l l I I I max planck institut
informatik

One-variable word equations in linear time
Artur Jez
MPI Saarbriicken

08.07.2013

Word Equations

Definition
Given equation A = B, where A, B € (X U X)*.
Is there an assignment S : X — ¥ * satisfying the equation?

= in PSPACE
= NP-hard

08.07.2013

HITULE:
in nati

2/18

Word Equations

Definition
Given equation A = B, where A, B € (X U X)*.
Is there an assignment S : X — ¥ * satisfying the equation?

= in PSPACE
= NP-hard

One variable

Return all solutions.

= naively: O(n®)

= O(nlogn) [Obono, Goralcik and Maksimenko '94]
» O(n + #x log n) [Dabrowski and Plandowski ‘99]

l l I p I I mas pld..i‘lél\i..\mm 08.07.2013 2/18

Results

New algorithm for one variable
= based on recompression [applicable to general case]

= running time O(n + #x log n)

' l I p I I max planck institut 08.07.2013 3/18
informatik .07.

Results

New algorithm for one variable
= based on recompression [applicable to general case]
® running time O(n + #x log n)
= O(n)
— heuristics
— data structures (suffix-arrays, longest common prefix queries)

— word combinatorics
better analysis

' l I p I I max planck institut 08.07.2013 3/18
informatik .07.

Univariate equations

Form of the equation A = B
AoXA; ... Ax_1 XA, = XBy ... By_1XBy,
where A;, B; € ¥*, Ap 75 €.

08.07.2013 4/18

T e

Univariate equations

Form of the equation A = B
AoXA; ... Ax_1 XA, = XBy ... By_1XBy,
where A;, B; € ¥*, Ap 75 €.

Want only S(X) # e |

Write S(A) and S(B). |

08.07.2013 4/18

T e

Univariate equations

Form of the equation A = B

AoXA; ... A 1 XA, = XB, ... By_1XBy,
where A,', B € ¥, AO 7& €.

Want only S(X) # ¢
Write S(A) and S(B).

Properties

= first (last) letter of S(X) is known

= S(X) = ALA’, where A’ is a prefix of Ag (trivial)
if Ap € a* then S(X) € a*

= testing solutions in a* is simple (linear time)

lll[_pllz'.';;:,1

planck institut 08.07.2013 4/18

Equality and Compression of Strings

aaababcababbabcecba

aaababcababbabcha

ini p || [08.07.2013 5/18

Equality and Compression of Strings

aaababcababbabcba

aaababcababbabcechba

ini p || [08.07.2013 5/18

Equality and Compression of Strings

a3 babcababbabcba
a3z babcababbabcbha

ini p || [08.07.2013 5/18

Equality and Compression of Strings

asz b C a bo cba

asz b C a bo cba

ini p || [08.07.2013 5/18

Equality and Compression of Strings

az b C a bo cbha

az b C a bo cba

ini p || [08.07.2013 5/18

Equality and Compression of Strings

az b C a bo c €

az b C a bo c e

08.07.2013 5/18

lllpll

Equality and Compression of Strings

az b d ¢ d a by d c e
az b d ¢ d a by d c e

Iterate!)

ini p || [08.07.2013 5/18

Compression

1: P« all pairs from S(A), L < all letters from S(A)

2: for each a € L do

3: replace each maximal block a‘ by a; > A fresh letter
4: for each ab € P do

5: replace each ab by ¢ > A fresh letter

08.07.2013 6/18

Inl T B
i t

Compression

1: P« all pairs from S(A), L < all letters from S(A)

2: for each a € L do

3: replace each maximal block a‘ by a; > A fresh letter
4: for each ab € P do

5: replace each ab by ¢ > A fresh letter

Lemma
Each subword shortens by a constant factor (A;, Bj, S(X), S(A),

Proof.

Two consecutive letters: we tried to compress them;
fail: one is already compressed.]

| .

planck insit 08.07.2013 6/18

s

Compression of pairs

Type of pair

Pair appearances in S(A):

= explicit letters,

" (from S(X)),

= crossing: one letter explicit, one from S(X)

ab is crossing if it has a crossing appearance, non-crossing otherwise.

