
One-variable word equations in linear time
Artur Jeż

MPI Saarbrücken

08.07.2013

Word Equations

Definition
Given equation A = B, where A,B ∈ (Σ ∪ X)∗.
Is there an assignment S : X 7→ Σ∗ satisfying the equation?

in PSPACE
NP-hard

One variable
Return all solutions.
naively: O(n3)

O(n log n) [Obono, Goralcik and Maksimenko ’94]
O(n + #X log n) [Dąbrowski and Plandowski ‘99]

08.07.2013 2/18

Word Equations

Definition
Given equation A = B, where A,B ∈ (Σ ∪ X)∗.
Is there an assignment S : X 7→ Σ∗ satisfying the equation?

in PSPACE
NP-hard

One variable
Return all solutions.
naively: O(n3)

O(n log n) [Obono, Goralcik and Maksimenko ’94]
O(n + #X log n) [Dąbrowski and Plandowski ‘99]

08.07.2013 2/18

Results

New algorithm for one variable
based on recompression [applicable to general case]
running time O(n + #X log n)

O(n)

– heuristics
– data structures (suffix-arrays, longest common prefix queries)
– word combinatorics
– better analysis

08.07.2013 3/18

Results

New algorithm for one variable
based on recompression [applicable to general case]
running time O(n + #X log n)

O(n)

– heuristics
– data structures (suffix-arrays, longest common prefix queries)
– word combinatorics
– better analysis

08.07.2013 3/18

Univariate equations
Form of the equation A = B

A0XA1 . . .Ak−1XAk = XB1 . . .B`−1XB`,
where Ai ,Bi ∈ Σ∗, A0 6= ε.

Want only S(X) 6= ε

Write S(A) and S(B).

Properties
first (last) letter of S(X) is known
S(X) = Ai

0A′, where A′ is a prefix of A0 (trivial)
if A0 ∈ a+ then S(X) ∈ a+

testing solutions in a∗ is simple (linear time)

08.07.2013 4/18

Univariate equations
Form of the equation A = B

A0XA1 . . .Ak−1XAk = XB1 . . .B`−1XB`,
where Ai ,Bi ∈ Σ∗, A0 6= ε.

Want only S(X) 6= ε

Write S(A) and S(B).

Properties
first (last) letter of S(X) is known
S(X) = Ai

0A′, where A′ is a prefix of A0 (trivial)
if A0 ∈ a+ then S(X) ∈ a+

testing solutions in a∗ is simple (linear time)

08.07.2013 4/18

Univariate equations
Form of the equation A = B

A0XA1 . . .Ak−1XAk = XB1 . . .B`−1XB`,
where Ai ,Bi ∈ Σ∗, A0 6= ε.

Want only S(X) 6= ε

Write S(A) and S(B).

Properties
first (last) letter of S(X) is known
S(X) = Ai

0A′, where A′ is a prefix of A0 (trivial)
if A0 ∈ a+ then S(X) ∈ a+

testing solutions in a∗ is simple (linear time)

08.07.2013 4/18

Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a3 a bb a bc a bb a b c ab

a3 a bb a bc a bb a b c ab

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a3 a bb a bc a b2 a b c ab

a3 a bb a bc a b2 a b c ab

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a3

d

b c a b2 c ab

a3 b c a b2 c ab

dd

d

d

d

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a3

d

b c a b2 c e

a3 b c a b2 c e

dd

d

d

d

Iterate!

08.07.2013 5/18

Equality and Compression of Strings

a3

d

b c a b2 c e

a3 b c a b2 c e

dd

d

d

d

Iterate!

08.07.2013 5/18

Compression

1: P ← all pairs from S(A), L← all letters from S(A)
2: for each a ∈ L do
3: replace each maximal block a` by a` . A fresh letter
4: for each ab ∈ P do
5: replace each ab by c . A fresh letter

Lemma
Each subword shortens by a constant factor (Ai , Bj , S(X), S(A),
. . .).

Proof.
Two consecutive letters: we tried to compress them;
fail: one is already compressed.

08.07.2013 6/18

Compression

1: P ← all pairs from S(A), L← all letters from S(A)
2: for each a ∈ L do
3: replace each maximal block a` by a` . A fresh letter
4: for each ab ∈ P do
5: replace each ab by c . A fresh letter

Lemma
Each subword shortens by a constant factor (Ai , Bj , S(X), S(A),
. . .).

Proof.
Two consecutive letters: we tried to compress them;
fail: one is already compressed.

08.07.2013 6/18

Compression of pairs
Type of pair
Pair appearances in S(A):
explicit letters,
implicit (from S(X)),
crossing: one letter explicit, one from S(X)

ab is crossing if it has a crossing appearance, non-crossing otherwise.

