mozemy osiggna¢ przy jej wykorzysta-
niu. Przyklady takich efektéw przedstawiam na zamieszczonych ponizej rysunkach
(rys.1, rys.2, rys.3 i rys.4). Wzrastajace zainteresowanie doprowadzito do duzego
rozwoju algorytméw w tej dziedzinie. Implementacje tych algorytméw staly sie
bardzo efektywne, wykorzystuja bowiem maksymalnie sprzet komputerowy. Na-
lezy réwniez wspomnie¢, ze rozwdj tej techniki wiele zawdzigecza rozwojowi prze-
mystu komputerowego, miniaturyzagcji i cigglemu wzrostowi mocy obliczeniowe;j.
Jeszcze kilka lat temu nikt nawet nie mys$lat o stosowaniu jej w czasie rzeczywistym.
Teraz dla mniejszych scen z prostszymi efektami mozna osiggac interaktywne cza-
sy animagji juz na dobrej klasy komputerach osobistych. Oczywiscie o wiele wigcej
mozna uzyska¢ na klastrach komputerowych, ktére sa wykorzystywane w prze-
myséle filmowym. Zastosowanie klastrow w tej technice ma uzasadnienie w tym,
ze algorytm $ledzenia promieni mozna w bardzo naturalny sposéb uréwnoleglié.
To znaczy, ze kazdy promier moze by¢ liczony osobno i przetwarzany przez inng
jednostke.

Rysunek 1. Obrazy przedstawiajgce realizm efektéw mozliwych do osiggniecia przy
zastosowaniu techniki §ledzenia promieni. Niektére widoczne efekty: zalamanie obrazu
przy przechodzeniu przez przezroczyste powierzchnie zgodne z prawami fizyki,
czeéciowe odbicia sceny od szklanych powierzchni, ,miekkie” cienie i kaustyki.

Zrédta: Rysunek 1(a) pochodzi ze strony: http:/ /www.fizyka.umk.pl/~milosz/,
rysunek 1(b) pochodzi z artykutu [SWS05].

2 Wprowadzenie

Realizm widoczny na zalaczonych rysunkach mozna osiggna¢ dzieki temu, ze
promienie generowane w programie symuluja w pewien sposéb rozchodzenie sie
Swiatla w przestrzeni. W algorytmie nie dzieje si¢ to dokladnie w taki sam sposéb
jak w rzeczywisto$ci, ale jakby od drugiej strony. Jest to tak zwane wsteczne §le-
dzenie promieni. Promienie generowane sa z kamery przez kazdy piksel obrazu
i sledzona jest ich $ciezka do $wiatta. Sciezka ta powinna zachowywaé jak najwie-
cej znanych wlasnosci fizycznych. Odwzorowanie idealne rzeczywistego $wiatta
jest praktycznie niemozliwe. W rzeczywistosci promienie Swietlne majg posta¢ fal
elektromagnetycznych, z ktérych tylko czes¢ trafia do ludzkiego oka. Fale te majg
rézne dtugosci, odbijaja sie od niektérych przedmiotéw, a przez niektére prze-
chodza zmieniajgc jedynie kierunek. W programie komputerowym ograniczamy
sie do pewnego podzbioru tych fal i kazdg z nich reprezentujemy jako promien.
W celu przyspieszenia obliczeni i uzyskania jak najlepszych efektéw, najlepiej jest
wybraé te promienie, ktére maja najwiekszy wkiad w powstanie obrazu. Z tego
powodu $ledzi sie je, zaczynajac wladnie od kamery. Sekret ogromnej skalowalno-
Sci algorytmu wzgledem liczby procesoréw kryje sie w tym, ze kazdy z promieni
ma pewien, zupelnie niezalezny od innych wklad w powstanie obrazu, dlatego
kazdy z nich mozna oblicza¢ réwnolegle na osobnych jednostkach.

(a) metalowe kule (b) ztoty Budda

Rysunek 2. Wyrenderowane obiekty z zastosowaniem fizycznych wtasciwosci
odbijajacych metali.

Zrédto: Rysunki pochodzg ze strony internetowej: http:/ /www.pbrt.org.

Mimo powyzej opisanych ograniczen technika ta wcigz jest zbyt wolna do in-
teraktywnych zastosowan. Nie jest tez wspierana sprzetowo, tak jak standardowa

grafika rastrowa przez karty graficzne. Powstaly juz jednak prototypowe urzadze-
nia mogace sprzetowo przyspieszy¢ Sledzenie promieni [SWS05]. W przysztosci
mozna sie¢ spodziewac jeszcze lepszych rozwigzan.

Realizm powstalych obrazéw jest na tyle dobry, iz stosuje si¢ technike Sledzenia
promieni mimo probleméw zwigzanych z wydajnoscig. Robi sie to jednak glow-
nie przy tworzeniu filméw, animagcji, reklam, czy wizualizacji, gdzie nie wymaga
sie zadnej interaktywnosci. Czesto tworzy sie obrazy poswiecajagc wydajnosé dla
relistycznego wygladu. Wiasnie w tym celu korzysta si¢ z ogromnych mocy obli-
czeniowych oferowanych przez klastry komputerowe.

Za ciekawostke pokazujaca relacje efektywnosci do otrzymywanych wynikéw
moze postuzy¢ tutaj fakt, ze w 1995 roku $redni czas potrzebny na wyrenderowanie
jednej klatki filmu ,Toy Story” wynosil 2 godziny. W 2005 roku $redni czas po-
trzebny na wygenerowanie jednej klatki filmu ,Cars”, z ktérego kadry znajduja sie
na rysunku 3, wynosit az 15 godzin! Stato sie to, mimo iz w tym czasie wydajnos¢
komputeréw wzrosta o jakies 300 razy. Zalety jakie daje artystom ta technologia
sprawiajg, ze czas przestaje gra¢ zasadniczg role i poswieca si¢ go dla uzyskania
lepszych efektow.

(a) Mater i Lightning McQueen (b) Doc Hudson

Rysunek 3. Obrazy wygenerowane podczas tworzenia filmu , Cars”.

Zrédta: Rysunek 3(a) pochodzi ze strony: http:/ /www.meeko.org, rysunek 3(b) pochodzi
z artykutu [CFLBO06].

Pomimo tego, ze technika Sledzenia promieni zostata uzyta po raz pierwszy
okolo 40 lat temu, dalej znajdowane s w niej nowe Sciezki rozwoju. Proponowane
sg rozwigzania polepszajace zaréwno wydajnoé¢, jak i jakos¢ generowanych ob-
razéw. W tym miejscu chce napisa¢ o motywagcji, ktéra mi towarzyszyta podczas
pisania tej pracy. Zastanawiatem sie dos¢ dtugo, co jeszcze mozna zrobi¢, by pro-
ces generowania obrazéw bardziej przyspieszy¢. Dzieki temu mogloby powstac

wiecej filméw, czy animacji z pieknymi efektami graficznymi w znacznie kroét-

4 Wprowadzenie

szym czasie. Duze korporacje moglyby zaoszczedzi¢ sporo czasu i tworzy¢ jeszcze
wiecej. Na rynek realistycznych animacji moglyby zaczaé wchodzi¢ nowe firmy
niedysponujace tak ogromnym sprzetem. Nieco inng kwestig jest mozliwoé¢ uzy-
skania interaktywnych czaséw dla prostszych scen i animacji. Dobra grafika nawet
w prostych grach, czy programach moze zachwycac i by¢ dla nich ogromnym plu-
sem. Ingo Wald w swojej rozprawie doktorskiej [Wal04] opisal wiele mozliwych
sposobOw na przyspieszenie catego algorytmu, rozwigzan zaréwno algorytmicz-
nych, jak i sprzetowych. Wyzej opisane cele mozna osiaggna¢ przez przyspieszenie
dziatania gléwnej czesci catego algorytmu, czyli silnika, ktéry jest odpowiedzialny
za efektywne znajdowanie przeciecia danego promienia ze sceng. Najwazniejsza
czedcig tego silnika jest struktura przechowujgca scene. Wiasnie o takich struktu-
rach bedzie ta praca. Opiera si¢ ona gléwnie na bardzo interesujagcym artykule,
ktéry ukazat sie¢ w roku 2008 [DHKO8]. Struktura w nim opisana wykorzystuje
wiekszos¢ zalet wspoétczesnych procesoréw. Zostata ona przeze mnie zaimplemen-
towana. Wprowadzitem réwniez kilka pomystéw na jej modyfikacje. Pomysty te
sa dokladnie opisane w ponizszej pracy, a wiecej na temat implementacji mozna
znalez¢ w dodatku A.

."I I. .V'- i
— ‘
[\]
-
Y
.

P

[
i

LN,
.L-— :

Rysunek 4. Rozchodzenie sie $wiatla w zacienionych miejscach pokazane na przyktadzie
modelu elektrowni.

Zrédto: Rysunek pochodzi z artykulu [DHKO8]

ROZDZIAL 1

Technika Sledzenia promieni

Po raz pierwszy technika Sledzenia promieni na komputerach zostata uzyta w roku
1968. Zastosowat jg Arthur Appel do rozwigzywania problemu niewidocznych po-
wierzchni [App68]. Do dnia dzisiejszego bardzo wiele wysitku zostato wlozonego
w polepszenie tej techniki. Polepszyla sie zaréwno jakos¢ generowanych obrazéw,
jak i wydajno$¢ dziatania algorytméw. Wiele oséb wprowadzilo w tej dziedzinie
mnostwo rewelacyjnych pomystéw. Implementacje algorytmoéw, ktére na poczatku
pojawialy sie tylko w teorii, staly sie bardzo efektywne. W tym rozdziale opi-
sze krotko dotychczasowq prace dotyczacg generowania obrazéw metoda Sledze-
nia promieni, skupiajac sie gléwnie na strukturach drzewiastych wykorzystywa-
nych do przyspieszania znajdowania przeci¢¢ promieni ze sceng. Bardzo aktualny
stan calej opisywanej dziedziny mozna znaleZé do§¢ dobrze przedstawiony w pra-
cy [WMGT07].

1.1. Podstawy ogdlne
Wyréznia sie trzy gléwne metody $ledzenia promieni:

e rzutowanie promieni (ang. ray casting) — w tej technice $ledzi si¢ jeden pro-
mien na kazdy piksel obrazu, szukajac jedynie jego pierwszego przeciecia
ze sceny; w latwy sposéb mozna doda¢é cienie, robi si¢ to przez $ledzenie
promienia z obliczonego punktu przeciecia do kazdego Zrédia Swiatta znaj-
dujacego sie¢ w scenie; jako$¢ uzyskanego obrazu podobna jest do obrazéw
generowanych przez zwykla karte graficzng z buforem gtebokosci;

e rekurencyjne $ledzenie promieni (ang. Whitted ray tracing) — technika za-
proponowana przez Turnera Whitteda, opisana w artykule [Whi80], w tej
technice rowniez jest $ledzony pojedyriczy promierr na kazdy piksel obra-
zu, jednak dodatkowo wystepuje tutaj rekursja, tj. promiert moze si¢ odbijac¢
lub zatamywa¢, dzieki temu mozna uzyskaé bardziej realistyczne efekty, ta-
kie jak odbicia lustrzane, czy zatamanie obrazu przy przechodzeniu przez
przezroczyste obiekty;

e rozproszone $ledzenie promieni (ang. distributed ray tracing) — jest to najbar-
dziej zaawansowana metoda, jak réwniez najbardziej kosztowna; §ledzonych
moze by¢ wiele promieni na kazdy piksel obrazu, dodatkowo w kazdym

6 Technika Sledzenia promieni

punkcie przeciecia jednego promienia ze sceng moze zosta¢ wygenerowa-
nych bardzo wiele nowych promieni, ktére dalej sa rekursywnie $ledzone,
w zwigzku z tym zlozono$¢ obliczeniowa tej metody jest ogromna, pozwala
ona jednak uzyskac najbardziej realistyczne obrazy, a w nich takie efekty jak:
miekkie cienie, globalne o$wietlenie sceny, mieszanie koloréw przy odbiciach,
glebie ostrosci, czy kaustyki;

Schematy dziatania wyzej opisanych metod przedstawione sa na rysunku 1.1,
a przykladowe obrazy pokazujace réznice w uzyskanych obrazach widoczne sa
na rysunku 1.2.

