Word equations in nondeterministic linear space

Artur Jeż
Institute of Computer Science
International Colloquium on Automata, Languages and Programming
Warszawa, 13.07.2017
Definition

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \rightarrow \Sigma^*$ satisfying the equation?
Definition

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \rightarrow \Sigma^*$ satisfying the equation?

\[
a \ X \ b \ X \ Y \ bbb = X \ abaab \ Y \ bY \quad S(X) = aa, \ S(Y) = bb
\]
Word Equations

Definition

Given equation \(U = V \), where \(U, V \in (\Sigma \cup \mathcal{X})^* \).

Is there a substitution \(S : \mathcal{X} \to \Sigma^* \) satisfying the equation?

\[
\begin{align*}
axbxYbbb &= XabaabYby & S(X) &= aa, S(Y) &= bb \\
aaaabaabb&&=aaaabaabbbbbb
\end{align*}
\]
Definition

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \rightarrow \Sigma^*$ satisfying the equation?

\[
aXbXYbbb = XabaabYbY \quad S(X) = aa, S(Y) = bb
\]
\[
aaabaabbbbbb = aaabaabbbbbb
\]

We extend S to a $S : (\Sigma \cup \mathcal{X})^* \rightarrow \Sigma^*$; identity on Σ. $S(U)$ is a **solution word**.

Lenght-minimal S: minimises $|S(U)|$
Definition

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \to \Sigma^*$ satisfying the equation?

$$a X b X Y bbb = X abaab Y bY \quad S(X) = aa, \quad S(Y) = bb$$

$$aaabaaabbbbb = aaaabaaabbbbbb$$

We extend S to a $S : (\Sigma \cup \mathcal{X})^* \to \Sigma^*$; identity on Σ.

$S(U)$ is a solution word.

Length-minimal S: minimises $|S(U)|$

This is important

- unification
- word combinatorics
- helpful in equations in free group (and other)
Makanin ’77 4NEXPTIME
Makanin ’77 4NEXPTIME

[...]
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE

Plandowski & Rytter ’98 new approach — using compression
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE

Plandowski & Rytter ’98 new approach — using compression

Plandowski ’99 PSPACE
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE

Plandowski & Rytter ’98 new approach — using compression

Plandowski ’99 PSPACE

J. ’13 PSPACE
Algorithms and Complexity

- Makanin ’77 4NEXPTIME

 […]

- Gutierrez ’98 EXPSPACE

- Plandowski & Rytter ’98 new approach — using compression

- Plandowski ’99 PSPACE

 J. ’13 PSPACE

- NP-hard, believed to be in NP
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE

Plandowski & Rytter ’98 new approach — using compression

Plandowski ’99 PSPACE

J. ’13 PSPACE

- NP-hard, believed to be in NP
- Exact space complexity?
Makanin ’77 4NEXPTIME

 […]

Gutierrez ’98 EXPSPACE exponential

Plandowski & Rytter ’98 new approach — using compression

Plandowski ’99 PSPACE $O(n^5)$

J. ’13 PSPACE $O(n \log n)$

▶ NP-hard, believed to be in NP

▶ Exact space complexity?
Makanin ’77 4NEXPTIME

[...]

Gutierrez ’98 EXPSPACE exponential

Plandowski & Rytter ’98 new approach — using compression

Plandowski ’99 PSPACE $O(n^5)$

J. ’13 PSPACE $O(n \log n)$

- NP-hard, believed to be in NP
- Exact space complexity?

This talk

Word Equations are in NLinSPACE
Main idea

- Recompression algorithm [J. 2013]
- Huffman coding of letters
Main idea

- Recompression algorithm [J. 2013]
- Huffman coding of letters

The proof is more complex
- how letters depend on fragments of original equation
- special coding (so worse than Huffman)
- technically involved
Compression operations

Given a word w:

(Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab}

(Σ_ℓ, Σ_r are disjoint)
Compression operations

Given a word w:

- **(Σ_ℓ, Σ_r) pair compression** replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} (Σ_ℓ, Σ_r are disjoint)

- **Σ block compression** replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a^ℓ. (a^ℓ is a maximal block when it is in w and cannot be extended by a).

We want to perform it on $S(U)$ and $S(V)$.

Occurrence can be partially in the equation and in the variable.
Compression operations

Given a word w:

$\left(\Sigma_{\ell}, \Sigma_{r}\right)$ pair compression replace each $ab \in \Sigma_{\ell}\Sigma_{r}$ in w with fresh c_{ab} ($\Sigma_{\ell}, \Sigma_{r}$ are disjoint)

Σ block compression replace each maximal block $a_{\ell} \in \Sigma^*$ in w by a fresh a_{ℓ}. (a_{ℓ} is a maximal block when it is in w and cannot be extended by a).

