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Abstract

It is shown that every tree of size n over a fixed set of σ different ranked symbols can be decomposed
(in linear time as well as in logspace) into O

(
n

logσ n

)
= O

(
n log σ
logn

)
many hierarchically defined pieces.

Formally, such a hierarchical decomposition has the form of a straight-line linear context-free tree
grammar of size O

(
n

logσ n

)
, which can be used as a compressed representation of the input tree.

This generalizes an analogous result for strings. Previous grammar-based tree compressors were
not analyzed for the worst-case size of the computed grammar, except for the top dag of Bille et
al. [6], for which only the weaker upper bound of O

(
n

log0.19
σ n

)
(which was very recently improved

to O
(n·log logσ n

logσ n

)
[22]) for unranked and unlabelled trees has been derived. The main result is

used to show that every arithmetical formula of size n, in which only m ≤ n different variables
occur, can be transformed (in linear time as well as in logspace) into an arithmetical circuit of
size O

(
n·logm

logn

)
and depth O(log n). This refines a classical result of Brent from 1974, according to

which an arithmetical formula of size n can be transformed into a logarithmic depth circuit of size
O(n).

1. Introduction

Grammar-based string compression. Grammar-based compression has emerged to an active
field in string compression during the past 20 years. The idea is to represent a given string w by a
small context-free grammar that generates only s; such a grammar is also called a straight-line
program, briefly SLP. For instance, the word (ab)1024 can be represented by the SLP with the
rules A0 → ab and Ai → Ai−1Ai−1 for 1 ≤ i ≤ 10 (A10 is the start symbol). The size of this
grammar is much smaller than the size (length) of the string (ab)1024. In general, an SLP of size n
(the size of an SLP is usually defined as the total length of all right-hand sides of the rules) can
produce a string of length 2Ω(n). Hence, an SLP can be seen indeed as a succinct representation
of the generated string. The goal of grammar-based string compression is to construct from a
given input string w a small SLP that produces w. Several algorithms for this have been proposed
and analyzed. Prominent grammar-based string compressors are for instance LZ78, RePair, and
BiSection, see [12] for more details.

To evaluate the compression performance of a grammar-based compressor C, two different
approaches can be found in the literature:

(a) One can analyze the maximal size of SLPs produced by C on strings of length n over the
alphabet Σ (the size of Σ is considered to be a constant larger than one in the further discussion).
Formally, let

gC(n) = max
w∈Σn

|C(w)|,
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where C(w) is the SLP produced by C on input w, and |C(w)| is the size of this SLP. An
information-theoretic argument shows that for every n there is a binary string of length n, for
which a smallest SLP has size Ω

(
n

logn

)
.1 Explicit examples of strings for which the smallest SLP

has size Ω
(

n
logn

)
were constructed in [3, 5, 39]. On the other hand, for many grammar-based

compressors C one gets gC(n) ∈ O
(

n
logn

)
and hence gC(n) ∈ Θ

(
n

logn

)
. This holds for instance

for the above mentioned LZ78, RePair, and BiSection, and in fact for all compressors that
produce so-called irreducible SLPs [28]. This fact is used in [28] to construct universal string
compressors based on grammar-based compressors.

(b) A second approach is to analyze the size of the SLP produced by C for an input string w
compared to the size of a smallest SLP for w. This leads to the approximation ratio for C,
which is formally defined as

αC(n) = max
w∈Σn

|C(w)|
g(w)

,

where g(w) is the size of a smallest SLP for w. It is known that unless P = NP, there is
no polynomial time grammar-based compressor C such that αC(n) < 8569/8568 for all n
[12]. The best known polynomial time grammar-based compressors [12, 25, 26, 41, 42] have
an approximation ratio of O(log(n/g)), where g is the size of a smallest SLP for the input
string and all of them work in linear time. The algorithms in [12, 26, 41] start with the
LZ77-factorization of the input string w and transform it into an SLP of size O(m · log(n/g)),
where m is the number of factors of the LZ77-factorization of w, which, by a result of Rytter
[41], is bounded by the size of a smallest SLP for w.