1.1.1. Algorytm rzutowania promieni

Podstawowy algorytm rzutowania promieni jest bardzo prosty. Sktada sie z kilku
nizej opisanych krokéw.
Dla kazdego piksela p z ptaszczyzny obrazu ip wykonaj kolejno:

1. wygeneruj promien r z kamery c przechodzacy przez piksel p
2. znajdz najbliZzsze przeciecie i promienia r ze sceng s

3. dla obliczonego przeciecia ¢ oblicz kolor col (generujac promien cienia i $le-
dzac jego Sciezke)

4. zapisz kolor col w pikselu p

Algorytmy rekurencyjnego, czy rozproszonego $ledzenia promieni nie réznig
sie zbytnio od wyZzej opisanego. Najwazniejszg réznicg jest sposéb obliczania nate-
zenia o$wietlenia w punkcie przeciecia oraz liczba $ledzonych promieni i diugosci
Sciezek majacych wplyw na kolor danego piksela. Wiaénie od liczby promieni
i dtugosci Sciezek zalezy liczba wywotan funkgji szukajacej najblizszego przecie-
cia promienia ze sceng. Wywolania tej funkcji pochtaniajg najwiecej czasu tego
algorytmu. Wiecej o ztozonosci znajduje si¢ w kolejnym punkcie.

1.1.2. Zlozonos¢

Ztozonos¢ metody Sledzenia promieni mozna oszacowaé w prosty sposéb rozbija-
jac algorytm na mniejsze skladowe:

e generowanie promienia przechodzacego przez dany piksel obrazu, jest zwy-
ki operacjg réznicy dwoéch punktéw w przestrzeni 3D (czyli jest to kilka
mnozen i dodawan);

e obliczanie koloru piksla takze odbywa sie w czasie stalym, jednak czasem,
gdy mamy do czynienia z teksturami, potrzebnych jest nieco wiecej operacji;

obiekt
lustrzany

promien
odbity

’
’

Zrodio ,promienie "
Swiatta cienia_ __---""

promien
cienia

promieh
zatamany

obiekt
przezroczysty

obserwator obserwator

ptaszczyzna
obrazu

ptaszczyzna
obrazu

(a) rzutowanie promieni (b) metoda rekurencyjna

promienie

/
1

A N .
promienie
\/// cienia -~

zrédto
sSwiatfa

e

promienie
zatamane

przezroczysty

obserwator ptaszczyzna

obrazu

(c) metoda rozproszona

Rysunek 1.1. Poréwnanie schematéw dziatania metod $ledzenia promieni.

Zrédto: Opracowanie wlasne.

e operacja znajdowania najblizszego przeciecia promienia ze sceng jest najbar-
dziej kosztowna; ztozonos¢ tej operacji zalezy w gtéwnej mierze od wielko-
Sci sceny; przewaznie sceny skladajg sie z tr6jkatow, dlatego na nich zamie-
rzam sie skupi¢; trywialnym sposobem znalezienia najlepszego przeciecia jest
sprawdzenie wszystkich mozliwosci;

Z tej kroétkiej analizy wynika, Zze zlozono$¢ najprostszego algorytmu Sledzenia
promieni dla obrazu o wysoko$ci w, szerokosci h i sceny zawierajacej n tréjkatéw

8 Technika Sledzenia promieni

(I T

(c) metoda rozproszona

Rysunek 1.2. Poréwnanie efektéw uzyskiwanych przy réznych metodach Sledzenia
promieni.

Zrédto: Rysunek pochodzi z artykutu [BEL*07]

przedstawia sie nastepujgco:

O(wh) - T(n)

Gdzie T(n) oznacza zlozono$¢ algorytmu szukania najblizszego przeciecia promie-
nia ze sceng o n tréjkatach. Najprostsza metoda sprawdzajgca wszystkie mozliwo-
Sci ma liniowg zlozonosé. O tym jak znajdowac takie przeciecie szybciej, opisatem
w rozdziale 1.2.2.

Zlozonos¢ algorytmu rekurencyjnego Sledzenia promieni w teorii jest taka
sama, gdyz dla kazdego promienia liczymy rekurencyjnie pojedynicza Sciezke,
ktorej dtugos¢ nie przkracza 5-8 pozioméw. Wynika stad, ze algorytm ten jest
do kilku razy wolniejszy.

Algorytm rozproszonego $ledzenia promieni, w teorii réwniez ma identyczna
ztozonoé¢. Tutaj réwniez liczba wywotan funkgji szukania najblizszego przeciecia
moze by¢ ograniczona, jednak stata ograniczajgca musiataby by¢ ogromna. W nie-
ktérych technikach Sledzi sie¢ nawet od kilkuset do kilku tysiecy promieni na kazdy
piksel obrazu. Kazdy z tych promieni podczas odbicia lub zalamania moze gene-
rowaé¢ nowe promienie. Wiasnie tej metody uzywa si¢ przy produkcji najbardziej
realistycznych obrazéw.

1.2. Silnik

W tym punkcie opisze zasade dziatania silnika calego algorytmu. Czyli to, jak
calos¢ funkcjonuje, jak sa znajdowane przeciecia i jak mozna to dziatanie przy-
spieszy¢. Bardzo wiele w tej dziedzinie zostalo juz zrobione, a dokladniejsze in-
formacje na temat dotychczasowych prac mozna znalez¢ w artykule podsumowu-
jacym [WMGT07].

1.2.1. Obliczanie przecieé¢

W celu wygenerowania obrazu nalezy znaleZé najblizsze przecigcie promienia
z tréjkatem. W punkcie 1.1.2 jest napisane, Ze najprostszym sposobem na to jest
przejrzenie wszystkich mozliwosci, czyli obliczenie przeciecia danego promienia
z kazdym tréjkatem ze sceny.

Ta podstawowa operacja algorytmu $ledzenia promieni, zostata juz doktadnie
przeanalizowana pod wzgledem efektywnosci. Jednym z najlepszych rozwigzan
jest algorytm zaproponowany przez Mollera i Trumborea. Szczegéty mozna zna-
lez¢ w artykule [MT97]. Przebadali oni kilka ré6znych algorytméw pod wzgledem
optymalnosci i wtasnie ich okazat sie jednym z najlepszych. Doktadna implemen-
tacja tego algorytmu w jezyku C znajduje sie na stronie internetowej'. Podczas
implementacji przetestowatem jeszcze algorytm Pliickera. Korzysta on z iloczynéw
wektorowych i skalarnych. Doktadny opis mozna znalez¢ na stronie internetowej?.

Ostatecznie zdecydowatem sie na uzycie rozwigzania zaproponowanego przez
Mollera i Trumborea, gdyz daje ono bardzo dobre rezultaty. Algorytm ten moz-
na réwniez tatwo przebudowa¢é tak, by w jednym przebiegu obliczal przeciecie
z czterema réznymi tréjkatami. Takie rozwigzanie wykorzystuje instrukcje SIMD
(ang. Single Instruction Multiple Data) procesora, dzieki czemu przyspiesza caty
algorytm Srednio o okoto 3 razy. Wiecej o tej technice w punkcie 1.2.4 na stronie 20.

Nalezy tutaj rowniez wspomnieé o tym, Ze istniejg bardziej efektywne algoryt-
my, korzystaja one jednak z wcze$niej obliczonych wartosci dla kazdego tréjkata.
Takie tréjkaty zajmujg wiecej miejsca w pamieci komputera, przez co algorytmy te
wykorzystuje sie tylko w niektérych przypadkach.

1.2.2. Struktury

Mate sceny w grafice komputerowej sktadajg sie z kilku tysiecy tréjkatow, w tych
najwiekszych tréjkaty liczy si¢ w milionach. Oczywistym jest, ze dla takich scen
nie mozna sprawdzaé przecie¢ danego promienia z kazdym tréjkatem, gdyz nie

Thttp:/ /jgt.akpeters.com/papers/Chirkov05/
*http:/ /www.flipcode.org/archives/Introduction_To_Plcker_Coordinates.shtml

10 Technika $ledzenia promieni

doczekamy sie wyniku w rozsagdnym czasie. W tym celu powstaly rézne struktury
grupujace tréjkaty w sposéb umozliwiajacy bardziej efektywne znajdowanie naj-
blizszego przecigcia poprzez eliminowanie sprawdzania przecie¢ z jak najwieksza
liczbg tréjkatow. Struktury te zostaly zaprojektowane dla najrézniejszych rodzajéw
scen. W tej pracy skupie sie wylacznie na strukturach drzewiastych, ktére potrafig
radzi¢ sobie z grupowaniem tréjkatéw w najczesciej spotykanych scenach. Istniejg
jednak sceny z tréjkatami rozmieszczonymi w sposéb powodujacy nieefektywne
dziatanie struktur.

KD-drzewo

KD-drzewo uwazane jest za najlepsza strukture do przyspieszania Sledzenia pro-
mieni. Jest to drzewo binarne, ktére dzieli przestrzen na czesci za pomoca plasz-
czyzn. Przyklad w 2D pokazuje rysunek 1.3.

(c) (d)

Rysunek 1.3. Schemat powstawania kd-drzewa. W kolejnych krokach przestrzenie
dzielone sg ptaszczyzng na dwie podprzestrzenie.

Zrédlo: Prezentacja Gordona Stolla z konferencji SIGGRAPH 2005.

Kazdy wezel wewnetrzny drzewa posiada informacje o osi i ptaszczyznie po-
dzialu oraz wskaznik na , dziecko”. Z kolei lis¢ drzewa posiada liczbe znajdujacych

11

sie w nim tréjkatéw oraz wskaznik na pierwszy z nich. Wszystkie te informacje
mozna zmieéci¢ w zaledwie 8 bajtach, dzieki czemu struktura ta jest bardzo kom-
paktowa. Ta wlasnoé¢ pomaga zmiesci¢ bardzo duzo weztéw, czyli sporg czeséc
drzewa w bardzo szybkiej pamieci cache procesora nawet dla ogromnych scen.
W artykule [WHO06] jest dokladnie opisana bardzo efektywna budowa kd-
drzewa. Podczas tej budowy wykorzystuje sie kilka technik umozliwiajacych szyb-
ka i bardziej optymalng budowe drzewa, m.in. heurystyke pdl powierzchni (SAH,
ang. Surface Area Heuristics), ktéra jest opisana w punkcie 1.2.3 w dalszej czesci
pracy. W tym miejscu opisze tylko kilka charakterystycznych wtasnosci kd—-drzewa.
Najwiekszg zaletq jest czas szukania przeciecia promienia ze sceng, ktéry jest nie-
co lepszy niz w strukturach opartych na hierarchiach ograniczajacych o ktérych
bedzie mowa w kolejnych punktach tego rozdziatu. Do stabych stron kd-drzewa
nalezy skomplikowana implementacja. Utrudnia ja prosty fakt, ze podczas budowy
przestrzen dzielona jest ptaszczyznami na podprzestrzenie. Tréjkaty znajdujace sie
na granicy tych podprzestrzeni muszg znalez¢é sie¢ w obu poddrzewach wychodza-
cych z danego wezta. Fakt ten utrudnia rowniez oszacowanie pamieci, ktérg moze
zajaé gotowa struktura (wystepuja podwojne odwotania do tréjkatéw). Kolejnym
negatywnym wnioskiem wynikajagcym z tego faktu jest utrudniona przebudowa
juz gotowego drzewa, ktéra mogtaby by¢ bardzo pomocna przy renderowaniu ko-
lejnych klatek animacji, w ktérych nie doszto do zbyt duzych zmian w scenie.

Hierarchiczne bryly ograniczajace

Struktura hierarchicznych bryt ograniczajacych (BVH, ang. Bounding Volume Hie-
rarchies) jest réwniez drzewem binarnym. Bryta ograniczajgca (BV, ang. Bounding
Volume) jest najczesciej prostopadio$cianem o Scianach biegnacych wzdtuz osi
uktadu wspétrzednych (AABB, ang. Axis Aligned Bounding Box), ktéra ograni-
cza pewng wazng dla nas przestrzen. Jak nazwa wskazuje, drzewo jest hierarchia
tych bryl ograniczajacych, co znaczy, ze kazdy wezel zawiera bryle, ktéra ogra-
nicza jego ,dzieci”. W liSciach drzewa znajdujq sie tréjkaty. Dla kazdego z tych
tréjkatéw w prosty sposob znajduje sie bryte ograniczajacag AABB. Przyklad takiej
struktruktury mozna zobaczy¢ na rysunku 1.4.