$\{b, c\}$ block compression
Compression operations

Given a word w:

- (Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} (Σ_ℓ, Σ_r are disjoint)

- Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ. (a^ℓ is a maximal block when it is in w and cannot be extended by a).

$\{b, c\}$ block compression

$aaaabbccccbbccccbbb$
Compression operations

Given a word w:

(Σ_ℓ, Σ_r) pair compression replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab}
$(\Sigma_\ell, \Sigma_r$ are disjoint)

Σ block compression replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ.
(a^ℓ is a maximal block when it is in w and cannot be extended by a).

$\{b, c\}$ block compression

\[
\text{aaaabbccbbcccbbb}
\]
\[
\text{aaab}_2b_2c_3b_2c_3b_3
\]
Compression operations

Given a word \(w \):

\((\Sigma_\ell, \Sigma_r)\) **pair compression** replace each \(ab \in \Sigma_\ell \Sigma_r \) in \(w \) with fresh \(c_{ab} \)

\((\Sigma_\ell, \Sigma_r \) are disjoint)

\(\Sigma\) **block compression** replace each maximal block \(a^\ell \in \Sigma^* \) in \(w \) by a fresh \(a^\ell \). \((a^\ell \) is a maximal block when it is in \(w \) and cannot be extended by \(a \)).

\{b, c\} **block compression** \quad \{a, c\}, \{b\} **pair compression**

\textcolor{red}{aaabbbccccbbbbb}
\textcolor{red}{aaab}_2 \textcolor{blue}{c_3 \ b_2 \ c_3} \textcolor{blue}{b_3}
Compression operations

Given a word w:

- **(Σ_ℓ, Σ_r) pair compression** replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} (Σ_ℓ, Σ_r are disjoint)

- **Σ block compression** replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ. (a^ℓ is a maximal block when it is in w and cannot be extended by a).

- **$\{b, c\}$ block compression**

- **$\{a, c\}, \{b\}$ pair compression**

```latex
\begin{align*}
\text{aaabbbccccbbcccbbbb} & \\
\text{aaab}_2 \text{ c}_3 \text{ b}_2 \text{ c}_3 \text{ b}_3 & \quad \text{aaabbbccccbbcccbbbb}
\end{align*}
```
Compression operations

Given a word w:

- **(Σ_ℓ, Σ_r) pair compression** replace each $ab \in \Sigma_\ell \Sigma_r$ in w with fresh c_{ab} (Σ_ℓ, Σ_r are disjoint).

- **Σ block compression** replace each maximal block $a^\ell \in \Sigma^*$ in w by a fresh a_ℓ. (a^ℓ is a maximal block when it is in w and cannot be extended by a).

\[
\begin{align*}
\{b, c\} & \text{ block compression} & \{a, c\}, \{b\} & \text{ pair compression} \\
\text{aaabbbccbbccccbbb} & & \text{aaabbbcccbbccbb} \\
\text{aaab}_2c_3b_2c_3b_3 & & \text{aaad bcc e bcc e bb}
\end{align*}
\]
Compression operations

Given a word \(w \):

\((\Sigma_\ell, \Sigma_r)\) pair compression replace each \(ab \in \Sigma_\ell \Sigma_r \) in \(w \) with fresh \(c_{ab} \)

\((\Sigma_\ell, \Sigma_r \) are disjoint)

\(\Sigma\) block compression replace each maximal block \(a^\ell \in \Sigma^* \) in \(w \) by a fresh \(a_\ell \).

\(a^\ell \) is a maximal block when it is in \(w \) and cannot be extended by \(a \).

\{b, c\} block compression \hspace{1cm} \{a, c\}, \{b\} pair compression

\begin{align*}
\text{aaabbbcccbbeccccbb} & \quad \text{aaabbbcccbbeccccbb} \\
\text{aaab_{2}c_3b_2c_3b_3} & \quad \text{aaabbbcccbbeccccbb}
\end{align*}

\begin{itemize}
\item We want to perform it on \(S(U) \) and \(S(V) \).
\item Occurrence can be partially in the equation and in the variable.
\end{itemize}
Checking equality of two explicit words