Grammar-based tree compression. In this paper, we want to follow approach (a), but for trees
instead of strings. A tree in this paper is always a rooted ordered tree over a ranked alphabet, i.e.,
every node is labelled with a symbol, the rank of this symbol is equal to the number of children of
the node and there is an ordering among the children of a node. In [11], grammar-based compression
was extended from strings to trees. For this, linear context-free tree grammars were used. Linear
context-free tree grammars that produce only a single tree are also known as tree straight-line
programs (TSLPs) or straight-line context-free tree grammars (SLCF tree grammars). TSLPs
generalize dags (directed acyclic graphs), which are widely used as a compact tree representation.
Whereas dags only allow to share repeated subtrees, TSLPs can also share repeated internal tree
patterns.

Several grammar-based tree compressors were developed in [2, 8, 11, 27, 34], where the work
from [2] is based on another type of tree grammars (elementary ordered tree grammars). The
algorithm from [27] achieves an approximation ratio of O(log n) (for a constant set of node labels).
On the other hand, for none of the above mentioned compressors it is known, whether for every
input tree with n nodes the size of the output grammar is bounded by O

(
n

logn

)
, as it is the case

for many grammar-based string compressors. Recently, it was shown that the so-called top dag
of an unranked and unlabelled tree of size n has size O

(
n

log0.19 n

)
[6] and this bound has been

subsequently improved to O
(n·log logσ n

logσ n

)
in [22]. The top dag can be seen as a slight variant of a

TSLP for an unranked tree.
In this paper, we present a grammar-based tree compressor that transforms a given node-labelled

tree of size n with σ different node labels, whose rank is bounded by a constant, into a TSLP of
size O

(
n

logσ n

)
and depth O(log n), where the depth of a TSLP is the depth of the corresponding

derivation tree (we always assume that σ ≥ 2). In particular, for an unlabelled binary tree we get
a TSLP of size O

(
n

logn

)
. Our compressor is basically an extension of the BiSection algorithm [29]

from strings to trees and is therefore called TreeBiSection. It works in two steps (the following
outline works only for binary trees, but it can be easily adapted to trees of higher rank, as long as
the rank is bounded by a constant).

1If we do not specify the base of a logarithm, we always mean log2(n).
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In the first step, TreeBiSection hierarchically decomposes in a top-down way the input tree into
pieces of roughly equal size. This is a well-known technique that is also known as the (1/3, 2/3)-
Lemma [31]. But care has to be taken to bound the ranks of the nonterminals of the resulting
TSLP. As soon as we get a tree with three holes during the decomposition (which corresponds in
the TSLP to a nonterminal of rank three) we have to do an intermediate step that decomposes the
tree into two pieces having only two holes each. This may involve an unbalanced decomposition.
On the other hand, such an unbalanced decomposition is only necessary in every second step. This
trick to bound the number of holes by three was used by Ruzzo [40] in his analysis of space-bounded
alternating Turing machines.

The TSLP produced in the first step can be identified with its derivation tree, which has
logarithmic depth. Thanks to the fact that all nonterminals have rank at most three, we can
encode the derivation tree by a tree with O(σ) many labels. Moreover, this derivation tree is
weakly balanced in the following sense. For each edge (u, v) in the derivation tree such that both u
and v are internal nodes, the derivation tree is balanced at u or v. In a second step, TreeBiSection
computes the minimal dag of the derivation tree. Due to its balanced shape, we can show that this
minimal dag has size at most O

(
n

logσ n

)
. The nodes of this dag are the nonterminals of our final

TSLP.
We prove that the algorithm sketched above can be implemented so that it works in logarithmic

space, see Section 5.2. An alternative implementation achieves the running time O(n log n), but
we are not aware of a linear time implementation. Therefore we present in Section 5.6 another
algorithm BU-Shrink (for bottom-up shrink) that constructs a TSLP of size O

(
n

logσ n

)
in linear

time (again, we present an outline of the algorithm for the case of binary trees). In a first step,
BU-Shrink merges nodes of the input tree in a bottom-up way. Thereby it constructs a partition of
the input tree into O

(
n

logσ n

)
many connected parts of size at most c · logσ n, where c is a suitably

chosen constant. Every connected part is a complete subtree, where at most two subtrees were
removed (i.e., a subtree with at most two holes) By associating with each such connected part
a nonterminal of rank at most two, we obtain a TSLP for the input tree consisting of a start
rule S → s, where s consists of O

(
n

logσ n

)
many nonterminals of rank at most two, each having a

right-hand side consisting of c · logσ n many terminal symbols. By choosing the constant c suitably,
we can (using the formula for the number of binary trees of size m, which is given by the Catalan
numbers) bound the number of different subtrees of these right-hand sides by

√
n ∈ O

(
n

logσ n

)
.