Najwazniejsza r6znicg w poréwnaniu do kd—-drzewa jest tu fakt, Zze podczas bu-
dowy drzewa w jednym kroku zamiast rozdzielania przestrzeni dzielimy zbi6r tréj-
katéw na dwa rozlaczne podzbiory. Dzieki temu rozwigzaniu eliminujemy moz-
liwoé¢ podwéjnych wystgpien tréjkatow w drzewie. Umozliwia to takze oszaco-
wanie pamieci potrzebnej do skonstruowania drzewa i zarezerwowanie jej przed
budowaq. Podczas rozdzielania tréjkatéw na dwa podzbiory teoretycznie dla n tréj-
katéw istnieje 2" mozliwosci podzialu, jednak dos¢ oczywiste jest, ze nie trzeba
ich wszystkich sprawdza¢. Patrzac na potozenie tréjkatéow w przestrzeni mozna

12 Technika Sledzenia promieni

AA 2

Q A

Rysunek 1.4. Przyktad struktury BVH.

Zr6dto: Opracowanie wilasne.

zejé¢ do liniowej liczby mozliwosci (3n mozliwosci przy przegladaniu wszystkich
trzech osi). W dalszej czesci pracy zostanie omoéwiona technika podziatu na koszy-
ki, dzieki ktérej nie trzeba tak doktadnie sprawdzaé polozenia wszystkich tréjka-
tow. Do zalet struktury BVH nalezy réwniez btyskawiczna mozliwos¢ aktualizagji,
ktoéra bardzo pomaga w interaktywnych animacjach. Wszystkie te wlasno$ci moz-
na wykorzysta¢ podczas budowy, ktéra jest zdecydowanie bardziej efektywna od
budowy kd-drzewa. Do negatywnych cech nalezy z pewnoscig rozmiar pojedyn-
czego wezla i co jest z tym zwigzane calej struktury. Wezet drzewa BVH zajmuje
zdecydowanie wiecej miejsca niz wezet kd—drzewa. Samo trzymanie pojedyriczej
bryly AABB wymaga 24 bajtow. Efektywne implementacje korzystaja z weztéw
32 bajtowych. Przez taki rozmiar zdecydowanie mniej wezléw moze zmiesci¢ sie
w pamieci cache procesora i przegladanie BVH dla wigkszych scen moze by¢ wol-
niejsze niz przegladanie kd-drzewa. Negatywng wtasnoscig jest réwniez fakt, ze
dwie bryly ograniczajagce moga na siebie nachodzi¢, przez co podczas trawersowa-
nia drzewa moze zaj$¢ potrzeba czestszego przegladania obojga dzieci. Moze by¢
to konieczne nawet wéwczas, gdy w blizszej bryle otaczajacej znajdziemy tréjkat
przecinany przez dany promien.

Powstaly juz bardzo efektywne implementacje BVH, ktére wykorzystujg za-
czerpnieta z kd-drzew i nieco zmodyfikowang heurystyke SAH o ktorej wiecej
znajduje si¢ w punkcie 1.2.3 na stronie 15. Najwiecej ciekawych i bardzo przydat-
nych informacji na temat budowy struktury hierarchicznych bryt ograniczajacych
mozna znalez¢é w artykule [Wal07].

Hierarchiczne przedzialy ograniczajace

Struktura hierarchicznych przedzialéw ograniczajgcych (BIH, ang. Bounding In-
terval Hierarchies) zostata zaprojektowana specjalnie do renderowania animacji.

13

Charakteryzuje sie krétkim czasem budowy, przez co idealnie pasuje do rende-
rowania scen, dla ktérych czas budowy struktury przyspieszajacej ma wyrazny
wplyw na sumaryczny czas przetwarzania jednej klatki. Jak juz nazwa wskazuje
jest ona bardzo podobna do struktury BVH. R6znica s jedynie obszary ogranicza-
jace, ktore tutaj maja postaé przedziatéw, a nie prostopadtosciennych bryl, jak to
byto w przypadku BVH. Przedzialy te tworzone sg przez dwie plaszczyzny réw-
noleglte do jednej z osi uktadu wspétrzednych. Dla kazdego wezla ta 0§ moze by¢
inna. Przyktad tej struktury w dwéch wymiarach mozna znalez¢ na rysunku 1.5.

K7 | ‘
D;i%

Rysunek 1.5. Przyktad budowy struktury BIH.

Zrédto: Rysunek zapozyczony z artykutu [WKO06]

Budowa jest oparta na brylach AABB tréjkatéw, podobnie jak byto to w drze-
wie BVH. Przebiega ona jednak zdecydowanie szybciej. Ptaszczyzny podziatu pod-
czas budowy wybierane sg z wcze$niej wyliczonych propozycji, dzieki tej operacji
oszczedza sie mndstwo czasu. Wezly drzewa BIH w dobrej implementacji zajmuja
zaledwie 12 bajtéw pamieci, co jak juz wspominatem jest duzym plusem, gdyz mo-
ze przyspieszy¢ przegladanie drzewa. Zyskujac na czasie budowy i zmniejszajac
pamied potrzebng na jeden wezel przez uciecie czterech $cian bryly AABB, drzewo
stracito na jako$ci. Strata ta widoczna jest przy szukaniu najblizszego przeciecia
promienia ze sceng. Wiecej informacji o calej strukturze, jej budowie, przegladaniu
i poréwnaniu z innymi mozna znalez¢ w pracy [WKO6].

Splaszczone hierarchiczne bryly ograniczajace

Struktury opisane wyzej naleza do najczeSciej stosowanych struktur przyspie-
szajagcych w technice Sledzenia promieni. W roku 2008 ludzie z Uniwersytetu
w Ulm wpadli na pomyst przebudowania drzew binarnych na drzewa czwoérko-
we [DHKO8], zwane sptaszczonymi hierarchiami bryt ograniczajacych (SBVH, ang.

14 Technika Sledzenia promieni

Shallow Bounding Volume Hierarchies). Gotowa konstrukcja drzewa SBVH rézni
sie od konstrukcji drzewa BVH jedynie liczbg dzieci danego wezla. Sama budowa
polega na skonstruowaniu binarnego drzewa BVH, a nastepnie przeksztalceniu go
w drzewo czwérkowe SBVH. Bardzo dobrze pokazuje to rysunek 1.6.

VA s D

ofRE
W*\Wﬂﬁg% 0 O

Rysunek 1.6. Przyktad przebudowy struktury BVH w strukture SBVH.

Zrédto: Rysunek pochodzi z artykutu [DHKOS]

Za takim rozwigzaniem budowy drzewa przemawia architektura dzisiejszych
procesoréw. Procesory sa w stanie wykonywaé operacje na stowach 128 bitowych.
Instrukgje takie zwane s3 SIMD. Przy ich uzyciu, operacje mnozenia, dodawania,
odejmowania, czy dzielenia 4 liczb zmiennoprzecinkowych zajmujg prawie 4 razy
mniej czasu niz przy wykorzystaniu zwyklych instrukcji. We wczesniej opisanych
strukturach instrucje te byly wykorzystywane do efektywniejszego $ledzenia pa-
kietéw promieni. Rozwigzanie to zwigkszato efektywnos$¢ gltéwnie w metodzie
rzutowania promieni. W przypadku pozostatych metod zysk nie byt juz tak zna-
czacy. Dzieki nowej strukturze sptaszczonych hierarchicznych bryt ograniczajacych
instrukcje te zyskuja wieksze znaczenie wlasnie w metodach rekurencyjnego i roz-
proszonego Sledzenia promieni, gdzie mogg by¢é wykorzystane na catej diugosci
Sledzonej Sciezki. Wiecej o instrukcjach SIMD znajduje si¢ w punkcie 1.2.4 na stro-
nie 20.

Wezly powstate po splaszczeniu struktury zwiekszyly rozmiar. W dobrej im-
plementacji jeden wezel drzewa SBVH zajmuje 128 bajtéw. Rozmiar ten jest dos¢
duzy, ale mniejsza liczba weziéw powoduje zmniejszenie rozmiaru catej struktury.

W artykule opisujacym efektywna budowe drzewa BVH [Wal07] poréwnane
sg przedstawione do tej pory struktury, za wyjatkiem drzew SBVH. Czas budowy
liczony na jednym watku jest zdecydowanie najstabszy dla kd-drzew. Na wybra-
nym przez autoréw artykutu komputerze, drzewo to jest budowane ze Srednig
predkoscig okoto 150 do 300 tysiecy tréjkatéw na sekunde. Zdecydowanie lepsze

15

czasy budowy mozna osiggna¢ dla drzew BVH, ktére powstaja z predkoscig od
1,35 do 2,3 miliona tréjkatéw na sekunde. Wydajnoé¢ przegladania tych struktur
przy podanych czasach budowy jest zblizona. Najlepsze czasy budowy uzyskano
dla drzew BIH, wynosza one od 2 do 3 milionéw tréjkatéw na sekunde. Niestety
stalo sie to kosztem wydajnosci przegladania, ktéra wedtug autoréw wynosi od
60% do 80% wydajnosci osigganej dla optymalnych drzew BVH.

1.2.3. Techniki budowy i przegladania

Podczas opisywania struktur przyspieszajgcych wspomniatem o réznych techni-
kach ich budowy. W kolejnych puntach techniki te zostang dokladniej oméwione.
Dzieki nim mozna w krétszym czasie uzyskaé dobrze zbalansowane drzewa, ktére
umozliwiajg szybkie znalezienie przeciecia danego promienia ze scena.

Heurystyka p6l powierzchni

Heurystyka pol powierzchni (SAH, ang. Surface Area Heuristics) zostata stworzona
dla kd—drzew, a nastepnie zaadoptowana do struktur opartych na brytach ograni-
czajacych. Obecnie jest to najlepsza znana metoda pomagajaca zbudowa¢ optymal-
ne drzewo. Dokladny opis jej zastosowania w budowie obu rodzajéw drzew mozna
znalez¢ w artykutach [WHO6] i [Wal07]. Heurystyka p6l powierzchni wykorzystuje
zasade prawdopodobieristwa. Najlepsze miejsce podziatu oblicza si¢ minimalizujac
koszt z wzoru 1.1.

SAWVL) - SA(VR)
SAWV) F T sAW) 7)

Wz6r ten oblicza koszt trawersowania drzewa powstatego przy podziale bryty

Koszt(V — {L,R}) = Kr + K/((1.1)

V na dwie bryly L i R, ktére zawieraja odpowiednio Ny, i Ny tréjkatéw. K okresla
koszt przej$cia do nizszego poziomu drzewa, czyli jest to koszt metody przeciecia
promienia z bryta AABB. K; natomiast okresla koszt przeciecia promienia z jednym
tréjkatem. Funkcja SA oblicza pole powierzchni danej bryly. Jak fatwo zauwazy¢
z wzoru 1.1 wynika, ze jej wynik jest mniejszy, gdy wieksza liczba tréjkatéw jest
ograniczona przez mniejszg bryle. Praktycznym przykladem moze by¢ sytuacja,
w ktérej promienr trawersujac strukture z wiekszym prawdopodobieristwem trafi
w wieksza bryte, dlatego lepiej, gdy bryta ta ma jak najmniej tréjkatéw. W dobrze
zbudowanym drzewie puste obszary sg duze, dzieki czemu moga zosta¢ szybko
przegladniete. Przykladem moze by¢ rysunek 1.7.

Najlepszym miejscem podziatu jest wiec minimum funkcji Koszt. Znajduje sie
je przez obliczenie wyniku tej funkgji dla réznych podziatéw (dyskretna aproksy-
macja). Takie obliczenia zajmuja sporo czasu, dlatego czesto bada sie tylko wybrane
podzialy. O tym jak zrobi¢ to efektywnie bedzie opisane w nastepnym punkcie.

