Fully compressed pattern matching by recompression

Artur Jeż
University of Wrocław

9 VII 2012
Definition (SLP: Straight Line Programme)

CFG generating exactly one word

\[X_i \rightarrow X_jX_k \text{ or } X_i \rightarrow a \]
Definition (SLP: Straight Line Programme)

CFG generating exactly one word

\[X_i \rightarrow X_jX_k \text{ or } X_i \rightarrow a \]

Example

\[X_0 = a, \ X_1 = b, \ X_{n+1} = X_{n-1}X_{n-2} \]

\[a, \ b, \ ba, \ bab, \ babba, \ babbababb, \ldots \]
SLP

Definition (SLP: Straight Line Programme)

CFG generating exactly one word

\[X_i \rightarrow X_j X_k \text{ or } X_i \rightarrow a \]

Example

\[X_0 = a, \ X_1 = b, \ X_{n+1} = X_{n-1}X_{n-2} \]

\[a, \ b, \ ba, \ bab, \ babba, \ babbababb, \ldots \]

Relations to LZ and LZW

LZW rules \(X_i \rightarrow aX_j \), text is \(X_1X_2X_3\ldots \)

LZ LZ to SLP: from \(n \) to \(\mathcal{O}(n \log(N/n)) \)
Definition (SLP: Straight Line Programme)

CFG generating exactly one word

\[X_i \rightarrow X_jX_k \text{ or } X_i \rightarrow a \]

Example

\[X_0 = a, \ X_1 = b, \ X_{n+1} = X_{n-1}X_{n-2} \]

\[a, b, ba, bab, babba, babbababb, \ldots \]

Relations to LZ and LZW

LZW rules \(X_i \rightarrow aX_j \), text is \(X_1X_2X_3\ldots \)

LZ LZ to SLP: from \(n \) to \(\mathcal{O}(n \log(N/n)) \)

- many algorithms for SLPs
- CPM for LZ [Gawrychowski ESA’11]
- in theory (word equations, equations in groups, verification...)

Artur Jeż

FCPM by recompression

9 VII 2012 2 / 18
This talk

Definition (CPM, FCPM)

Compressed pattern matching: text is compressed, pattern not.
Fully Compressed pattern matching: both text and pattern are compressed.
Definition (CPM, FCPM)
Compressed pattern matching: text is compressed, pattern not.
Fully Compressed pattern matching: both text and pattern are compressed.

Results
An $O((n + m) \log M)$ algorithm for FCPM for SLP.
(Previously: $O(nm^2)$, [Lifshits, CPM’07]).
This talk

Definition (CPM, FCPM)
Compressed pattern matching: text is compressed, pattern not.
Fully Compressed pattern matching: both text and pattern are compressed.

Results
An $O((n + m) \log M)$ algorithm for FCPM for SLP.
(Previously: $O(nm^2)$, [Lifshits, CPM’07]).

Different approach
A new technique; recompression.
- decompresses text and pattern
- compresses them again (in the same way)
- in the end: pattern is a single symbol
Technique

Where it comes from
Mehlhorn, Gawry
Technique

Where it comes from
Mehlhorn, Gawry

Applicable to
- Fully Compressed Membership Problem \([\in \text{NP}]\)
- Word equations [alternative PSPACE algorithm]
- Fully Compressed Pattern Matching [SLPs, LZ, \(O((n + m) \log M \log(n + m))\)]
- construction of a grammar for a string [alternative \(\log(N/n)\) approximation algorithm]
- other?
Equality of strings

How to test equality of strings?

\[\begin{align*}
a & a a a b b a b c a b a b b a b c b b b a \\
a & a a a b b a b c a b a b b a b c b b b a \\
\end{align*} \]
Example

Equality of strings

How to test equality of strings?

```
a  a  a  b  a  b  c  a  b  a  b  b  a  b  c  b  b  a
```

```
a  a  a  b  a  b  c  a  b  a  b  b  a  b  c  b  b  a
```
Example