This allows to build up the right-hand sides for the non-start nonterminals using O
(

n
logσ n

)
many

nonterminals. A combination of this algorithm with TreeBiSection — we call the resulting algorithm
BU-Shrink+TreeBiSection — finally yields a linear time algorithm for constructing a TSLP of size
O
(

n
logσ n

)
and depth O(log n).

Let us remark that our size bound O
(

n
logσ n

)
does not contradict any information-theoretic

lower bounds (it actually matches the information theoretic limit): Consider for instance unlabelled

ordered trees. There are roughly 4n/
√
πn3 such trees with n nodes. Hence under any binary

encoding of unlabelled trees, most trees are mapped to bit strings of length at least 2n − o(n).
But when encoding a TSLP of size m into a bit string, another log(m)-factor arises, because
nonterminals have to be encoded by bit strings of length O(logm). Hence, a TSLP of size O

(
n

logn

)
is encoded by a bit string of size O(n).

It is also important to note that our size bound O
(

n
logσ n

)
only holds for trees in which the

maximal rank is bounded by a constant. In particular, it does not directly apply to unranked
trees (that are, for instance, the standard tree model for XML), which is in contrast to top dags.
To overcome this limitation, one can transform an unranked tree into its first-child-next-sibling
encoding [30, Paragraph 2.3.2], which is a ranked tree of the same size as the original tree. Then,
the first-child-next-sibling encoding can be transformed into a TSLP of size O

(
n

logσ n

)
.

Transforming formulas into circuits. Our main result has an interesting application for the
classical problem of transforming formulas into small circuits, which will be presented in Section 6.
Spira [43] has shown that for every Boolean formula of size n there exists an equivalent Boolean
circuit of depth O(log n) and size O(n), where the size of a circuit is the number of gates and the
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depth of a circuit is the length of a longest path from an input gate to the output gate. Brent
[9] extended Spira’s theorem to formulas over arbitrary semirings and moreover improved the
constant in the O(log n) bound. Subsequent improvements that mainly concern constant factors
can be found in [7, 10]. An easy corollary of our O

(
n

logσ n

)
bound for TSLPs is that for every (not

necessarily commutative) semiring (or field), every formula of size n, in which only m ≤ n different
variables occur, can be transformed into a circuit of depth O(log n) and size O

(
n·logm

logn

)
. Hence, we

refine the size bound from O(n) to O
(
n·logm

logn

)
(Theorem 23). The transformation can be achieved

in logspace and, alternatively, in linear time. Another interesting point of our formula-to-circuit
conversion is that most of the construction (namely the construction of a TSLP for the input
formula) is purely syntactic. The remaining part (the transformation of the TSLP into a circuit)
is straightforward. In contrast, the constructions from [7, 9, 10, 43] construct a log-depth circuit
from a formula in one step.

Related work. In view of our logspace implementation of TreeBiSection, it is interesting to remark
that Gagie and Gawrychowski considered in [19] the problem of computing in logspace a small
SLP for a given string. They present a logspace algorithm that achieves an approximation ratio of
O(min{g,

√
n/ log n}), where g is the size of a smallest SLP and n is the length of the input word.

Several papers deal with algorithmic problems on trees that are succinctly represented by
TSLPs, see [33] for a survey. Among other problems, equality checking and the evaluation of tree
automata can be done in polynomial time for TSLPs.

It is interesting to compare our O
(

n
logσ n

)
bound with the known bounds for dag compression. A

counting argument shows that for all unlabelled binary trees of size n, except for an exponentially
small part, the size of a smallest TSLP is Ω

(
n

logn

)
, and hence (by our main result) Θ

(
n

logn

)
. This

implies that also the average size of the minimal TSLP, where the average is taken for the uniform
distribution on unlabelled binary trees of size n, is Θ

(
n

logn

)
. In contrast, the average size of the

minimal dag for trees of size n is Θ
(

n√
logn

)
[18], whereas the worst-case size of the dag is n.