16 Technika Sledzenia promieni

Al AS

24

(a) (b)

A

(c) (d)

Rysunek 1.7. Przyktad kroku podziatu tréjkatéw na dwie czesci. Rysunek 1.7(a)
przedstawia scene z tréjkatami. Rysunek 1.7(b) przedstawia podziat przestrzeni na dwie
réwne czeéci, ale nie bierze pod uwage liczby tréjkatéw wystepujacej w obu tych
czedciach. Rysunek 1.7(c) przedstawia podzial tréjkatéw w medianie, tu z kolei nie jest
brany pod uwage podzial przestrzeni. Na rysunku 1.7(d) jest przedstawiony podziat
korzystajacy z heurystyki SAH, zawiera on duzy prawie pusty obszar, przez co maleje
prawdopodobieristwo wystgpienia wielu wywotan funkcji obliczajacej przeciecie

promienia z tréjkatami.

Zrédio: Rysunek zapozyczony z prezentacji Gordona Stalla z konferencji SSIGGRAPH 2005

Istnieje jeszcze dos¢ czesto wykorzystywana przy prostych implementacjach
struktur heurystyka mediany. Wyréznia si¢ heurystyke mediany przestrzeni, po-
kazang na rys.1.7(b) i mediany tréjkatéw, pokazang na rys.1.7(c). Budowa przy
pomocy tych heurystyk jest blyskawiczna, poniewaz ogranicza sie liczbe operacji
wykonywanych na kazdym poziomie budowy drzewa. Metoda ta ma jednak jedng
ogromng wade, ktérg jest duzo wolniejsze trawersowanie. Trawersowanie nieco le-
piej dziata w przypadku uzycia heurystyki mediany przestrzennej, w ktorej lepiej
rozdzielane sg puste przestrzenie. W heurystyce mediany tréjkatéw otrzymujemy
dobrze zbalansowane drzewa, ze wzgledu na liczbe tréjkatow.

17

Koszyki na tréjkaty

Dobrg technika przyspieszajacg budowe drzewa jest podziat tréjkatéw na koszy-
ki. Przy podziale tréjkatéw danego wezla na dwie czeSci, aby policzy¢ minimum
funkcji kosztu dla heurystyki SAH nalezaloby oblicza¢ wzér 1.1 dla kazdego moz-
liwego podziatu. Zajmuje to bardzo duzo czasu. Badania wykazaly, ze doktadne
znajdowanie minimum nie jest konieczne. Wystarczy znalez¢ w miare dobry punkt
podziatu. Czas dziatania mozna wiec zmniejszy¢ dzielgc na poczatku tréjkaty na
rowno oddalone w przestrzeni koszyki. Wszystkie kolejne obliczenia, takie jak
liczenie minimum funkgji kosztu, wykonuje si¢ na tych koszykach. W aktykule
[Wal07] zostato napisane, ze juz drzewo zbudowane przy pomocy 8 koszykéw da-
je zblizone rezultaty do drzewa, w ktérym minimum szukane jest dla wszystkich
mozliwych podziatéw. Czasy budowy takich drzew réznig sie jednak znacznie,
oczywiScie na korzys¢ tego z zastosowaniem koszykéw.

Kolejnos¢ przegladania drzewa

Poza budowa wazne jest tez przegladanie drzewa. Warto to robi¢ optymalnie, dlate-
go nalezy zwroci¢ uwage na kolejnoé¢ przegladania dzieci danego wezla. Oczywi-
Scie lepiej trawersowac jako pierwsze dziecko to, ktérego bryta otaczajaca znajduje
sie blizej poczatku promienia. W przypadku znalezienia przeciecia z tréjkatem na-
lezacym do tej bryly, trawersowanie kolejnego dziecka moze okazac¢ sie¢ zbedne,
dzieki czemu mozna zaoszczedzi¢ sporo czasu. Przyktad prawidtowego wyboru
kolejnosci trawersowania dzieci w drzewie SBVH znajduje sie na rysunku 1.8.

o4\ @

Rysunek 1.8. Przyktad prawidiowego wyboru kolejnosci trawersowania dzieci dla
danego promienia w drzewie SBVH.

Zrédto: Rysunek pochodzi z artykutu [DHKOS]

18 Technika Sledzenia promieni

Trawersowanie pakietéw promieni

Interesujacg technika przyspieszania przegladania drzewa jest Sledzenie pakietéw
promieni. Pakiet taki sktada si¢ przewaznie z 4, a czasem z 16 promieni. Wykorzy-
stywana jest tu zbiezno$¢ promieni pierwotnych i instrukcje SIMD, o ktérych wiecej
znajduje sie w punkcie 1.2.4. Dzieki instrukcjom SIMD mozna szybciej znajdowac
przecigcia promieni z kolejnymi wezlami struktury. Zbieznos¢ promieni pozwala
na ograniczenie liczby trawersowan struktury. Mozliwe jest to w zwigzku z tym, ze
promienie z sasiadujacych pikseli w wielu przypadkach trafiajg w ten sam obiekt,
a czasem nawet w ten sam tréjkat w scenie. Taki obiekt znajduje sie przewaz-
nie w jednym badz dwdéch sasiednich lisciach, przez co nie trzeba dla kolejnych
promieni trawersowaé poczatkowej Sciezki danego drzewa.

Problem pojawia si¢ dla promieni odbitych badZz zatamanych. Pakiet takich
promieni moze sta¢ sie rozbiezny, przez co traci sie dla tych promieni mozliwo$é
zmniejszenia liczby trawersowan struktury. Zdecydowanie bardziej optaca sie w ta-
kim wypadku trawersowac osobno kazdy z promieni. Przyktad takiej sytuacji znaj-
duje si¢ na rysunku 1.9.

light \ reflection

refraction

Rysunek 1.9. Przyktad rozbieznosci pakietu promieni po odbiciu od kulistej powierzchni.

Zr6dto: Rysunek pochodzi z artykutu [BEL107]

1.2.4. Szczegbly implementacji

Dobra struktura, przemyslana budowa i dobra technika trawersowania moze bar-
dzo poprawi¢ wydajnosé algorytmu Sledzenia promieni. Jednak detale implemen-
tacji w tym przypadku rézniez majg bardzo duze znaczenie. Napisanie efektyw-
nego kodu nie jest zadaniem tatwym. W tym rozdziale opisze kilka szczegétow
implementacyjnych, na ktére warto zwrdéci¢ uwage, gdyz stosowanie lub nie, opisa-
nych ponizej rozwigzar moze dos$¢ znacznie wplyngc¢ na szybkos¢ dziatania catego
silnika.

19

Usuniecie rekursji

Algorytm §$ledzenia promieni nadaje si¢ znakomicie do zaimplementowania za
pomocy rekursji. Nie chodzi tu tylko o metode rekuryncyjnego $ledzenia promieni,
ale sama budowe drzewa, czy sposéb jego trawersowania.

Rekurencyjny algorytm budowy drzewa dla danego zbioru tréjkatow S:

1. jesli zbidr S jest dos¢ maty, utworz lis¢ i zakoricz algorytm budowy

2. podziel zbiér tréjkatow S na dwa podzbiory S, oraz S, i utwérz wezet
wewnetrzny N

3. wywotaj procedure budowy drzewa dla zbioru S;, gotowe drzewo podepnij
do wezta N jako lewe dziecko

4. wywolaj procedure budowy drzewa dla zbioru 5, gotowe drzewo podepnij
do wezla N jako prawe dziecko

Rekurencyjny algorytm przegladania drzewa dla danego promienia 7:

1. jesli aktualny wezet jest liSciem przetnij promien r ze wszystkimi tréjkatami,
ktére sie w nim znajdujg i zakoricz procedure

2. sprawdz przeciecie promienia r z lewym dzieckiem, jesli przecina, to wywolaj
procedure przegladania dla lewego dziecka

3. sprawdz przecigcie promienia r z prawym dzieckiem, jesli przecina, to wy-
wolaj procedure przegladania dla prawego dziecka

Wywotania rekurencyjne zajmuja sporo czasu, jedng z przyczyn jest potrzeba
rezerwowania pamieci na stosie dla takich wywotan. Wyjsciem w tej sytuacji jest
przerobienie obu wyzej opisanych rozwigzan na algorytmy, ktére w petli, korzysta-
jac z wczesniej przygotowanego stosu sprawnie poradzg sobie zaréwno z budowa
drzewa jak i z jego przegladaniem. W rozwigzaniu tym zamiast wywotania re-
kuryncyjnego funkcji wystarczy wrzuci¢ odpowiednie dane na stos i przejs¢ do
poczatku petli, gdzie dane te sa ze stosu zdejmowane i wykonuje si¢ na nich
wszystkie Zagdane operacje.

Podzial tréjkatéw ,w miejscu”

W kazdym kroku budowy drzewa potrzebne jest podzielenie tréjkatéw na dwa
podzbiory wedlug pewnej zasady. Przewaznie polega to na wyborze jednej ptasz-
czyzny. Nastepnie trojkaty, ktérych srodki ciezkosci znajduja sie po jednej jej stronie
trafiajg do jednego zbioru, pozostate do drugiego. Jak juz wcze$niej wspomniatem,

20 Technika Sledzenia promieni

tréjkatéw moze by¢ bardzo duzo, dlatego ich sortowanie mija si¢ z celem szybkie-
go algorytmu. W takim wypadku najlepszym wyjSciem jest przyjecie rozwigzania
z algorytmu quicksort. Scena trzymana jest w pojedyriczej tablicy jako wskazniki na
tréjkaty. W momencie podziatu, na jej poczatku i konicu umieszcza si¢ wskazniki,
ktére pomogaja przy podziale. Wskazniki te iteruje si¢ zatrzymujac na niepasu-
jacych do danej czesci trdjkatach. Trojkaty te sg ze sobag zamieniane miejscami.
Rozwigzanie to poza optymalng liniowa zloZonoscig ma zalete w duzej efektyw-
nosci, gdyz w pamieci zamieniane miejscami sg tylko wskazniki.

Instrukcje SIMD

W punkcie 1.2.2 wspomnialem o instrukcjach, ktére umozliwiajg szybsze wykony-
wanie wielu operacji arytmetycznych. Instrukcje te noszg nazwe SIMD (ang. Single
Instruction Multiple Data). Istniejg wyspecjalizowane procesory, stworzone wtasnie
dla architektury SIMD. Wykorzystywane sa one w komputerach wektorowych, do
obliczent naukowo-technicznych, gdzie przetwarzanych jest wiele strumieni danych
w oparciu o jeden strumient rozkazéw. Dzisiejsze procesory skonstruowane w ar-
chitekturze x86 posiadaja liste standardowych rozkazéw poszerzong o zestawy
instrukcji takie jak MMX, SSE, SSE2 itp. Wlasnie te instrukcje wykorzystuja archi-
tekture SIMD i umozliwiaja wykonywanie podstawowych operacji arytmetycznych
na czterech 4-bajtowych liczbach w pojedyniczej instrukgji.

W teorii rozkazy takie powinny przyspieszy¢ caly program o 4 razy. W praktyce
jest to mniej wiecej 3-krotne przyspieszenie. W algorytmie, gdzie liczy sie kazdy
szczegot przy poprawie efektywnosci jest to ogromny postep. Instrukcje te moga
by¢ wykorzystywane podczas trawersowania struktur drzewiastych, zaréwno przy
pomocy pakietéw promieni dla drzew binarnych, jak i dla jednego promienia.
W przypadku drzew czwérkowych, co jest zdecydowanie lepszym rozwigzniem,
dla rekurencyjnej i rozproszonej metody Sledzenia promieni. Przy trawersowaniu
liScia mozna liczy¢ przecigcie promienia z czterema tréjkatami na raz. Warto
wykorzystaé¢ zestaw instrukcji SIMD réwniez podczas budowy. Miejsce do ich
wykorzystania mozna znalez¢ bez wiekszego problemu.

Alokowanie i wyré6wnywanie pamieci

Wazng zasada podczas implementacji szybkich algorytméw jest wyeliminowanie
z programu funkcji rezerwujgcych pamieé. Wywolania takie zajmujg sporo czasu.
Dlatego w dobrym rozwigzaniu warto zadbaé o wstepna rezerwacje pamieci na
wszystkie potrzebne w czasie dzialania obiekty. Jest to troche bardziej utrudnione
w przypadku kd-drzew, gdzie jak pisalem w punkcie 1.2.2, nie zawsze wiadomo
ile doktadnie miejsca moze zaja¢ gotowa struktura zbudowana dla sceny zlozonej
z n tréjkatéw. Ostatnim szczegétem implementacyjnym o ktérym chciatem wspo-

21

mnie¢ jest wyréwnywanie wstawianych do pamieci obiektéw do odpowiedniej
wartoéci, przewaznie do liczby podzielnej przez 32. Takie rozmieszczenie umoz-
liwia procesorowi lepsze poukfadanie obiektéw w pamieci cache, dzigki czemu
program moze dziala¢ nieco szybciej.