Equality of strings

How to test equality of strings?

\[a_3 \ b \ a \ b \ c \ a \ b \ a \ b \ b \ a \ b \ c \ b \ b \ a \]

\[a_3 \ b \ a \ b \ c \ a \ b \ a \ b \ b \ a \ b \ c \ b \ b \ a \]
Example

Equality of strings

How to test equality of strings?

\[a_3 \ b \ a \ b \ c \ a \ b \ a \ b_2 \ a \ b \ c \ b \ a \ b \]

\[a_3 \ b \ a \ b \ c \ a \ b \ a \ b_2 \ a \ b \ c \ b \ a \ b \]
Example

Equality of strings

How to test equality of strings?

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ b \ a \]

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ b \ a \]
Example

Equality of strings

How to test equality of strings?

\[a_3 \quad b \quad d \quad c \quad d \quad a \quad b_2 \quad d \quad c \quad e \]

\[a_3 \quad b \quad d \quad c \quad d \quad a \quad b_2 \quad d \quad c \quad e \]
Example

Equality of strings

How to test equality of strings?

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e \]

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e \]
Example

Equality of strings

How to test equality of strings?

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e \]

\[a_3 \ b \ d \ c \ d \ a \ b_2 \ d \ c \ e \]

Iterate!
How to generalise?

Idea

For both strings

- replace pairs of letters
- replace (maximal) blocks of the same letter

When every letter is compressed, the length reduces by half in an iteration.
How to generalise?

Idea
For both strings
- replace pairs of letters
- replace (maximal) blocks of the same letter
When every letter is compressed, the length reduces by half in an iteration.

TODO
- formalise
- for SLPs
- for pattern matching
- running time
Formalisation

In one phase

\[
\begin{align*}
L & \leftarrow \text{list of letters,} \\
P & \leftarrow \text{list of pairs of letters}
\end{align*}
\]

for every letter \(a \in L\) do

replace \((\text{maximal}) \ a \ell\) with \(a \ell\)

for every pair of letter \(ab \in P\) do

replace \(ab\) with \(c\)

It will shorten the strings by constant factor.

Loop, while nontrivial. \(\mathcal{O}(\log M)\) iterations.)

Artur Jeż

FCPM by recompression

9 VII 2012 7 / 18
In one phase

- $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters
Formalisation

In one phase

- \(L \leftarrow \) list of letters, \(P \leftarrow \) list of pairs of letters
- \textbf{for} every letter \(a \in L \) \textbf{do}
 - replace (maximal) blocks \(a^\ell \) with \(a_\ell \)

It will shorten the strings by constant factor.
Loop, while nontrivial. (\(O(\log M) \) iterations).

Artur Jeż
FCPM by recompression
Formalisation

In one phase

- \(L \leftarrow \text{list of letters}, \ P \leftarrow \text{list of pairs of letters} \)
- \(\textbf{for} \ \text{every letter } a \in L \ \textbf{do} \)
 - replace (maximal) blocks \(a^\ell \) with \(a_\ell \)
- \(\textbf{for} \ \text{every pair of letter } ab \in P \ \textbf{do} \)
 - replace pairs \(ab \) with \(c \)
In one phase

- $L \leftarrow$ list of letters, $P \leftarrow$ list of pairs of letters
- for every letter $a \in L$ do
 replace (maximal) blocks a^ℓ with a_ℓ
- for every pair of letter $ab \in P$ do
 replace pairs ab with c

It will shorten the strings by constant factor.
Formalisation

In one phase

- \(L \leftarrow \text{list of letters}, \ P \leftarrow \text{list of pairs of letters} \)
- \(\textbf{for} \ \text{every letter} \ a \in L \ \textbf{do} \)
 - replace (maximal) blocks \(a^{\ell} \) with \(a_{\ell} \)
- \(\textbf{for} \ \text{every pair of letter} \ ab \in P \ \textbf{do} \)
 - replace pairs \(ab \) with \(c \)

It will shorten the strings by constant factor.