In the context of tree compression, succinct data structures for trees are another big topic. There,
the goal is to represent a tree in a number of bits that asymptotically matches the information
theoretic lower bound, and at the same time allows efficient querying (in the best case in time
O(1)). For unlabelled unranked trees of size n there exist representations with 2n+ o(n) bits that
support navigation in time O(1) [24, 37]. This result has been extended to labelled trees, where
(log σ) · n+ 2n+ o(n) bits suffice when σ is the number of node labels [16]. See [38] for a survey.

2. Computational models

We will consider time and space bounds for computational problems. For time bounds, we
will use the standard RAM model. We make the assumption that for an input tree of size n,
arithmetical operations on numbers with O(log n) bits can be carried out in time O(1). We assume
that the reader has some familiarity with logspace computations, see e.g. [4, Chapter 4.1] for more
details. A function can be computed in logspace, if it can be computed on a Turing machine with
three tapes: a read-only input tape, a write-only output tape, and a read-write working tape of
length O(log n), where n is the length of the input. It is an important fact that if functions f and
g can be computed in logspace, then the composition of f and g can be computed in logspace as
well. We will use this fact implicitly all over the paper.

3. Strings and Straight-Line Programs

Before we come to grammar-based tree compression, let us briefly discuss grammar-based string
compression. A straight-line program, briefly SLP, is a context-free grammar that produces a single
string. Formally, it is defined as a tuple G = (N,Σ, S, P ), where N is a finite set of nonterminals,
Σ is a finite set of terminal symbols (Σ ∩N = ∅), S ∈ N is the start nonterminal, and P is a finite
set of rules of the form A→ w for A ∈ N , w ∈ (N ∪ Σ)∗ such that the following conditions hold:

• There do not exist rules (A→ u) and (A→ v) in P with u 6= v.
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• The binary relation {(A,B) ∈ N ×N | (A→ w) ∈ P, B occurs in w} is acyclic.

These conditions ensure that every nonterminal A ∈ N produces a unique string valG(A) ∈ Σ∗. The
string defined by G is val(G) = valG(S). The size of the SLP G is |G| =

∑
(A→w)∈P |w|, where |w|

denotes the length of the string w. SLPs are also known as word chains in the area of combinatorics
on words [5, 14].

A simple induction shows that for every SLP G of size m one has |val(G)| ≤ O(3m/3) [12, proof
of Lemma 1]. On the other hand, it is straightforward to define an SLP H of size 2n such that
|val(H)| ≥ 2n. This justifies to see an SLP G as a compressed representation of the string val(G),
and exponential compression rates can be achieved in this way.

Let σ ≥ 2 be the size of the terminal alphabet Σ.2 It is well-known that for every string w ∈ Σ∗

of length n there exists an SLP G of size O
(

n
logσ n

)
such that val(G) = w, see e.g. [28]. On the

other hand, it was shown in [3] that for every n there exists a word w of length n over an alphabet
of size σ such that every SLP for w has size at least n

logσ n
.

4. Trees and Tree Straight-Line Programs

In this paper, we will deal with ranked trees, where nodes are labelled with symbols. Every
symbol has an associated rank (a natural number). If a node is labelled with a symbol of rank i,
then it is required that the node has i children. Moreover, these children are linearly ordered.

For the purpose of defining tree grammars we need two types of ranked symbols: Terminals
and nonterminals. For each of these two types and every rank i we assume to have a pool of
countably many symbols. Moreover, we need a third type of symbols, so called parameters, which
are treated as symbols of rank i. Intuitively, these parameters specify positions in a tree, which
can be substituted by other trees.

Formally, for every i ≥ 0 we fix a countably infinite set Fi of terminals of rank i and a countably
infinite set Ni of nonterminals of rank i. Let F =

⋃
i≥0 Fi and N =

⋃
i≥0Ni. Moreover, let

X = {x1, x2, . . . } be a countably infinite set of parameters. We assume that the three sets F , N ,
and X are pairwise disjoint. A labelled tree t = (V, λ) is a finite, rooted and ordered tree t with
node set V , whose nodes are labelled by elements from F ∪N ∪X . The function λ : V → F∪N ∪X
denotes the labelling function. We require that a node v ∈ V with λ(v) ∈ Fk ∪Nk has exactly k
children, which are ordered from left to right. We also require that every node v with λ(v) ∈ X is
a leaf of t. The size of t is |t| = |{v ∈ V | λ(v) ∈ F ∪N}|, i.e., we do not count parameters.