23

ROZDZIAL 2

Splaszczone hierarchiczne przedzialy
ograniczajace

W tym rozdziale opisze dokltadnie strukture, ktéra powstata jako pofgczenie wy-
branych cech z juz wczeéniej istniejacych i oméwionych w poprzednim rozdziale
drzew. Struktura ta ze wzgledu na swéj wyglad nosi nazwe sptaszczonych hie-
rarchicznych przedzialéw ograniczajgcych (SBIH, ang. Shallow Bounding Interval
Hierarchies).

2.1. Pomyst

Czytajac artykul o strukturze SBVH [DHKO8] i majac wiedze na temat wcze$niej
powstatej struktury BIH [WKO06], pomyslatem, Ze mozna sprébowa¢ polgczy¢ oba
rozwigzania. To znaczy zbudowac¢ strukture, ktéra bedzie umozliwiata:

e efektywne trawersowanie przy pomocy instrukcji SIMD, nie tylko dla pakie-
tow promieni pierwotnych;

e lepsze umieszczenie struktury w pamieci cache procesora przez zmiejszenie

rozmiaru wezléw drzewa;

e szybka budowe, co moze by¢ wykorzystywane w przypadku interaktywnego

renderowania animacji;

Struktura ta podobnie jak drzewo BIH mialaby w weztach jedynie plaszczyzny
ograniczajace obszary z dwdch stron na jednej osi. Plaszczyzny te dzielilyby jednak
bryle wezla wewnetrznego na 4 czesci tworzac drzewo czwoérkowe, tak jak to jest
w drzewie SBVH. Przyklad tej struktury znajduje sie na rysunku 2.1.

Zgodnie z powyzszym opisem, wezel wewnetrzny struktury SBIH musi za-
wieraé conajmniej 6 plaszczyzn ograniczajacych. Dwie zewnetrzne mozna przeko-
piowaé z wyzszego poziomu, a dla korzenia drzewa, z bryly ograniczajacej caty
scene. Dodatkowo potrzebne jest oznaczenie osi, na ktérej wykonywany jest po-
dzial i wskaznik na pierwsze ,, dziecko” (,,dzieci” moga by¢ umieszczone w pamieci
obok siebie, dlatego wiecej wskaznikéw nie jest potrzebnych). Lidcie musza zawie-

raé liczbe tréjkatéw w nich zawartych oraz wskaznik na pierwszy z nich.

24 Splaszczone hierarchiczne przedzialy ograniczajace

Przy zalozeniu, ze mamy dla catej sceny skonstruowang bryle ograniczajaca,
podczas trawersowania i wchodzenia do kolejnych weztéw bryta ta zostaje syste-
matycznie zmniejszana. W wyniku tego, w kazdym wezle mamy dostepng bryle
AABB. Sposéb w jaki struktura ta jest skonstruowana, uniemozliwia jednak ide-
alne ograniczenie danego poddrzewa, tak jak jest to mozliwe w drzewie SBVH.
W zwigzku z tym mozna spodziewaé si¢ mniejszej wydajnosci podczas trawerso-

wania.
| AT ' AN 1 :4 7
CAD |
A || B
D

2 ~ | Y {:
0 lis¢ zawierajacy trojkaty

v ég& ' 4&9& 0 lis pusty

v A — @ Wwezet wewnetrzny

Rysunek 2.1. Przyktad sceny w 2D i stworzonej na niej struktury SBIH.

Zrodto: Opracowanie wlasne.

Opisana w artykule [DHKO08] konstrukcja drzewa SBVH przebiega w dwéch
etapach. Na poczatku budowane jest drzewo BVH. Drzewo to nastepnie jest szyb-
ko przeksztalcane w drzewo SBVH. Autorzy, dzigki takiej budowie wykorzystali
doktadnie wszystko to, co do tej pory istnialo dla drzew BVH, miedzy innymi
heurystyke p6l powierzchni opisang w punkcie 1.2.3. Dzieki temu drzewo SBVH
jest zbudowane optymalnie. Zastanawialem si¢, czy mozna to rozwigza¢ w inny
sposéb, poniewaz w nowym drzewie SBIH nie bedzie mozliwe skonstruowanie go
na przykiad z drzewa BIH. Podzialy w drzewie na dwéch kolejnych poziomach
musialyby by¢ wykonywane na tej samej osi. Takie zalozenie mozna oczywiScie
przyja¢ podczas budowy pierwszego drzewa, ale zdecydowanie tadniejsze bytoby
rozwigzanie, w ktérym bedzie od razu konstruowane drzewo czwdérkowe.

2.2. Realizacja

Na poczatku zostalo zrealizowane najprostsze rozwigzanie pomystu opisanego
w punkcie 2.1, w ktérym kazdy li§¢ trzymany byl jako osobny wezet. Podczas
implementacji okazato sig, ze to rozwigzanie nie jest zbyt efektywne. LiScie w drze-
wie mozna trzymaé w sposob zaprezentowany w artykule [DHKO8] opisujacym
drzewa SBVH. Kazdy 1ié¢ jest tam trzymany w wewnetrznym wezle, ktéry jest dla

25

niego ojcem. Dzieki temu rozwigzaniu mozna ograniczy¢ catkowitg liczbe weztéw
drzewa. Jednak wymaga ono réwniez dwukrotnego zwiekszenia pamieci potrzeb-
nej na jeden wezel. Obie struktury zostaly dalej rozwijane i doprowadzone do
konica. Ze wzgledu na niewielkie ré6znice w budowie i w trawersowaniu sg one
w kolejnych punktach opisane réwnolegle.

2.2.1. Wyglad struktury

Prace nalezy rozpoczaé od projektu wygladu wezta. Pierwszym pomystem byta
minimalizacja jego rozmiaru. Jak juz zostalo opisane w punkcie 2.1, w wezle
wewnetrznym trzeba trzymac conajmniej 6 liczb zmiennoprzecinkowych, wskaznik
na dziecko oraz o$, w ktérej dokonano podziatu. Jak tatwo policzy¢ taki wezet
zmie$ci sie w 32 bajtach, co jest bardzo dobrym wynikiem. Nalezy przy tym
rozwigzaniu wzigé pod uwage fakt, ze kazdy 1lié¢ musi by¢ trzymany w osobnym
wezle, co zwieksza dos¢ znacznie rozmiar struktury.

Listing 2.1. Przyktadowy kod Zrédtowy wezta drzewa SBIH.

struct

{
float plaszczyznaMin[3];
float plaszczyznaMax [3];
int wskaznik;
int dane;

}

Kolejny pomyst byt zaczerpniety z artykutu [DHKO08], gdzie liscie byly prze-
chowywane w wezlach, bedacych ich ojcami. Przy tym rozwigzaniu trzeba bylo
zwiekszy¢ rozmiar wezta do 64 bajtéw. W takim wezle mozna juz bez proble-
mow trzymac 8 liczb zmiennoprzecinkowych okreslajacych ptaszczyzny podziatu,
4 wskazniki, po jednym dla kazdego dziecka, na kolejny wezet lub na pierwszy
tréjkat (w zaleznosci, od tego, czy dziecko jest lisciem, czy wezltem wewnetrznym)
oraz liczbe tréjkatéow dla dzieci, ktére sg lisémi. Dodatkowo przeznacza si¢ 2 bity
na przetrzymywanie osi podziatu.

26 Splaszczone hierarchiczne przedzialy ograniczajace

Listing 2.2. Przyktadowy kod Zrédtowy wezta drzewa SBIH2.

struct

{

float plaszczyznaMin[4];
float plaszczyznaMax|[4];
int wskaznik [4];

int liczbaTrojkatow [4];

}s

2.2.2. Budowa struktury

Budowa struktury SBIH jest bardzo podobna do budowy hierarchicznych struktur
drzewiastych opisanych w punkcie 1.2.2. W tym punkcie budowa ta zostanie
opisana dokfadnie.

Opis zmiennych pomocniczych:

n; liczba tréjkatéw w i-tym kubelku;

bb; bryta AABB otaczajaca wszystkie tréjkaty znajdujace sie¢ w i-tym kubetku;

C; $rodek ciezkosci i-tego trojkata;

BB, bryta AABB i-tego tréjkata;

Np,; suma wszystkich n; od 0 do j, Ny ; = Zié n;;

Npg; suma wszystkich n; od j + 1 do n, gdzie n to liczba wszystkich kubetkow,

_ \vi=n .
NR,j - i=j+1 i,

Ar; pole powierzchni bryly otaczajgcej trojkaty znajdujace sie w kubetkach od 0
do j, Ar; = SA(UZ) bbi);

Apr; pole powierzchni bryly otaczajacej tréjkaty znajdujace sie w kubetkach od
j + 1 dO n, AR,j = SA(:z?_t,_l bbz)/
Algorytm budowy:

1. oblicz bryly otaczajace dla wszystkich tréjkatéw (mozna to zrobié¢ efektywnie
z wykorzystaniem instrukcji SIMD), w tym kroku oblicz réwniez $rodki
ciezkosci wszystkich tréjkatéow oraz bryte V' otaczajacy calg scene

2. wrzu¢ na stos wezel zawierajacy wszystkie tréjkaty
3. wykonuj ponizsza petle dopodki stos jest niepusty:
(a) Sciggnij z wierzchotka stosu wezel z danymi do stworzenia drzewa;

(b) jesli w danym wezle jest mato tréjkatow, to stwoérz z niego 1ié¢ i zakoncz;

27

(c) dla kazdej z trzech osi:

i. podziel tréjkaty na kubetki wedtug wzoru znajdujacego sie w arty-
kule [Wal07] (dla kazdego kubetka obliczaj podczas tej operacji n;
oraz bb;);

ii. za pomocg zmiennych n; i bb; wylicz Ny ;, Nr; oraz Ap; i Agj;

iii. korzystajac ze zmiennych Ny, ;, Ng;, Ar; i Ar; oblicz z wykorzy-
staniem SAH najlepszy podziat (niech to bedzie miejsce [);

iv. uaktualnij zmienne N; ;, Ng,, Ar; i Ag; tak jakby kubetki 0, ...,1
oraz [+ 1,...,n tworzyly osobne wezly;

v. oblicz z wykorzystaniem nowych zmiennych dwa najlepsze podzia-
ly (jeden dla koszykéw od 0 do [, drugi dla koszykéw od [+ 1
do n);

vi. zapamietaj wszystkie 3 podzialy, jesli wynik SAH jest lepszy niz dla
pozostatych osi;

(d) posortuj tréjkaty w tablicy wedlug otrzymanego podzialu metoda po-
dang w punkcie 1.2.4;

(e) wrzud na stos dane potrzebne do stworzenia poddrzew z 4 otrzymanych
podzbioréw tréjkatow.

Struktury SBIH i SBIH2 réznig si¢ jedynie szczegétami implementacyjnymi
w tworzeniu weztéw wewnetrznych i liSci. Ogélny schemat algorytmu jest iden-
tyczny. Jak tatwo zauwazy¢, techniki budowy hierarchicznych drzew opisane
w punkcie 2.2.2 zostaly tu umiejetnie wykorzystane. Wieksza zmiana byla po-
trzebna jedynie w przypadku implementacji heurystyki SAH, ktéra w tym wy-
padku jest wywolywana trzykrotnie podczas tworzenia jednego wezta. Dzieje sie
tak, poniewaz kazdy z tych trzech podzialéw musi odbywac¢ si¢ wzdtuz jednej osi.
Doktadna implementacja algorytmu budowy opisanych drzew znajduje sie¢ w pliku
traversetree.cpp, ktéry znajduje sie w Zrédtach programu. Plik ten jest dotgczony
do pracy, wiecej informacji mozna znalez¢ w dodatku A.