Require: two words u, v to be tested for equality

1: while $|u| > 1$ or $|v| > 1$ do
2: $\Sigma \leftarrow$ letters in u, v
3: perform Σ-block compression
4: while some pair in Σ^2 was not considered do
5: guess partition of Σ to (Σ_ℓ, Σ_r)
6: perform (Σ_ℓ, Σ_r) pair compression
7: test equality
Checking equality of two explicit words

Require: two words u, v to be tested for equality

1: while $|u| > 1$ or $|v| > 1$ do
2: $\Sigma \leftarrow$ letters in u, v
3: perform Σ-block compression
4: while some pair in Σ^2 was not considered do
5: guess partition of Σ to (Σ_ℓ, Σ_r)
6: perform (Σ_ℓ, Σ_r) pair compression
7: test equality

Phase: one iteration of the main loop.
Checking equality of two explicit words

Require: two words \(u, v \) to be tested for equality

1: \(\textbf{while} \ |u| > 1 \text{ or } |v| > 1 \text{ do} \)
2: \(\Sigma \leftarrow \text{letters in } u, v \)
3: \(\text{perform } \Sigma\text{-block compression} \)
4: \(\textbf{while} \text{ some pair in } \Sigma^2 \text{ was not considered do} \)
5: \(\text{guess partition of } \Sigma \text{ to } (\Sigma_\ell, \Sigma_r) \)
6: \(\text{perform } (\Sigma_\ell, \Sigma_r) \text{ pair compression} \)
7: \(\text{test equality} \)

Phase: one iteration of the main loop.

Shortening

Consider consecutive \(ab \) in \(u, v \) at the beginning of the phase

\(a = b \) compressed as a block

\(a \neq b \) considered and compressed, or
one of them was compressed earlier
In a solution word $S(U)$ or $S(V)$:

- pair is from the equation: OK, we replace it
Pair Compression on word equation

In a solution word $S(U)$ or $S(V)$:

- pair is from the equation: OK, we replace it
- it is from the substitution for a variable: OK, solution changes
Pair Compression on word equation

In a solution word $S(U)$ or $S(V)$:

- pair is from the equation: OK, we replace it
- it is from the substitution for a variable: OK, solution changes
- partially here and there: just pop the problematic letter out
Pair Compression on word equation

In a solution word $S(U)$ or $S(V)$:

- pair is from the equation: OK, we replace it
- it is from the substitution for a variable: OK, solution changes
- partially here and there: just pop the problematic letter out

PairCompression(Σℓ, Σr)

1: for $X \in X$ do
2: let b: first letter of $S(X)$ ▶ Guess
3: if $b \in Σ_r$ then
4: replace each occurrence of X by bX ▶ Pop
5: if $S(X) = \epsilon$ then ▶ Guess
6: remove X from the equation
7: let a: last . . . ▶ symmetrically for the last letter and $Σ_ℓ$
8: perform pair compression on sides of the equation
BlockCompression

1: for $X \in \mathcal{X}$ do
2: let $S(X) = a^\ell w b^r$
3: replace X with $a^\ell X b^r$
4: if $S(X) = \epsilon$ then ▶ Guess
5: remove X from the equation
6: perform block compression on sides of the equation
The algorithm

Main algorithm

1. **while** sides of the equation are nontrivial **do**
2. \(\Sigma \leftarrow \text{letters in the equation} \)
3. perform \(\Sigma \)-block compression
4. **while** some pair in \(\Sigma^2 \) was not considered **do**
5. **guess** partition of \(\Sigma \) to \((\Sigma_\ell, \Sigma_r)\)

\[\triangleright \text{Important} \]
6. perform \((\Sigma_\ell, \Sigma_r)\) pair compression
Main algorithm

1. **while** sides of the equation are nontrivial **do**
2. \(\Sigma \leftarrow \) letters in the equation
3. perform \(\Sigma \)-block compression
4. **while** some pair in \(\Sigma^2 \) was not considered **do**
5. guess partition of \(\Sigma \) to \((\Sigma_\ell, \Sigma_r) \) ▶ Important
6. perform \((\Sigma_\ell, \Sigma_r) \) pair compression

A **phase** is one iteration of the main loop
Main algorithm

1: while sides of the equation are nontrivial do
2: \[\Sigma \leftarrow \text{letters in the equation} \]
3: perform \(\Sigma \)-block compression
4: while some pair in \(\Sigma^2 \) was not considered do
5: guess partition of \(\Sigma \) to \((\Sigma_\ell, \Sigma_r)\)
6: perform \((\Sigma_\ell, \Sigma_r)\) pair compression

A **phase** is one iteration of the main loop

Encoding

We use Huffman coding for letters. (Need to recalculate it.)