We denote trees in their usual term notation, e.g. b(a, a) denotes the tree with root node labelled
by b and two children, both labelled by a. We define T as the set of all labelled trees. The depth
of a tree t = (V, λ) is the maximal length (number of edges) of a path from the root to a leaf. Let
labels(t) = {λ(v) | v ∈ V }. For L ⊆ F ∪N ∪X we let T (L) = {t | labels(t) ⊆ L}. We write <t for
the depth-first-order on V . Formally, u <t v if u is an ancestor of v or if there exists a node w
and i < j such that the ith child of w is an ancestor of u and the jth child of w is an ancestor of v.
The tree t ∈ T is a pattern if there do not exist different nodes that are labelled with the same
parameter. For example, f(x1, x1, x3) is not a pattern, whereas f(x1, x21, x99) and f(x1, x2, x3)
are patterns. A pattern t = (V, λ) ∈ T is valid if (i) labels(t) ∩ X = {x1, . . . , xn} for some n ≥ 0
and (ii) for all u, v ∈ V with λ(u) = xi, λ(v) = xj and u <t v we have i < j. For example the
pattern f(x1, x21, x99) is not valid, whereas f(x1, x2, x3) is valid. For a pattern t we define valid(t)
as the unique valid pattern which is obtained from t by renaming the parameters. For instance,
valid(f(x21, x2, x99)) = f(x1, x2, x3). A valid pattern t in which the parameters x1, . . . , xn occur is
also written as t(x1, . . . , xn) and we write rank(t) = n (the rank of the pattern). We say that a
valid pattern p of rank n occurs in a tree t if there exist n trees t1, . . . , tn such that p(t1, . . . , tn)
(the tree obtained from p by replacing the parameter xi by ti for 1 ≤ i ≤ n) is a subtree of t.

The following counting lemma will be needed several times:

2The case σ = 1 is not interesting, since every string of length n over a unary alphabet can be produced by an
SLP of size O(logn).
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Figure 1: A derivation of the TSLP from Example 2.

Lemma 1. The number of trees t ∈ T (F) with 1 ≤ |t| ≤ n and |labels(t)| ≤ σ is bounded by
4
3 (4σ)n.

Proof. The number of different rooted ordered (but unranked) trees with k nodes is 1
k+1

(
2k
k

)
≤ 4k

(the kth Catalan number, see e.g. [44]). Hence, the number of trees in the lemma can be bounded
by

σn ·
n∑
k=1

4k ≤ σn · 4n+1 − 1

3
≤ 4

3
(4σ)n.

We now define a particular form of context-free tree grammars (see [13] for more details on
context-free tree grammars) with the property that exactly one tree is derived. A tree straight-line
program (TSLP) is a tuple G = (N,Σ, S, P ), where N ⊆ N is a finite set of nonterminals, Σ ⊆ F
is a finite set of terminals, S ∈ N ∩N0 is the start nonterminal, and P is a finite set of rules (or
productions) of the form A(x1, . . . , xn) → t(x1, . . . , xn) (which is also briefly written as A → t),
where n ≥ 0, A ∈ N ∩Nn and t(x1, . . . , xn) ∈ T (N ∪Σ∪ {x1, . . . , xn}) is a valid pattern such that
the following conditions hold:

• For every A ∈ N there is exactly one tree t such that (A→ t) ∈ P .

• The binary relation {(A,B) ∈ N ×N | (A→ t) ∈ P,B ∈ labels(t)} is acyclic.

Note that N and Σ are implicitly defined by the rules from P . Therefore, we can (and always will)
write a TSLP as a pair G = (S, P ) consisting of rules and a start nonterminal.

The above conditions ensure that from every nonterminal A ∈ N ∩Nn exactly one valid pattern
valG(A) ∈ T (F ∪{x1, . . . , xn}) is derived by using the rules as rewrite rules in the usual sense. The
tree defined by G is val(G) = valG(S). Instead of giving a formal definition, we show a derivation
of val(G) from S in an example:

Example 2. Let G = (S, P ), S,A ∈ N0, B ∈ N1, a, b ∈ F0, f ∈ F2 and

P = {S → f(A,B(A)), A→ B(B(b)), B(x1)→ f(x1, a)}.