2.2.3. Uaktualnianie struktury

Poza budowg struktura ta nadaje si¢ idealnie do szybkiego uaktualniania. Uak-
tualnianie takie jest bardzo przydatne w scenach animacji, gdy malo obiektéw
w kolejnych klatkach zmienia swoje potozenie. Najlepsze efekty mozna osiggna¢,
gdy potozenie to zmieniajg w podobny sposéb tréjkaty do siebie przylegajace. Takie
uaktualnienie drzewa mozna zrobi¢ w liniowym czasie wzgledem liczby tréjkatow
w drzewie. Mozliwe i bardzo intuicyjne jest tu rozwigzanie rekurencyjne, jednak

jak juz wczes$niej wspominatem, warto sie go pozby¢.

28 Splaszczone hierarchiczne przedzialy ograniczajace

Algorytm przedstawia si¢ nastepujaco:

1. wrzué na stos korzen drzewa z wyzerowang bryla otaczajaca (bryla ta zosta-
nie uaktualniona)

2. wykonaj ponizsza petle dopdki stos jest niepusty:

(a) zdejmij wezet z wierzchotka stosu;

(b) jesli to lis¢, to oblicz dla niego nowgq bryle otaczajgca i uaktualnij bryte
otaczajgca ojca danego wezla;

(c) jesli to wezet wewnetrzny, to wrzué na stos jego kolejne dziecko z wy-
zerowang bryla otaczajaca, jesli to ostatnie dziecko, to po uaktualnieniu
go, uaktualnij rowniez bryle otaczajaca jego rodzica (ewentualnie bryle
otaczajaca calg scene).

W pliku traversetree.cpp mozna znalezé implementacje tego rozwigzania.
Jak juz wspomnialem w poprzednim punkcie, plik ten znajduje sie w Zrédiach
programu opisanego w dodatku A.

2.2.4. Trawersowanie struktury

Ostatnim interesujgcym algorytmem jest trawersowanie drzewa przez dany pro-
mieri. Optymalny algorytm bierze pod uwage dwie kwestie:

e kolejnos¢ przegladania poddrzew danego wezta — faktem jest, Ze przecie-
cie liczymy za jednym zamachem dla wszystkich 4 poddrzew, ale warto je
przeglada¢ w prawidlowej kolejnosci, mozna dzieki takiemu rozwigzaniu za-
oszczedzi¢ sporo czasu

e wlaSciwe ograniczanie sprawdzanego obszaru podczas zagtebiania si¢ w drze-
wie — tu trzeba uwazac na to, by nie liczy¢ przecie¢ z przedzialami ogra-
niczajacymi znajdujacymi si¢ poza bryla otaczajaca wynikajacq z hierarchii
drzewa, mozna to zrobi¢ przez odpowiednie zarzadzanie wartoScig okresla-
jaca koniec promienia

M¢j algorytm przedstawia sie nastepujaco:

1. wrzué korzen drzewa na stos;

2. dopdki stos jest niepusty wykonaj:

(a) zdejmij wezet ze stosu;

(b) jesli to lis¢, to przetnij promier ze wszystkimi tréjkgtami, ktére sie¢ w nim
znajdujg (jesSli przecigcie znalezione, to uaktualnij promieri) i kontynuuj
petle;

29

(c) jesli to wezel wewnetrzny, to:

i. ustaw kolejnos¢ trawersowania dzieci w zaleznosci od kierunku

promienia na osi, wzdluz ktérej istnieje podzial w danym weZle;

ii. ustaw tymczasowe (na czas przecinania z plaszczyznami) maksi-
mum promienia (w tym miejscu trzeba uwazaé¢, by maksimum pro-
mienia bylo ustawione na minimalng warto$¢ z jego aktualnej diu-
gosci i otaczajacej ten fragment sceny bryly AABB, jeéli sie to usta-
wienie zaniedba, to w praktyce odwiedzimy prawie kazdy wezel,
poniewaz tylko promierr rownolegly do danej ptaszczyzny jej nie
przetnie);

iii. policz przeciecie z plaszczyznami;

iv. wrzué dzieci, z ktérymi przeciecie dalo wynik pozytywny na stos,
na stos pomocniczy wrzuc bryle AABB ograniczajacy te dzieci.

Implementacja algorytméw trawersowania zaimplementowanych struktur znaj-
duje si¢ w pliku tracer.cpp w Zrédlach programu dofgczonego w dodatku A.

31

ROZDZIAL 3

Wyniki

Testy zostaly przeprowadzone na 4 zaimplementowanych strukturach:

hierarchicznych brytach ograniczajacych (BVH);
splaszczonych hierarchicznych brytach ograniczajacych (SBVH);

hierarchicznych przedziatach ograniczajacych (BIH);

e splaszczonych hierarchicznych przedziatach ograniczajgcych z wezlem o mi-

nimalnym rozmiarze (SBIH);

e splaszczonych hierarchicznych przedziatach ograniczajacych, w ktérych liscie

wewnetrzne zawarte sg w ,,rodzicu” (SBIH2).

Do testéow zostaly wykorzystane sceny pobrane z repozytorium animacji Uni-

wersytetu w Utah, ktére mozna znaleZ¢ na stronie internetowejl. Przyktadowe

zrzuty ekranu wybranych klatek animacji znajduja sie na rysunku 3.1. Doktadniej-

sze dane dotyczace scen, animacji mozna znalezé w tabeli 3.1.

nazwa sceny liczba tréjkatéw | liczba klatek
wooddoll 6658 29
marbles 8800 500
toasters 11141 246
hand 17135 44
ben 78029 30
fairy forest 174117 21
exploding dragon 252572 16

Tabela 3.1. Statystyka scen uzytych w testach.

Zrédio: Opracowanie wlasne.

Wyb6r scen nie jest przypadkowy. Zostaly one stworzone w celach testowych.

Przedstawiaja najczesciej spotykane w animacjach rodzaje ruchu. W scenie hand

wystepuje naturalny ruch palcéw reki. Ruch biegnacej postaci mozemy znalezé

thttp:/ /www.sci.utah.edu/~wald /animrep /

32 Wyniki

w scenach ben i wooddoll. W animacjach zawsze wystepuja pewne obiekty stale,
takie jak Sciany, czy podlogi. Nie zmieniajg one polozenia w czasie. W scenach
testowych znalezli miejsce reprezentanci wtasnie takich scen, sg to fairy forest oraz
toasters, gdzie pewne obiekty poruszajg si¢ po ograniczonym obszarze, ktéry takze
jest renderowany. Inng czesto spotykana sytuacja w animacjach sg obiekty poru-
szajace sie niezaleznie od siebie, zmieniajgce kierunki ruchu pod wptywem odbié.
Mozna je zobaczy¢ w scenie marbles, w ktérej piteczki wpadajg do niewidzialnego
pojemnika i odbijajac sie od siebie ukladajg sie na jego dnie. Ostatnia scena explo-
ding dragon przedstawia smoka rozpadajacego si¢ w drobny pytl. Taka sekwencja
jest bardzo trudna do utrzymania w efektywnej strukturze. Tréjkaty, ktére na po-
czatku byly blisko siebie, byly potaczone, w kolejnych klatkach moga poruszacd sie
zupelnie niezaleznie w r6znych kierunkach.

Wiekszos¢ testow zostata przeprowadzona na komputerze z procesorem AMD
Sempron 2500+ obstugujacym instrukcje SSE i SSE2 taktowanym z czestotliwoscig
1,4 GHz i wyposazonym w 1 GB pamieci RAM DDR. W celu sprawdzenia réwno-
legtosci zastosowanych algorytmoéw zostat wykorzystany komputer z procesorem
Intel Core 2 Quad Q9300 taktowany z czestotliwoscig 2,5 GHz, réwniez wykorzy-
stujgcym instrukcje SSE i SSE2, posiadajacym 4 GB pamieci RAM DDR2.

3.1. Budowa

Pierwszym testem bylo poréwnanie czaséw budowy catej struktury. Wyniki dla
scen testowych znajduja sie w tabeli 3.2. Budowa struktury SBVH jest minimal-
nie dluzsza niz budowa struktury BVH. Tak jak zostato opisane w punkcie 1.2.2,
drzewo SBVH powstaje przez przebudowanie drzewa BVH. Kolejna ciekawg ob-
serwacjg jest czas budowy drzew, ktérych budowa opiera si¢ na splaszczonym
podziale przestrzeni plaszczyznami, czyli SBIH i SBIH2. Dla mniejszych scen cza-
sy te sa wigksze niz czasy budowy drzew opartych na brytach ograniczajgcych,
ale wraz ze wzrostem wielkoSci scen, czasy te rosng duzo wolniej. Jest to spowo-
dowane tym, ze podczas budowy struktury hierarchicznych bryt ograniczajacych,
na kazdym etapie dzielimy zbidr tréjkatéw na 2 podzbiory, a przy sptaszczonych
hierarchicznych przedziatach ograniczajacych na 4. Dzieki temu poczatkowy duzy
zbidr tréjkatow dosc szybko rozdziela si¢ na wiecej mniejszych, na ktérych opera-
cje wykonywane s3 juz znacznie szybciej. R6znice te réwniez widaé poréwnujac
strukture BIH, w ktérej podczas budowy réwniez dochodzi do podzialu na 2 cze-
Sci, z SBIH. Budowa struktury BIH jest duzo wolniejsza.

Kolejnym testem bylo sprawdzenie czasu aktualizacji struktury. Taka aktuali-
zacja powinna by¢ btyskawiczna, poniewaz odbywa sie to przez zwykle przeglad-
niecie drzewa i aktualizacje jego weztéw. Ztozonos$¢ czasowa tej operacji jest li-

33

(c) toasters

(f) exploding dragon

(d) fairy forest

(g) marbles

Rysunek 3.1. Przyktadowe zrzuty ekranu z rendrowanych animagji.

Zrédto: Sceny pochodzg z Utah Animation Repository.

niowa wzgledem rozmiaru sceny (przejrzenie wszystkich tréjkatow) i wzgledem
rozmiaru struktury (przejrzenie wszystkich weztéw). Z tabeli 3.3 poréwnujac cza-
sy aktualizacji do czaséw budowy drzew (patrz tab. 3.2), mozna wywnioskowag,
Ze ta operacja rzeczywiscie jest bltyskawiczna i w przypadku wszystkich struktur
czasy sg zblizone z lekkim wskazaniem na struktury splaszczonych hierarchicz-
nych przedziatéw ograniczajacych. Dzieje si¢ tak, poniewaz drzewa tych struktur

maja zdecydowanie mniej weztéw wewnetrznych do przegladniecia, a ich mniej-

34 Wyniki

nazwa sceny BVH | SBVH BIH | SBIH | SBIH2
wooddoll 34,3 26,9 449 | 324 21,8
marbles 38,8 39,2 64,7 | 72,9 744
toasters 51,5 50,8 839 | 91,5 96,8
hand 77,8 79 | 126,6 | 110,6 80
ben 4262 | 4249 | 639,1 | 2772 | 2146
fairy forest 1029,4 | 1055,2 | 1474,2 | 903,8 | 741,0
exploding dragonl | 1371,2 | 1372,1 | 2026,1 | 665,9 | 582,0
exploding dragon2 | 1406 | 1406,6 | 2076,2 | 782,4 677

Tabela 3.2. Poréwnanie $rednich czaséw budowy od podstaw dla réznych struktur

(czasy podane w ms).

Zrodto: Opracowanie wilasne.

szy rozmiar pozwala na umieszczenie catych struktur w szybkiej pamieci cache

procesora.
nazwa sceny BVH | SBVH | BIH | SBIH | SBIH2
wooddoll 1,6 2| 1,6 1,3 1,6
marbles 2,3 2,8 2 2,1 2,6
toasters 2,8 35| 24 2,6 3,3
hand 4,6 56 | 4,2 3,8 4,8
ben 20,6 25| 18,2 | 14,3 19,5
fairy forest 51,4 61,8 433 | 38,2 51,2
exploding dragonl | 77,8 914 | 674 | 50,6 69
exploding dragon2 75| 91,6| 66| 51,6 69,8

Tabela 3.3. Srednie czasy uaktualniania struktury dla jednej klatki (czasy podane w ms).

Zrédlo: Opracowanie wlasne.