Consider aabXacXdeX = XaabacXdeX under S(X) = aab
aabaabacaabdeaab [aabXacXdeX]
aabaabacaabdeaab [aabXacXdeX]
aabaabacaabdeaab [aabXacXdeX]

Crossing pairs: ba, ca, bd , ea.

08.07.2013 7/18

Compression of pairs
Type of pair
Pair appearances in S(A):
explicit letters,
implicit (from S(X)),
crossing: one letter explicit, one from S(X)

ab is crossing if it has a crossing appearance, non-crossing otherwise.

Consider aabXacXdeX = XaabacXdeX under S(X) = aab
aabaabacaabdeaab [aabXacXdeX]
aabaabacaabdeaab [aabXacXdeX]
aabaabacaabdeaab [aabXacXdeX]

Crossing pairs: ba, ca, bd , ea.

08.07.2013 7/18

Non-crossing pair compression
Replace each explicit ab by a fresh letter (in S(X): implicitly).

aabXacXdeX = XaabacXdeX with S(X) = aab
replace ab by f
af XacXdeX = Xaf acXdeX with S(X) = af

Crossing pair
When ab is ‘crossing’ because of aX then replace X with bX
(similar for Xb and XX).

Lemma
After this the pair stops to be crossing.

08.07.2013 8/18

Non-crossing pair compression
Replace each explicit ab by a fresh letter (in S(X): implicitly).

aabXacXdeX = XaabacXdeX with S(X) = aab
replace ab by f
af XacXdeX = Xaf acXdeX with S(X) = af

Crossing pair
When ab is ‘crossing’ because of aX then replace X with bX
(similar for Xb and XX).

Lemma
After this the pair stops to be crossing.

08.07.2013 8/18

Example

abababXbX = XbababXba
S(X) = (ab)i or S(X) = (ab)ia
the former is not possible (S(X) ends with a)
ab is crossing: replace each X with Xa [test S(X) = a]
abababXabXa = XabababXaba with S(X) = (ab)i

ab is non-crossing: replace each ab with c
cccXcX = XcccXc with S(X) = c i (trivial case!)

08.07.2013 9/18

Blocks

The same for blocks:
replace maximal blocks
explicit, implicit, crossing appearances
crossing blocks, noncrossing blocks
cutting a-prefixes and a-suffixes
then a is without crossing blocks

08.07.2013 10/18

Algorithm

1: while A0 /∈ a∗ do
2: L← all letters from S(A)
3: for a ∈ L do
4: uncross and compress a blocks
5: P ← non-crossing pairs from S(A), P ′ ← crossing
6: for each ab ∈ P do
7: compress ab
8: for each ab ∈ P ′ do
9: uncross and compress ab

Whenever we uncross, we test a solution.

08.07.2013 11/18

Algorithm

1: while A0 /∈ a∗ do
2: L← all letters from S(A)
3: for a ∈ L do
4: uncross and compress a blocks
5: P ← non-crossing pairs from S(A), P ′ ← crossing
6: for each ab ∈ P do
7: compress ab
8: for each ab ∈ P ′ do
9: uncross and compress ab

Whenever we uncross, we test a solution.

08.07.2013 11/18

Shortening
Definition
An Ai (Bj) is short if it has length at most 100 and is long otherwise.

Lemma
If Ai is long then its length decreases by 1/4 in a phase.
If it is short than it stays short.

Proof.
O(1) letters are introduced due to uncrossing.
Ai is compressed by a constant
lenk+1 = 3

4 lenk + c

A0 always decreases by 1/4 in a phase.

08.07.2013 12/18

Shortening
Definition
An Ai (Bj) is short if it has length at most 100 and is long otherwise.

Lemma
If Ai is long then its length decreases by 1/4 in a phase.
If it is short than it stays short.

Proof.
O(1) letters are introduced due to uncrossing.
Ai is compressed by a constant
lenk+1 = 3

4 lenk + c

A0 always decreases by 1/4 in a phase.

08.07.2013 12/18

Shortening
Definition
An Ai (Bj) is short if it has length at most 100 and is long otherwise.

Lemma
If Ai is long then its length decreases by 1/4 in a phase.
If it is short than it stays short.

Proof.
O(1) letters are introduced due to uncrossing.
Ai is compressed by a constant
lenk+1 = 3

4 lenk + c

A0 always decreases by 1/4 in a phase.

08.07.2013 12/18

Simple charging

One phase takes linear time
– compression: grouping by RadixSort
– verification: naive, O(1) candidates

Charge towards the words.
long looses constant fraction of length, charge it.