A possible derivation of val(G) from S is depicted in Figure 1.

The size |G| of a TSLP G = (S, P ) is the total size of all trees on the right-hand sides of P , i.e.
|G| =

∑
(A→t)∈P |t|. For instance, the TSLP from Example 2 has size 9.

Note that for the size of a TSLP we do not count nodes of right-hand sides that are labelled
with a parameter. To justify this, we use the following internal representation of valid patterns
(which is also used in [27]): For every non-parameter node v of a tree, with children v1, . . . , vn
we store in a list all pairs (i, vi) such that vi is a non-parameter node. Moreover, we store for
every symbol (node label) its rank. This allows to reconstruct the valid pattern, since we know the
positions where parameters have to be inserted.
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A TSLP is in Chomsky normal form if for every rule A(x1, . . . , xn)→ t(x1, . . . , xn) one of the
following two cases holds:

t(x1, . . . , xn) = B(x1, . . . , xi−1, C(xi, . . . , xk), xk+1, . . . , xn) for B,C ∈ N (1)

t(x1, . . . , xn) = f(x1, . . . , xn) for f ∈ Fn. (2)

If the tree t in the corresponding rule A→ t is of type (1), we write index(A) = i. If otherwise t is
of type (2), we write index(A) = 0. One can transform every TSLP efficiently into an equivalent
TSLP in Chomsky normal form with a small size increase. More precisely, it is shown in [36] that
from a TSLP G, where all terminals and nonterminals have rank at most r, one can construct
in time O(r · |G|) an equivalent TSLP in Chomsky normal form. We mainly consider TSLPs in
Chomsky normal form in the following.

We define the rooted, ordered derivation tree DG of a TSLP G = (S, P ) in Chomsky normal
form as for string grammars: The inner nodes of the derivation tree are labelled by nonterminals
and the leaves are labelled by terminal symbols. Formally, we start with the root node of DG and
assign it to the label S. Then, for every nonterminal A whose corresponding right-hand side is
of type (1) and every node in DG labelled by A, we attach a left child labelled by B and a right
child labelled by C. If the right-hand side of the rule for A is of type (2), we attach a single child
labelled by f to A. Note that these nodes are the leaves of DG and they represent the nodes of the
tree val(G). We denote by depth(G) the depth of the derivation tree DG .

A TSLP is called monadic if every nonterminal has rank at most one. The following result was
shown in [36]:

Theorem 3. From a given TSLP G in Chomsky normal form such that every nonterminal has
rank at most k and every terminal symbol has rank at most r, one can compute in time O(|G| · k · r)
a monadic TSLP H with the following properties:

• val(G) = val(H),

• |H| ∈ O(|G| · r),

• depth(H) ∈ O(depth(G)).

Moreover, one can assume that every production of H has one of the following four forms

• A→ B(C),

• A(x1)→ B(C(x1)),

• A→ f(A1, . . . , An),

• A(x1)→ f(A1, . . . , Ai−1, x1, Ai+1, . . . , An),

where A,B,C,A1, . . . , An are nonterminals of rank 0 or 1, and f is a terminal symbol.

A commonly used tree compression scheme is obtained by writing down repeated subtrees only
once. In that case all occurrences except for the first are replaced by a pointer to the first one.
This leads to a node-labelled directed acyclic graph (dag). It is known that every tree has a unique
minimal dag, which is called the dag of the initial tree. An example can be found in Figure 4,
where the right graph is the dag of the middle tree. A dag can be seen as a TSLP in which every
nonterminal has rank zero: The nonterminals are the nodes of the dag. A node v with label f and
n children v1, . . . , vn corresponds to the rule v → f(v1, . . . , vn). The root of the dag is the start
variable. Vice versa, it is straightforward to transform a TSLP, in which every variable has rank
zero, into an equivalent dag.

The dag of a tree t can be constructed in time O(|t|) [15]. The following lemma shows that the
dag of a tree can be also constructed in logspace.

Lemma 4. The dag of a given tree can be computed in logspace.
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Proof. Assume that the node set of the input tree t is {1, . . . , n}. We denote by t[i] the subtree of
t rooted at node i. Given two nodes i, j of t one can verify in logspace whether the subtrees t[i]
and t[j] are isomorphic (we write t[i] ∼= t[j] for this) by performing a preorder traversal over both
trees and thereby comparing the two trees symbol by symbol.