Loop, while nontrivial.
(\(O(\log M) \) iterations).
SLPs

Grammar form

More general rules: \[X_i \rightarrow uX_jvX_kw, \quad j, k < i. \]
SLPs

Grammar form

More general rules: \(X_i \rightarrow uX_j vX_k w, \ j, k < i. \)

Lemma

There are \(|G| + 4n\) different maximal lengths of blocks in \(G\).

Proof.

- blocks contained in explicit words: assign to explicit letters
- blocks not contained in explicit words: at most 4 per rule
SLPs

Grammar form

More general rules: \[X_i \rightarrow uX_jvX_kw, \quad j, k < i. \]

Lemma

There are \(|G| + 4n\) different maximal lengths of blocks in \(G\).

Proof.

- blocks contained in explicit words: assign to explicit letters
- blocks not contained in explicit words: at most 4 per rule

Lemma

There are \(|G| + 4n\) different pairs of letters in \(G\).
Blocks compression

Compression of a

1: for all maximal blocks a^ℓ of a
2: let $a^\ell \in \Sigma$ be an unused letter
3: replace each explicit maximal a^ℓ in rules’ bodies by a^ℓ
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1 baX_1 baa$
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1 baX_1 baa$ (no problem)
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1 baX_1 baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1 aX_1 a$ (problem)
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1 baX_1 baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1 aX_1 a$ (problem)
- $X_1 \rightarrow abaaba$, $X_2 \rightarrow aX_1 aX_1 a$
Blocks compression

Compression of \(a \)

- \(X_1 \rightarrow baaba, \ X_2 \rightarrow aaX_1 baX_1 baa \) (no problem)
- \(X_1 \rightarrow a, \ X_2 \rightarrow aX_1 aX_1 a \) (problem)
- \(X_1 \rightarrow abaaba, \ X_2 \rightarrow aX_1 aX_1 a \) (problem)
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1 baX_1 baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1 aX_1 a$ (problem)
- $X_1 \rightarrow abaaba$, $X_2 \rightarrow aX_1 aX_1 a$ (problem)

Definition (Crossing block)

a has a crossing block if some of its maximal blocks is contained in X_i but not in explicit words in X_i’s rule.
Blocks compression

Compression of a

- $X_1 \rightarrow baaba$, $X_2 \rightarrow aaX_1baX_1baa$ (no problem)
- $X_1 \rightarrow a$, $X_2 \rightarrow aX_1aX_1a$ (problem)
- $X_1 \rightarrow abaaba$, $X_2 \rightarrow aX_1aX_1a$ (problem)

Definition (Crossing block)

a has a **crossing block** if some of its maximal blocks is contained in X_i but not in explicit words in X_i’s rule.

When a has no crossing block

1: **for** all maximal blocks a^ℓ of *a* **do**
2: let $a^\ell \in \Sigma$ be an unused letter
3: replace each explicit maximal a^ℓ in rules’ bodies by a^ℓ
What about crossing blocks?

Idea

- change the rules
- when X_i defines $a^{\ell_i} w a^{r_i} \rightarrow w$
- replace X_i in rules by $a^{\ell_i} w a^{r_i}$
What about crossing blocks?

Idea

- change the rules
- when X_i defines $a^{\ell_i}w a^{r_i} \mapsto w$
- replace X_i in rules by $a^{\ell_i}w a^{r_i}$

CutPrefSuff(a)

1: for $i \leftarrow 1$ to n do
2: calculate and remove a-prefix a^{ℓ_i} and a-suffix a^{r_i} of X_i
3: replace each X_i in rules bodies by $a^{\ell_i}X_i a^{r_i}$

Lemma

After CutPrefSuff(a) letter a has no crossing block. So a’s blocks can be easily compressed. Parallelly for many letters!
What about crossing blocks?