O(n) in total
short We charge only O(1) to it.

O(log |A0|) phases.
O(#X log |A0|) in total.

The only problem: short words (compression and testing).

08.07.2013 13/18

Simple charging

One phase takes linear time
– compression: grouping by RadixSort
– verification: naive, O(1) candidates

Charge towards the words.
long looses constant fraction of length, charge it.

O(n) in total

short We charge only O(1) to it.
O(log |A0|) phases.
O(#X log |A0|) in total.

The only problem: short words (compression and testing).

08.07.2013 13/18

Simple charging

One phase takes linear time
– compression: grouping by RadixSort
– verification: naive, O(1) candidates

Charge towards the words.
long looses constant fraction of length, charge it.

O(n) in total
short We charge only O(1) to it.

O(log |A0|) phases.
O(#X log |A0|) in total.

The only problem: short words (compression and testing).

08.07.2013 13/18

Simple charging

One phase takes linear time
– compression: grouping by RadixSort
– verification: naive, O(1) candidates

Charge towards the words.
long looses constant fraction of length, charge it.

O(n) in total
short We charge only O(1) to it.

O(log |A0|) phases.
O(#X log |A0|) in total.

The only problem: short words (compression and testing).

08.07.2013 13/18

Towards a better charging
Separately
storage (compression)
testing

Lemma (Easy solutions)
If solution S is of the form vk , where |v | ∈ O(1)
then the algorithm reports it in O(1) phases.

Proof.
imagine each v is compressed independently
v reduced to a single letter
block replaced

08.07.2013 14/18

Towards a better charging
Separately
storage (compression)
testing

Lemma (Easy solutions)
If solution S is of the form vk , where |v | ∈ O(1)
then the algorithm reports it in O(1) phases.

Proof.
imagine each v is compressed independently
v reduced to a single letter
block replaced

08.07.2013 14/18

Towards a better charging
Separately
storage (compression)
testing

Lemma (Easy solutions)
If solution S is of the form vk , where |v | ∈ O(1)
then the algorithm reports it in O(1) phases.

Proof.
imagine each v is compressed independently
v reduced to a single letter
block replaced

08.07.2013 14/18

Storage

store each short word once (pointers)
if two short words are (non-)equal they stay (non-)equal
substrings of long words: size proportional to long words

When not? Then S(X) is easy: reported in O(1) phases

08.07.2013 15/18

Storage

store each short word once (pointers)
if two short words are (non-)equal they stay (non-)equal
substrings of long words: size proportional to long words
When not? Then S(X) is easy: reported in O(1) phases

08.07.2013 15/18

Testing

Cost of individual test.
X X Ai+1Ai

X X Bj+1Bj

Ai−1

Bj−1

Comparison for letter in Ai

If any of Ai , Bj or four neighbours are long: fine.
only the case in which all are short

Four different type of tests
in three of them amortised cost is O(1) per word (in total)
one non-trivial

08.07.2013 16/18

Testing

Cost of individual test.
X X Ai+1Ai

X X Bj+1Bj

Ai−1

Bj−1

Comparison for letter in Ai

If any of Ai , Bj or four neighbours are long: fine.
only the case in which all are short

Four different type of tests
in three of them amortised cost is O(1) per word (in total)
one non-trivial

08.07.2013 16/18

Nontrivial case

X X Ai+1Ai

X X Bj+1

x− pp a p− a b x− p+ a− b

Bj

S(X) is easy
S(X) was easy when last of Ai , Ai+1, Bj , Bj+1 became short
so it was tested O(1) phases afterwards
O(1) cost per word in total

08.07.2013 17/18

Nontrivial case

X X Ai+1Ai

X X Bj+1

x− pp a p− a b x− p+ a− b

Bj

S(X) is easy
S(X) was easy when last of Ai , Ai+1, Bj , Bj+1 became short

so it was tested O(1) phases afterwards
O(1) cost per word in total

08.07.2013 17/18

Nontrivial case

X X Ai+1Ai

X X Bj+1

x− pp a p− a b x− p+ a− b

Bj

S(X) is easy
S(X) was easy when last of Ai , Ai+1, Bj , Bj+1 became short
so it was tested O(1) phases afterwards
O(1) cost per word in total

08.07.2013 17/18

Question and comments

Word equations
two variables All known algorithm are very complicated.

Can this approach work faster?
general In general case this is PSPACE. In NP?

Recompression technique
general word equations
compressed pattern matching
approximation of the smallest grammar
fully compressed membership problem
?

08.07.2013 18/18