The nodes and edges of the dag of t can be enumerated in logspace as follows. A node i of t is
a node of the dag if there is no j < i with t[i] ∼= t[j]. By the above remark, this can be checked in
logspace. Let i be a node of the dag and let j be the kth child of i in t. Then j′ is the kth child of
i in the dag where j′ is the smallest number such that t[j′] ∼= t[j]. Again by the above remark this
j′ can be found in logspace.

5. Constructing a small TSLP for a tree

Let t be a tree of size n with σ many different node labels. In this section we present two
algorithms. Each construct a TSLP for t of size O

(
n

logσ n

)
and depth O(log n), assuming the

maximal rank of symbols is bounded by a constant. Our first algorithm TreeBiSection achieves this
while only using logarithmic space, but needs time O(n · log n). The second algorithm first reduces
the size of the input tree and then performs TreeBiSection on the resulting tree, which yields a
linear running time.

5.1. TreeBiSection

TreeBiSection uses the well-known idea of splitting a tree recursively into smaller parts of
roughly equal size, see e.g. [9, 43]. It is a generalization of the grammar-based string compressor
BiSection [29]. The latter algorithm first splits an input word w with |w| ≥ 2 as w = w1w2 such that
|w1| = 2j for the unique number j ≥ 0 with 2j < |w| ≤ 2j+1. This process is recursively repeated
with w1 and w2 until we obtain words of length 1. During the process, BiSection introduces a
nonterminal for each distinct factor of length at least two and creates a rule with two symbols on
the right-hand side corresponding to the split.

For a valid pattern t = (V, λ) ∈ T (F ∪X ) and a node v ∈ V we denote by t[v] the tree valid(s),
where s is the subtree rooted at v in t. We further write t \ v for the tree valid(r), where r is
obtained from t by replacing the subtree rooted at v by a new parameter. If for instance t =
h(g(x1, f(x2, x3)), x4) and v is the f -labelled node, then t[v] = f(x1, x2) and t\v = h(g(x1, x2), x3).
The following lemma is well-known, at least for binary trees; see e.g. [31].

Lemma 5. Let t ∈ T (F ∪ X ) be a tree with |t| ≥ 2 such that every node has at most r children
(where r ≥ 1). Then there is a node v such that

1

2(r + 2)
· |t| ≤ |t[v]| ≤ r + 1

r + 2
· |t|.

Proof. We start a search at the root node, checking at each node v whether |t[v]| ≤ d+1
d+2 · |t|, where

d is the number of children of v. If the property does not hold, we continue the search at a child
that spawns a largest subtree (using an arbitrary deterministic tie-breaking rule that is fixed for the
further discussion). Note that we eventually reach a node such that |t[v]| ≤ d+1

d+2 · |t|: If |t[v]| = 1,

then |t[v]| ≤ 1
2 |t| since |t| ≥ 2.

So, let v be the first node with |t[v]| ≤ d+1
d+2 · |t|, where d is the number of children of v. We get

|t[v]| ≤ d+ 1

d+ 2
· |t| ≤ r + 1

r + 2
· |t|.

Moreover v cannot be the root node. Let u be its parent node and let e be the number of children
of u. Since v spans a largest subtree among the children of u, we get e · |t[v]|+ 1 ≥ |t[u]| ≥ e+1

e+2 · |t|,
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i.e.,

|t[v]| ≥ e+ 1

e(e+ 2)
· |t| − 1

e

=

(
e+ 1

e(e+ 2)
− 1

|t| · e

)
· |t|

≥
(

e+ 1

e(e+ 2)
− 1

2e

)
· |t|

=
1

2(e+ 2)
· |t|

≥ 1

2(r + 2)
· |t|.

This proves the lemma.

For the remainder of this section we refer with split(t) to the unique node in a tree t which is
obtained by the procedure from the proof above. Based on Lemma 5 we now construct a TSLP
Gt = (S, P ) with val(Gt) = t for a given tree t. It is not the final TSLP produced by TreeBiSection.
For our later analysis, it is important to bound the number of parameters in the TSLP Gt by a
constant. To achieve this, we use an idea from Ruzzo’s paper [40].