Idea

- change the rules
- when X_i defines $a^l_i w a^r_i \rightarrow w$
- replace X_i in rules by $a^l_i w a^r_i$

CutPrefSuff(a)

1: for $i \leftarrow 1$ to n do
2: calculate and remove a-prefix a^l_i and a-suffix a^r_i of X_i
3: replace each X_i in rules bodies by $a^l_i X_i a^r_i$

Lemma

After CutPrefSuff(a) letter a has no crossing block.
What about crossing blocks?

Idea

- change the rules
- when X_i defines $a^\ell_i w a^r_i \rightarrow w$
- replace X_i in rules by $a^\ell_i w a^r_i$

CutPrefSuff(a)

1: **for** $i \leftarrow 1$ to n **do**
2: calculate and remove a-prefix a^ℓ_i and a-suffix a^r_i of X_i
3: replace each X_i in rules bodies by $a^\ell_i X_i a^r_i$

Lemma

After CutPrefSuff(a) letter a has no crossing block.

So a’s blocks can be easily compressed.
What about crossing blocks?

Idea
- change the rules
- when X_i defines $a^l_i w a^r_i \rightarrow w$
- replace X_i in rules by $a^l_i w a^r_i$

CutPrefSuff(a)
1: for $i \leftarrow 1$ to n do
2: calculate and remove a-prefix a^l_i and a-suffix a^r_i of X_i
3: replace each X_i in rules bodies by $a^l_i X_i a^r_i$

Lemma
After CutPrefSuff(a) letter a has no crossing block.

So a’s blocks can be easily compressed.

Parallelly for many letters!
What about crossing blocks?

Idea
- change the rules
- when X_i defines $a^i w b^r_i \mapsto w$
- replace X_i in rules by $a^i w b^r_i$

CutPrefSuff
1: for $i \leftarrow 1 \rightarrow n$ do
2: let X_i begin with a and end with b
3: calculate and remove a-prefix a^l and b-suffix b^r of X_i
4: replace each X_i in rules bodies by $a^l X_i b^r$

Lemma
After CutPrefSuff no letter has a crossing block.

So all blocks can be easily compressed.
Pair compression

\[X_1 \rightarrow ababcab, \ X_2 \rightarrow abcbX_1abX_1a \]
Pair compression

$X_1 \rightarrow ababcab$, $X_2 \rightarrow abcbX_1 abX_1 a$

- compression of ab: easy
Pair compression

\[X_1 \rightarrow ababca b, \ X_2 \rightarrow abcbX_1abX_1a \]

- compression of \(ab \): easy
- compression of \(ba \): problem
Pair compression

\[X_1 \rightarrow ababcab, \ X_2 \rightarrow abcbX_1abX_1a \]

- compression of \(ab \): easy
- compression of \(ba \): problem
- pairs may overlap (problem: sequentially, not parallely)
Crossing pairs

When ab has a ‘crossing’ appearance: aX_i or X_ib

- X_i defines $bw \mapsto w$, replace X_i by bX_i
- symmetrically for ending a

Lemma

After $\text{LeftPop}(b)$ and $\text{RightPop}(a)$ the ab is no longer crossing.

Can be done in parallel!
Crossing pairs

When \(ab \) has a ‘crossing’ appearance: \(aX_i \) or \(X_i b \)

- \(X_i \) defines \(bw \mapsto w \), replace \(X_i \) by \(bX_i \)
- symmetrically for ending \(a \)

LeftPop(\(b \))

1: \textbf{for} \(i=1 \) to \(n \) \textbf{do}
2: \hspace{1em} \textbf{if} the first symbol in \(X_i \rightarrow \alpha \) is \(b \) \textbf{then}
3: \hspace{2em} remove this \(b \)
4: \hspace{2em} replace \(X_i \) in productions by \(bX_i \)

Lemma

After LeftPop(\(b \)) and RightPop(\(a \)) the \(ab \) is no longer crossing.
Crossing pairs

When \(ab \) has a ‘crossing’ appearance: \(aX_i \) or \(X_ib \)
- \(X_i \) defines \(bw \mapsto w \), replace \(X_i \) by \(bX_i \)
- symmetrically for ending \(a \)

LeftPop\((b)\)

1: for \(i=1 \) to \(n \) do
2: if the first symbol in \(X_i \rightarrow \alpha \) is \(b \) then
3: remove this \(b \)
4: replace \(X_i \) in productions by \(bX_i \)

Lemma

After LeftPop\((b)\) and RightPop\((a)\) the \(ab \) is no longer crossing.