08.07.2013 7/18

Compression of pairs

Type of pair

Pair appearances in S(A):

= explicit letters,

" (from S(X)),

= crossing: one letter explicit, one from S(X)
ab is crossing if it has a crossing appearance, non-crossing otherwise.

Consider aabXacXdeX = XaabacXdeX under S(X) = aab
" aabaabacaabdeaab [aabXacXdeX]
" aaba-baca:bdeash [aabacde]
" aabaabacaabdeaab [aabXacXdeX]

Crossing pairs: ba, ca, bd, ea.

planck insit 08.07.2013 7/18

(4] p Bh:

Non-crossing pair compression

Replace each explicit ab by a fresh letter (in S(X): implicitly).

» aabXacXdeX = XaabacXdeX with S(X) = aab
= replace ab by f
= af XacXdeX = Xaf acXdeX with S(X) = af

08.07.2013 8/18

T e

Non-crossing pair compression

Replace each explicit ab by a fresh letter (in S(X): implicitly).

» aabXacXdeX = XaabacXdeX with S(X) = aab
= replace ab by f
= af XacXdeX = Xaf acXdeX with S(X) = af

Crossing pair

When ab is ‘crossing’ because of aX then replace X with bX

(similar for Xb and XX).

After this the pair stops to be crossing.

HIULE
infor

planck institut
ik

08.07.2013

8/18

Example

= abababXbX = XbababXba

= S(X) = (ab)’ or S(X) = (ab)'a

= the former is not possible (S(X) ends with a)

= ab is crossing: replace each X with Xa [test S(X) = a |
» abababXabXa = XabababXaba with S(X) = (ab)’

= ab is non-crossing: replace each ab with ¢

" cccXcX = XceeXc with S(X) = ¢ (trivial case!)

08.07.2013 9/18

Blocks

The same for blocks:
= replace maximal blocks

= explicit, implicit, crossing appearances

crossing blocks, noncrossing blocks

= cutting a-prefixes and a-suffixes

= then a is without crossing blocks

' l I p I I max planck institut 08.07.2013 10/18
informatik .07.

Algorithm

while Ay ¢ a* do
L « all letters from S(.A)
for ac L do
uncross and compress a blocks

for each ab € P do
compress ab
for each ab € P’ do

1:
2
3
4
5: P <+ non-crossing pairs from S(A), P’ <+ crossing
6
7
8
9 uncross and compress ab

08.07.2013 11/18

Algorithm

while Ay ¢ a* do
L « all letters from S(.A)
for ac L do
uncross and compress a blocks

for each ab € P do
compress ab

for each ab € P’ do

1:
2
3
4
5: P <+ non-crossing pairs from S(A), P’ <+ crossing
6
7
8
9 uncross and compress ab

Whenever we uncross, we test a solution.

l l I p I I max planck institut 08.07.2013 11/18
informatik .07.

Shortening

Definition

An A; (B)) is short if it has length at most 100 and is long otherwise.

08.07.2013 12/18

Shortening

Definition
An A; (B)) is short if it has length at most 100 and is long otherwise.

Lemma

If A; is long then its length decreases by 1/4 in a phase.
If it is short than it stays short.

Proof.

= O(1) letters are introduced due to uncrossing.

= A; is compressed by a constant

= lengiq = %/enk +c []

planck insit 08.07.2013 12/18

s

Shortening

Definition
An A; (B)) is short if it has length at most 100 and is long otherwise.

Lemma

If A; is long then its length decreases by 1/4 in a phase.
If it is short than it stays short.

Proof.

= O(1) letters are introduced due to uncrossing.