We use different encoding in the analysis.
We modify the equation, but think that we operate on \(S(U) = S(V) \). We fix a solution for a phase.
We modify the equation, but think that we operate on \(S(U) = S(V) \). We fix a solution for a phase.

In NLinSPACE we can analyse only “good choices”: if we exceed the space then we reject.
Definition (Dependency interval)

An interval of positions in the input equation is called a dependency interval (depint).
We associate a depint to each symbol in the equation; $D = \text{dep}(p)$.

p

$D = \text{dep}(p)$
Definition (Dependency interval)

An interval of positions in the input equation is called a dependency interval (depint). We associate a depint to each symbol in the equation; \(D = \text{dep}(p) \).

Assigning depints

- Technical, operational manner.
- We expand the depints by taking unions with neighbouring ones.
- Popped letters have depints of their variables.
- Depints of letters introduced due to compression do not change.
Depints and encoding

Encoding

- letter at position $p \rightarrow UV[\text{dep}(p)]$
- letters with this interval assigned are numbered $1, 2, \ldots, k$
- we assign to them codes $UV[D]#1, UV[D]#2, \ldots, UV[D]#k$
Encoding

- letter at position $p \rightarrow UV[\text{dep}(p)]$
- letters with this interval assigned are numbered $1, 2, \ldots, k$
- we assign to them codes $UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k$
Depints and encoding

Encoding

- letter at position \(p \) → \(UV[\text{dep}(p)] \)
- letters with this interval assigned are numbered 1, 2, \ldots, \(k \)
- we assign to them codes \(UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k \)
Depints and encoding

Encoding

- letter at position $p \rightarrow UV[\text{dep}(p)]$
- letters with this interval assigned are numbered $1, 2, \ldots, k$
- we assign to them codes $UV[D]\#1, UV[D]\#2, \ldots, UV[D]\#k$
- formally not encoding: assigns different codes to the same letter
- never assigns the same code to different letters
- worse than Huffman coding; enough to estimate its bit-size
Depints: positions to indices
Depints size

Depints: positions to indices
Depints: positions to indices
Depints: positions to indices
Index to positions \text{Pos}(i)
Depints size

Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, popping letters
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, **popping letters**
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, popping letters
$\text{Pos}(i)$ shrinks: compressions
Depints: positions to indices
Index to positions Pos(i)
Pos(i) are intervals
Pos(i) grows: extending, popping letters
Pos(i) shrinks: compressions
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, popping letters
$\text{Pos}(i)$ shrinks: compressions
Fresh letters block:
Letter to the left of $\text{Pos}(i)$ is new — no extensions
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, popping letters
$\text{Pos}(i)$ shrinks: compressions
Fresh letters block:
Letter to the left of $\text{Pos}(i)$ is new — no extensions
Depints: positions to indices
Index to positions $\text{Pos}(i)$
$\text{Pos}(i)$ are intervals
$\text{Pos}(i)$ grows: extending, popping letters
$\text{Pos}(i)$ shrinks: compressions
Fresh letters block:
Letter to the left of $\text{Pos}(i)$ is new — no extensions
Left letter in $S(X)$ is new — no popping
How to choose partitions

- Our only choice that affects size is the partition.
- Choose the partitions to minimise bit size.
- If \(\text{Pos}(i) = \mathcal{O}(1) \) then everything works.
How to choose partitions

- Our only choice that affects size is the partition.
- Choose the partitions to minimise bit size.
- If $\text{Pos}(i) = \mathcal{O}(1)$ then everything works.

Random partition to expectation

- Random compresses a pair with probability $1/4$.
- Each blocking is with probability $1/4$.
- Turn this into expectation: calculate what to minimise: length, frequency, new letters, number of occurrences, ...

\[
\sum_{i \geq 0} \frac{1}{2^i} = 2
\]

\[
\sum_{i \geq 0} \frac{i^2 \log i}{2^i} = \mathcal{O}(1)
\]
Other technicalities

Some other technicalities

- need to change Huffman coding
- how to make block compression (no explicit numbers — known)
- what happens with the solution
- ending markers with special treatment
- ...

Works for Human coding of the input.
Other technicalities

Some other technicalities

- need to change Huffman coding
- how to make block compression (no explicit numbers — known)
- what happens with the solution
- ending markers with special treatment
- ...

Works for Huffman coding of the input.
Open questions

- Are word equations in NP?
- Can this be generalised to other equations? (constraints, involution, commutation)