Can be done in parallel!
Crossing pairs

When $ab \in \Sigma_1 \Sigma_2$ has a crossing appearance: aX_i or X_ib
- X_i defines $bw \mapsto w$, replace X_i by aX_i
- symmetrically for ending a

LeftPop

1: for $i=1$ to n do
2: if the first symbol in $X_i \rightarrow \alpha$ is $b \in \Sigma_2$ then
3: remove this b
4: replace X_i in productions by bX_i

Lemma

After LeftPop and RightPop the pairs $\Sigma_1 \Sigma_2$ are no longer crossing.
Running time

- Blocks compression: $O(|G|)$ time
- non-crossing pairs: $O(|G|)$ time
- crossing pairs: $O(n + m)$ time per partition (Σ_1, Σ_2)
Running time

- Blocks compression: $O(|G|)$ time
- non-crossing pairs: $O(|G|)$ time
- crossing pairs: $O(n + m)$ time per partition (Σ_1, Σ_2)

Lemma

There are $O(n + m)$ crossing pairs.
Running time

- Blocks compression: $\mathcal{O}(|G|)$ time
- non-crossing pairs: $\mathcal{O}(|G|)$ time
- crossing pairs: $\mathcal{O}(n + m)$ time per partition (Σ_1, Σ_2)

Lemma

There are $\mathcal{O}(n + m)$ crossing pairs.

- crossing pairs: $\mathcal{O}((n + m)^2)$ time.
Running time

- Blocks compression: $\mathcal{O}(|G|)$ time
- non-crossing pairs: $\mathcal{O}(|G|)$ time
- crossing pairs: $\mathcal{O}(n + m)$ time per partition (Σ_1, Σ_2)

Lemma

There are $\mathcal{O}(n + m)$ crossing pairs.

- crossing pairs: $\mathcal{O}((n + m)^2)$ time.

Running time

Running time: $\mathcal{O}(|G| + (n + m)^2)$.
Shortening of the string

- consider pair ab in the text
- if $a = b$: it is compressed
- if $a \neq b$: it is compressed unless a or b was compressed already
- consider four consecutive symbols: something in them is compressed
- text compresses by a constant factor in each phase
- $O(|\log M|)$ phases
Grammar size

- In each phase size of grammar increases by $O((n + m)^2)$
 - CutPrefSuff
 - LeftPop, RightPop
- shortening G: the same analysis as for pattern
 - shortens by a constant factor in a phase
- G is $O((n + m)^2)$
- Running time is $O((n + m)^2 \log M)$
- Can be reduced to $O((n + m) \log M)$
Turning to the pattern matching

Problem with the ends

- text: \textit{abababab}, pattern \textit{baba}, compression of \textit{ab}
- text: \textit{abababab}, pattern \textit{aba}, compression of \textit{ab}
- text: \textit{aaaaaaaaa}, pattern \textit{aaa}, compression of \textit{a} blocks
Turning to the pattern matching

Problem with the ends

- text: \(abababab\), pattern \(baba\), compression of \(ab\)
- text: \(abababab\), pattern \(aba\), compression of \(ab\)
- text: \(aaaaaaaaa\), pattern \(aaa\), compression of \(a\) blocks

Fixing the ends

- Compress the starting and ending pair, if possible (so \(ba\) in the first case)
- not possible, when the first and last letter is the same, say \(a\)
- replace leading \(a\) by \(a_L\), ending by \(a_R\)
- spawn \(a\) into \(a_Ra_L\)
Questions?

Other applications?