= A; is compressed by a constant

= lengiq = %/enk +c []

Ao always decreases by 1/4 in a phase.

pn:

plancl instit 08.07.2013 12/18

Simple charging

= One phase takes linear time
— compression: grouping by RadixSort
— verification: naive, O(1) candidates

08.07.2013 13/18

Simple charging

= One phase takes linear time
— compression: grouping by RadixSort
— verification: naive, O(1) candidates
= Charge towards the words.
long looses constant fraction of length, charge it.
O(n) in total

08.07.2013 13/18

Simple charging

= One phase takes linear time
— compression: grouping by RadixSort
— verification: naive, O(1) candidates
= Charge towards the words.

long looses constant fraction of length, charge it.
O(n) in total

short We charge only O(1) to it.
O(log |Ao|) phases.
O(#x log |Ag|) in total.

08.07.2013 13/18

Simple charging

= One phase takes linear time
— compression: grouping by RadixSort
— verification: naive, O(1) candidates
= Charge towards the words.

long looses constant fraction of length, charge it.
O(n) in total

short We charge only O(1) to it.
O(log |Ao|) phases.
O(#x log |Ag|) in total.

The only problem: short words (compression and testing).

08.07.2013 13/18

IITOI e

Towards a better charging

Separately

= storage (compression)
= testing

08.07.2013 14/18

Towards a better charging

Separately

= storage (compression)

= testing

Lemma (Easy solutions)

If solution S is of the form vk, where |v| € O(1)
then the algorithm reports it in O(1) phases.

planck insiut 08.07.2013 14/18

s

Towards a better charging

Separately

= storage (compression)

= testing

Lemma (Easy solutions)

If solution S is of the form vk, where |v| € O(1)
then the algorithm reports it in O(1) phases.

Proof.
= imagine each v is compressed independently

= v reduced to a single letter

= block replaced)

plancl instita 08.07.2013 14/18

s

Storage

= store each short word once (pointers)
if two short words are (non-)equal they stay (non-)equal

= substrings of long words: size proportional to long words

' l I p I I max planck institut 08.07.2013 15/18
informatik .07.

Storage

= store each short word once (pointers)
if two short words are (non-)equal they stay (non-)equal

= substrings of long words: size proportional to long words
= When not? Then S(X) is easy: reported in O(1) phases

08.07.2013 15/18

Testing

Cost of individual test.
[4] X M4] X [Ais1 |

’ Bj71| X | B; | X |Bj+1 ‘

Comparison for letter in A;

= If any of A;, B; or four neighbours are long: fine.

= only the case in which all are short

' l I p I I max planck institut 08.07.2013 16/18
informatik .07.

Testing

Cost of individual test.
[4] X M4 | X [Ais1 |

’ Bj71| X | B; | X |Bj+1 ‘

| A\

Comparison for letter in A;
= If any of A;, B; or four neighbours are long: fine.

= only the case in which all are short

= Four different type of tests
= in three of them amortised cost is O(1) per word (in total)

= one non-trivial

08.07.2013 16/18

lllpll*

Nontrivial case

| X | 4 X Arer |
I X ; B; X | Bit |
| | | | | | |
p T—=p a p—a b z—_pta-b
i p | | I e 08.07.2013 17/18

Nontrivial case

‘ X | A | X |Ai+1 ‘
‘ X B X | Bia |
| p | T—p | a ‘P—C‘L b a;—p+a—‘b

= S(X) is easy
» S(X) was easy when last of A;, Ajy1, Bj, Bj+1 became short

08.07.2013 17/18

Nontrivial case

‘ X | A | X |Ai+1 ‘
‘ X B X | Bia |
| p | T—p | a ‘P—C‘L b a;—p+a—‘b

= S(X) is easy
» S(X) was easy when last of A;, Ajy1, Bj, Bj+1 became short

" so it was tested O(1) phases afterwards

= O(1) cost per word in total

08.07.2013 17/18

Question and comments

Word equations

two variables All known algorithm are very complicated.
Can this approach work faster?

general In general case this is PSPACE. In NP?

Recompression technique
= general word equations
= compressed pattern matching

= approximation of the smallest grammar

fully compressed membership problem
= ?

08.07.2013 18/18

lllpll*