Waznym aspektem, o ktérym wspomnialem kilka razy w drugim rozdziale jest
rozmiar pamieci jaki zajmuje cata struktura. Rozmiar ten w testach zostat policzony
dokladnie przez przemnozenie liczby zajetych weztéw przez rozmiar jednego
wezla. Wynik tego dziatania zostat usredniony dla wszystkich klatek animacji.
W tym wypadku nalezy zwréci¢ uwage na inne rozmiary drzew w zaleznosci od
parametru budowy, jakim jest maksymalna liczba tréjkatow w jednym lisciu. Im

jest ich wiecej, tym drzewo moze zosta¢ zbudowane szybciej i tym mniej pamieci

35

zajmuje. Rozmiary drzew przedstawionych w tabeli 3.4, odnoszg si¢ do drzew
zbudowancyh z identycznym parametrem, z maksymalng liczbg tréjkatow w lisciu
wynoszaca 16. W tej tabeli warto zwréci¢ uwage na bardzo maty rozmiar struktur
SBIH i SBIH2 w pamieci. Wezly tych struktur sa bardzo kompaktowe, a dzieki

splaszczeniu ich liczba utrzymana jest na bardzo niskim poziomie.

nazwa sceny BVH | SBVH | BIH | SBIH | SBIH2
wooddoll 73,5 38 76 9,5 6,5
marbles 52 51,5 | 103 52 27,5
toasters 67 67| 131 | 67,5 36
hand 99,5 100 | 198 | 36,5 26,5
ben 453 454 | 900 43 33
fairy forest 1023 | 1021 | 2024 | 251 | 1725
exploding dragonl | 1475 | 1475 | 2933 57 45
exploding dragon2 | 1492 | 1494 | 2933 91 68

Tabela 3.4. Poréwnanie pamieci zajmowanej przez struktury. Pamiec liczona
w kilobajtach.

Zrodto: Opracowanie wilasne.

3.2. Trawersowanie

Najwazniejsza wlasnoscig, od ktérej zalezy efektywnos$¢ dziatania, czyli jakosc¢
struktury jest czas renderowania jednej klatki. Waznym aspektem oczywiScie jest
rozmiar renderowanej sceny oraz wielko$¢ bryly zawierajacej renderowana scene
w stosunku do tego co obejmuje widok z kamery. Gdy obiekt zajmuje nieznaczng
czes¢ widoku z kamery, wtedy spora liczba promieni pierwotnych moze by¢ szyb-
ko odrzucona przez test przeciecia z brylg otaczajaca scene. Kamera we wszystkich
scenach testowych zostata jednak ustawiona w taki sposéb, by bryla otaczajgca catg
scene obejmowata wieksza czes¢ kadru. Dla wszystkich struktur ustawienia kame-
ry sg identyczne. Duzy wplyw na czas renderowania jednej klatki, przy korzysta-
niu z opisanych struktur ma réwniez sama budowa sceny, czyli rozmieszczenie
tréjkatéw. W tabeli 3.5 scena exploding dragon zostala podzielona na dwie czesci.
Czesc¢ pierwsza to 8 pierwszych klatek, czes¢ druga to 8 ostatnich. W drugiej czesci
smok rozpada si¢ na drobne kawaleczki, ktérymi sg pojedyricze tréjkaty. Kazdy
taki trojkat porusza si¢ w innym kierunku, co znacznie utrudnia renderowanie.
Wyniki pokazuja, Ze czasy dla drugiej czesci tej animacji, szczegdlnie dla drzew

36 Wyniki

SBIH i SBIH2, sa duzo wieksze niz te dla pierwszej jej czeSci. Pokazuje to trudnosci
jakie struktury te maja przy catkowicie losowo zmieniajgcych sie scenach.

nazwa sceny BVH | SBVH | BIH | SBIH | SBIH2
wooddoll 255 218 | 751,6 | 1216 903
marbles 241 215 253 | 2553 | 1916
toasters 934,4 | 699,44 | 2499 | 2699 | 1243
hand 845 417 | 1988 | 3066 | 1158
ben 521,2 | 3953 | 2344 | 6550 | 1666
fairy forest 1789 | 1227 | 7824 | 13315 | 4310
exploding dragonl | 451,2 | 252,7 | 1196 | 4435 | 2215
exploding dragon2 | 1061 581 | 10054 | 27452 | 23462

Tabela 3.5. Poréwnanie czaséw renderowania obrazéw po catkowitej przebudowie

struktury (czasy podane w ms).

Zrodto: Opracowanie wilasne.

Gdy renderowana scena animacji nie zmienia si¢ znacznie, warto zadba¢, by
struktura, w ktorej si¢ ona znajduje byta dobrze aktaulizowana dla kolejnych klatek.
Aktualizacja taka jest bardzo szybka, co pokazuje tabela 3.3. Efektywnos¢ przegla-
dania zaktualizowanej struktury mozemy odczytac z tabeli 3.6. Wtasnos¢ ta zostata
sprawdzona tylko dla niektérych scen. Szczeg6lng uwage nalezy zwrdcié na sceny
toasters i fairy forest, w ktérych wystepuja jednoczeénie obiekty stale i obiekty ru-
chome. Tak zbudowane sg praktycznie wszystkie sceny w wigkszosci dzisiejszych
animacji. W tabeli 3.6 mozna jeszcze zauwazy¢ dos¢ znaczne réznice dla czasow
renderowania obrazéw po aktualizacji z wykorzystaniem struktury SBVH w po-
rownaniu do renerowania przy pomocy tej struktury po catkowitej przebudowie.
By¢ moze jest to spowodowane tym, iz bryly otaczajgce dla weztéw wewnetrznych
muszg zawiera¢ cztery bryly na nizszym poziomie. Podczas aktualizacji przy ma-
fej zmianie kazdej z tych czterech bryt, bryla ,rodzica” moze dos¢ znacznie sie
powiekszy¢, przez co duzo wiecej promieni trafia wlaénie w te bryle i jest liczone
duzo wiecej przecigé. W strukturach SBIH i SBIH2 mamy réwniez drzewa czwor-
kowe, jednak tam budowa oparta jest na podziale ptaszczyznami (w jednym wezle
wzdluz jednej osi), dzieki czemu mate zmiany w weztach ,dzieci” nie powoduja
wielkich zmian w wezle ,rodzica”.

Innym interesujgcym parametrem, opisujgcym w pewien sposéb efektywnosc
dziatania struktury, jest Srednia liczba tréjkatow przecinanych w czasie jednej se-
kundy. Wyniki obrazujace te statystyke znajdujg sie¢ w tabeli 3.7. Wartosci zostaty
wyliczone przez podzielenie $redniej liczby przecinanych tréjkatéw podczas ren-

37

nazwa sceny | BVH | SBVH | BIH | SBIH | SBIH2
wooddoll 281,3 843 818 | 1423 997
marbles 2542 | 534,1 | 310,1 | 321,5| 228,5
toasters 978 | 3731 | 2779 | 2920 1322
hand 916 | 4274 | 2284 | 3478 | 1258
ben 584 | 30643 | 2883 | 8514 | 2321
fairy forest 2261 | 89424 | 13480 | 24325 6375

Tabela 3.6. Poréwnanie czaséw renderowania obrazéw po aktualizacji struktury, petna
przebudowa co 4 klatki (czasy podane w ms).

Zrédto: Opracowanie wlasne.

derowania animacji przez czas jej renderowania. Chciatlbym doda¢ w tym miejscu,
ze test ten zostal przeprowadzony na strukturach, ktérych wszystkie lidcie maja
maksymalnie po 16 tréjkatow. Dzieki takiemu zatozeniu wyniki mozna poréwny-
wad. Jak fatwo odczytac z tabeli 3.7 struktura BVH umozliwia przecinanie §rednio
od 0,5M do 1M tréjkatow na sekunde. Struktura SBVH od okoto 0,7M do 1,3M
tréjkatow w ciggu jednej sekundy. Duzo lepiej radza sobie struktury oparte na
podziale ptaszczyznami, BIH umozliwia przecinanie od okoto 2,5M do 3,5M, pod-
czas gdy struktury SBIH i SBIH2 odpowiednio okoto 3M-5M i 2M—4M przecigc
trojkatow na sekunde. Taki wynik moze by¢ spowodowany po pierwsze, mniejsza
liczbg operacji potrzebnych podczas trawersowania drzewa (test przeciecia tylko
z plaszczyznami réwnoleglymi do jednej z osi ukladu wspétrzednych), a po dru-
gie, mniejszym rozmiarem weztéw, dzieki czemu, struktura moze by¢ zdecydowa-
nie szybciej przegladana, przez umieszczenie w pamieci cache, z ktérej czytanie

odbywa sie btyskawicznie.

3.3. Parametry w strukturze SBIH2

Struktura SBIH2 zostata przetestowana dokladniej. W testach zostaly sprawdzone
m.in. r6zne parametry jej budowy. Na koricu zostaly wykorzystane oczywiscie pa-
rametry dajace optymalne wyniki. Z tabeli 3.8 mozna odczyta¢ predkos¢ budowy.
Ro$nie ona wraz ze zwigkszaniem liczby koszykéw i maleje wraz ze zwigksza-
niem liczby tréjkatéw w lisciu. Przy dobieraniu odpowiednich parametréw nalezy
zwréci¢ rbwniez uwage na czasy trawersowania, ktére sg przedstawione w tabeli
3.9. Widag, ze dla pewnych parametréw budowa struktury sie nie optaca. Dla nie-
ktérych parametréw z kolei nie wida¢ wyraznej r6znicy w czasach trawersowan.
Gdy liczba koszykéw dochodzi do 64, czasy renderowania niezancznie si¢ zmniej-

38 Wyniki

nazwa sceny BVH | SBVH | BIH | SBIH | SBIH2
wooddoll 0,45 0,99 | 2,95 4,1 3,83
marbles 11 1,33 | 25 2,5 2,16
toasters 0,92 1,29 1 285 | 2,79 2,27
hand 1,14 1,08 | 3,27 | 4,13 2,84
ben 0,71 1 31 396 3,53
fairy forest 0,61 0,9 3 3,8 2,95
exploding dragon1 | 1,03 0,70 33| 5,07 4,87
exploding dragon2 | 0,51 0,37 | 3,44 51 5,06

Tabela 3.7. Poréwnanie wydajnoéci dziatania struktur, w tabeli przedstawiona jest
$rednia liczba przecinanych trojkatéow w ciggu jednej sekundy dla poszczegélnych scen
i struktur (liczba podana w milionach).

Zrédto: Opracowanie wlasne.

szajg. Powyzej tej liczby utrzymuja sie juz na podobnym poziomie. Czasy budowy
powyzej pewnej granicy rosng bardzo wyraznie, dzieje si¢ to wraz ze wzrostem
liczby koszykéw, ktéra oznacza po prostu wieksza liczbe sortowar.

Lk. \ m.lt. 4 8 16 32 64 | 128
16 177 1 177,8 | 181,4 | 181,1 | 178,9 | 1654
32 193,5 | 1869 | 187 | 187,1 | 187,2 | 173,2
64 216 | 2154 | 2145 | 2203 | 211 | 189,5
128 270,6 | 270,7 | 2684 | 267,1 | 251,2 | 224
256 390,2 | 378,7 | 383,5 | 371,8 | 3459 | 298,5
512 604,5 | 598,3 | 616,2 | 601,9 | 540,1 | 425,5
1024 1062 | 1080 | 1060 | 1049,8 | 900,5 | 7144

Tabela 3.8. Poréwnanie czaséw budowy struktury SBIH2 w zaleznosci od wybranych
parametréow Lk. — liczba koszykéw i m.l.t. — maksymalna liczba tréjkatéw w lisciu

(czasy podane w ms).

Zrédto: Opracowanie wlasne.

39

Lk. \ m.lLt. 4 8 16 32 64 | 128
16 1681 | 1682 | 1686 | 1749 | 1762 | 2119
32 1582 | 1580 | 1584 | 1588 | 1649 | 2006
64 1616 | 1617 | 1615 | 1621 | 1672 | 2027
128 1604 | 1603 | 1605 | 1608 | 1656 | 2030
256 1584 | 1585 | 1584 | 1590 | 1636 | 2012
512 1581 | 1583 | 1580 | 1586 | 1639 | 2015
1024 1571 | 1572 | 1571 | 1576 | 1626 | 2007

Tabela 3.9. Por6wnanie czaséw renderowania struktury SBIH2 w zaleznosci od

wybranych parametréw k. — liczba koszykéw i m.l.t. — maksymalna liczba tréjkatéw

w liSciu (czasy podane w ms).

Zrodto: Opracowanie wilasne.

3.4. Wielowatkowosé algorytmow

W tabeli tab.3.10 znajduja sie wyniki testu wielowgtkowosci renderowania dla wy-

branych scen. Wielowagtkowos$¢ zostata zaimplementowana jedynie dla renderowa-

nia. Zostat przy tym wykorzystany fakt, ze kolor kazdego piksela obrazu moze by¢

obliczany niezaleznie. Dzigki tej wtasnosci metody Sledzenia promieni, nie widac

praktycznie zadnych strat podczas uréwnoleglania programu dla zadnej z zaim-

plementowanych struktur. Wszystkie spisujq sie bardzo dobrze. W tym teScie wy-

korzystano jedynie procesor 4-rdzeniowy, jednak nic nie stoi na przeszkodzie, by

zastosowac te metode na duzo wiekszej liczbie rdzeni, czy procesoréw.

hand marbles ben
struktura \ 1. watkéw 1 2 4 1 2 4 1 2 4
BVH 1946 | 981 | 499 | 519 | 260 | 144 | 1226 | 629 | 327
SBVH 541 | 267|144 | 274 | 140 | 81| 524 | 274 | 143
SBIH 3679 | 1841 | 939 | 331 | 167 | 91 | 7301 | 3687 | 1854
SBIH2 1398 | 702 | 361 | 250 | 126 | 71 | 1971 | 1009 | 515

Tabela 3.10. Poréwnanie czaséw renderowania obrazéw dla réznej liczby watkéw (czasy

podane w ms).

Zrédlo: Opracowanie wilasne.

41

ROZDZIAL 4

Whnioski i plany rozwoju

Rozwigzanie opisane w tej pracy mozna jeszcze poprawié. Jedng z wazniejszych
rzeczy moze by¢ uréwnoleglenie budowy. Przykladowe jest opisane w artykule
[Wal07]. Z wynikéw osiggnietych przez jego autoréw, mozna wywnioskowac, ze
jest ono dobre.

Kolejnym usprawnieniem moze by¢ dodanie pakietéw. Patrzac z jednej strony
chcieliémy to wyeliminowa¢ przez budowe struktury opartej na drzewie czwoérko-
wym. Jednak w ten sposéb przyspieszamy przegladanie drzewa, czyli znajdowanie
najblizszego przeciecia. dzigeki pakietom promieni by¢ moze da sie takie przeciecie
znalez¢ jeszcze szybciej wykorzystujgc techniki opisane w artykule [BEL*07]. Do-
datkowo, miedzy kolejnymi wywotaniami metod szukania najblizszego przeciecia
wykonywanych jest mnéstwo innych operacji, takich jak odbijanie, zalamywanie
promienia, czy przeliczane koloréw. Operacje te moga by¢ wykonywane z wyko-
rzystaniem instrukcji SIMD podczas trawersowania struktury z wykorzystaniem
pakietow.

W wynikach zaprezentowanych w rozdziale 3 trawersowanie przy pomocy
splaszczonych hierarchicznych przedziatéw ograniczajacych (SBIH oraz SBIH2) nie
daje najlepszych rezultatéw. Co pokazuje szczegodlnie tabela 3.5. Jednak w tabeli 3.7
wida¢, ze wydajnoé¢ struktury jest wysoka. Problem jest z jakoScig. Stad wniosek,
ze by¢ moze da sie¢ poprawi¢ heurystyke budowy opisang w punkcie 2.2.2. Dobrym
rozwigzaniem bylaby z pewnos$cig heurystyka, dzieki ktérej moznaby otrzymac
podzial tréjkatéw na 4 dobrze rozdzielone czesci.

Uwazam réwniez, ze struktura zbudowana w stylu splaszczonych hierarchicz-
nych przedzialéw ograniczajacych moze by¢ duzo tatwiej i efektywniej zrealizo-
wana sprzetowo. Tu pod uwage nalezy wzig¢ kilka czynnikéw. Jednym jest na
pewno pamie¢, jaka struktury zajmujg. W tym punkcie struktury BIH spisujg sie
zdecywdowanie lepiej niz BVH, co wida¢ w tabeli 3.4. Patrzac na pamie¢ mozna od
razu wspomnie¢ kd-drzewa opisywane w punkcie 1.2.2, w ktérych jeden tréjkat
mogt trafi¢ do kilku poddrzew. W tej strukturze jest to niemozliwe. Struktura SBIH
moze zosta¢ duzo prosciej zrealizowana niz struktura BVH, poniewaz przy prze-
gladaniu drzewa, na kazdym poziomie potrzeba tylko przeciecia z ptaszczyznga,
a nie z calg brylg ograniczajaca, tak jak to jest w przypadku BVH. Instrukcje SIMD
wykorzystane w pracy i implementacji dla drzew czwoérkowych, moga sprzeto-
wo zosta¢ zrealizowane bardzo podobnie, dzieki czemu struktury te powinny by¢
bardzo szybkie w przegladaniu. Ponadto wszystko moze odbywa¢ sie rownolegle.

42 Whnioski i plany rozwoju

Realizacja algorytmiczna takiego rozwigzania jest juz do$¢ prosta, a technologia
rowniez idzie dzi§ w kierunku zwiekszania liczby rdzeni w procesorach, zamiast
podwyzszania mocy obliczeniowych, wiec moze juz w niedalekiej przysztoéci me-
toda Sledzenia promieni zyska na zainteresowaniu dzieki realistycznym efektom

i coraz bardziej interaktywnym czasom dziatania.

43

DODATEK A

Program atracer

Do powyzszej pracy jest dotaczony program atracer. Zostal on zaimplementowany
specjalnie w celach testowych wszystkich wyzej opisanych struktur. Zrédta pro-
gramu oraz wszystkie potzebne pliki do jego uruchomienia, w tym przyktadowe
sceny opisane w rozdziale 3 znajduja sie¢ na ptycie DVD.

W skiad calego programu wchodza:

e kod zZrédtowy i makefile;

o katalog ze scenami scenes, zawiera on sceny pobrane z repozytorium Uniwer-
sytetu w Utah, niektére ze scen zostaly dopasowane do potrzeb programu;

e skrypt i dodatkowe pliki uruchomieniowe, w skrypcie znajduja si¢ przykia-
dowe wywotlania programu;

Program zostat napisany w jezyku C++. Dziata na systemach Unixowych. Bar-
dzo istotne jest, by procesor obstugiwat instrukcje SSE i SSE2, gdyz program za-
wiera ich wywotania.

Opis dziatania:

1. zainicjowanie parametréw dziatania;

2. wezytanie scen wraz z teksturami do pamieci (wczytywanie scen w formacie

.obj);
3. zarezerwowanie pamieci potrzebnej na budowane struktury;

4. dla kolejnych klatek animacji uruchamiane sa metody budowy (lub aktuali-
zacji) struktury, a nastepnie renderowania;

Najbardziej istotne klasy: traversetree i tracer znajduja sie w plikach z odpowia-
dajacymi im nazwami. W Kklasie traversetree znajduje sie kod zZrédtowy wykorzy-
stywany przy budowie i aktualizacji wszystkich opisanych struktur. Z kolei klasa
tracer zawiera kod Zrédlowy stuzacy do przegladania tychze struktur.

44 Program atracer

Kompilacja programu odbywa sie przez uruchomienie skryptu make. Wersje
programu mozna wybra¢ wykomentowujac odpowiednie wiersze w pliku settings.h
(wiersze z deklaracjg #define), ktéry znajduje si¢ w katalogu z kodem Zrédtowym.
Przed wywotaniem polecenia make warto wykona¢ rézniez make clean. Do kompi-
lacji potrzebny jest kompilator g++ w wersji 4.2 lub wyzszej.

Program potrzebuje na wejsciu kilku parametréw. Moga one by¢ podane w do-
wolnej kolejnosci. Nie wszystkie s3 wymagane, dla niektérych przyjmowane sg
wartosci domys$lne.

Opis parametréw programu (kazdy parametr podajemy poprzedzajac go zna-

kiem ’-'):

e scn [nazwa sceny] — nazwa sceny zdefiniowanej w pliku ustawienia.info;

bn [liczba] — okre$la liczbe koszykéw, na jaka sg dzielone tréjkaty w kazdym
kroku budowy drzewa (warto§¢ domyslna 8);

e mlit [liczba] — okresla maksymalng liczbe tréjkatow, jakie moga znalez¢ sie
w liSciu drzewa (warto$¢ domyslna 16);

e th [liczba] — okre$la liczbe watkoéw, jakie bedq wykorzystywane podczas
renderowania obrazéw, maksymalnie 8 (domy$lnie 1);

e res [liczba] [liczba] — okres$la rozdzielczo$¢ generowanych obrazéw, najlepiej
kwadrat o boku potegi 2 (warto§¢ domyslna 512 na 512);

e fpb [liczba] — okresla co ile klatek drzewo ma zosta¢ przebudowane w catosci
(warto$¢ domyslna 1);

o f —jesli podany, to wyswietla dang scene w nieskoriczonej petli (domySlnie
wylaczone);

e save — zapisuje zrzuty ekranu z kazdej wygenerowanej klatki (domyslnie
wylaczone);

e statsFile [nazwa pliku] — zapisuje statystyki do podanego pliku (domy$lnie
wylaczone).

45

Bibliografia

[App68]

[BEL*07]

[CFLBO6]

[DHKO08]

[MT97]

[SWS05]

[Wal04]

[Wal07]

[WHO6]

[Whi80]

Arthur Appel. Some techniques for shading machine renderings of
solids. In AFIPS '68 (Spring): Proceedings of the April 30-May 2, 1968,
spring joint computer conference, pages 37-45, New York, NY, USA, 1968.
ACM. 5

Solomon Boulos, Dave Edwards,]J. Dylan Lacewell, Joe Kniss, Jan
Kautz, Peter Shirley, and Ingo Wald. Packet-based whitted and di-
stribution ray tracing. In GI '07: Proceedings of Graphics Interface 2007,
pages 177-184, New York, NY, USA, 2007. ACM. 8§, 18, 41

PH. Christensen, J. Fong, D.M. Laur, and D. Batali. Ray tracing for the
movie ‘cars’. Symposium on Interactive Ray Tracing, 0:1-6, 2006. 3

Holger Dammertz, Johannes Hanika, and Alexander Keller. Shallow
bounding volume hierarchies for fast simd ray tracing of incoherent
rays. Computer Graphics Forum, 27(4):1225-1233, June 2008. 4, 13, 14,
17, 23, 24, 25

Moller and Trumbore. Fast, minimum storage ray-triangle intersection.
JGTOOLS: Journal of Graphics Tools, 2, 1997. 9

Jorg Schmittler Sven Woop and Philipp Slusallek. Rpu: A programma-
ble ray processing unit for realtime ray tracing. In Proceedings of ACM
SIGGRAPH 2005, July 2005. 1, 3

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Computer Graphics Group, Saarland University, 2004. Available
at http://www.mpi-sb.mpg.de/~wald/PhD/. 4

Ingo Wald. On fast Construction of SAH based Bounding Volume
Hierarchies. In Proceedings of the 2007 Eurographics/IEEE Symposium on
Interactive Ray Tracing, 2007. 12, 14, 15, 17, 27, 41

Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, pages 61-69, 2006. 11, 15

Turner Whitted. An improved illumination model for shaded display.
Commun. ACM, 23(6):343-349, 1980. 5

46 BIBLIOGRAFIA

[WKO06] Carsten Wachter and Alexander Keller. Instant ray tracing: The boun-
ding interval hierarchy. In Rendering Techniques 2006: 17th Eurographics
Workshop on Rendering, pages 139-150, June 2006. 13, 23

[WMGT07] Ingo Wald, William R Mark, Johannes Giinther, Solomon Boulos, Thia-
go Ize, Warren Hunt, Steven G Parker, and Peter Shirley. State of the
Art in Ray Tracing Animated Scenes. In Eurographics 2007 State of the
Art Reports, 2007. 5, 9