We will first present the construction and analysis of Gt only for trees in which every node has at
most two children, i.e., we consider trees from T (F0 ∪F1 ∪F2). Let us write F≤2 for F0 ∪F1 ∪F2.
In Section 5.5, we will consider trees of larger branching degree. For the case that r = 2, Lemma 5
yields for every tree s ∈ T (F≤2 ∪ X ) with |s| ≥ 2 a node v = split(s) such that

1

8
· |s| ≤ |s[v]| ≤ 3

4
· |s|. (3)

Consider an input tree t ∈ T (F≤2) (we assume that |t| ≥ 2). The TSLP Gt we are going to
construct has the property that every nonterminal has rank at most three. Our algorithm stores
two sets of rules, Ptemp and Pfinal. The set Pfinal will contain the rules of the TSLP Gt and the rules
from Ptemp ensure that the TSLP (S, Ptemp ∪ Pfinal) produces t at any given time of the procedure.
We start with the initial setting Ptemp = {S → t} and Pfinal = ∅. While Ptemp is non-empty we
proceed for each rule (A→ s) ∈ Ptemp as follows:

Remove the rule from Ptemp. Let A ∈ Nr. If r ≤ 2 we determine the node v = split(s) in s.
Then we split the tree s into the two trees s[v] and s \ v. Let r1 = rank(s[v]), r2 = rank(s \ v) and
let A1 ∈ Nr1 and A2 ∈ Nr2 be fresh nonterminals. Note that r = r1 + r2 − 1. If the size of s[v]
(s \ v, respectively) is larger than 1 we add the rule A1 → s[v] (A2 → s \ v, respectively) to Ptemp.
Otherwise we add it to Pfinal as a final rule. Let k be the number of nodes of s that are labelled
by a parameter and that are smaller (w.r.t. <s) than v. To link the nonterminal A to the fresh
nonterminals A1 and A2 we add the rule

A(x1, . . . , xr)→ A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr)

to the set of final rules Pfinal.
To bound the rank of the introduced nonterminals by three we handle rules A → s with

A ∈ N3 as follows. Let v1, v2, and v3 be the nodes of s labelled by the parameters x1, x2, and x3,
respectively. Instead of choosing the node v by split(s) we set v to the lowest common ancestor
of (v1, v2) or (v2, v3), depending on which one has the greater distance from the root node (see
Figure 2). This step ensures that the two trees s[v] and s \ v have rank 2, so in the next step each
of these two trees will be split in a balanced way according to (3). As a consequence, the resulting
TSLP Gt has depth O(log |t|) but size O(|t|). Also note that Gt is in Chomsky normal form.

Example 6. Let tn be the complete binary tree of height n, i.e. t0 = a and tn+1 = f(tn, tn) where
f ∈ F2 and a ∈ F0. Figure 3 illustrates how the tree t3 is decomposed hierarchically during the
algorithm. We only explain the first steps of the algorithm. Final rules are framed.
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x1 x2 x3

v

x1 x2 x3
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Figure 2: Splitting a tree with three parameters
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t2
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af(x1, x2)

f(x1, t1)

t1

af(x1, a)

af(x1, x2)

f(x1, x2)

f(x1, t2)

A

t1

D

af(x1, a)

af(x1, x2)

f(x1, f(x2, t1))

C

t1

F

af(x1, a)

af(x1, x2)

f(x1, f(x2, x3))

E

f(x1, x2)

H

f(x1, x2)

G

Figure 3: The hierarchical decomposition of a tree produced by TreeBiSection

.

1. We start with the rule S → t3.

2. Possible split nodes of t3 are the children of its root. We split S → t3 into the rules

S → A(B), A(x1)→ f(x1, t2) and B → t2.

3. We continue to split the rule A(x1)→ f(x1, t2). After two more steps we obtain the rules

A(x1)→ C(x1, D), D → t1, C(x1, x2)→ E(x1, x2, F ), E(x1, x2, x3) → f(x1, f(x2, x3))

and F → t1.

4. Since the nonterminal E has rank 3, we have to decompose f(x1, f(x2, x3)) along the lowest
common ancestor of two parameters as described above, in this case x2 and x3.3 Hence,

the rule for the nonterminal E is split into the rules E(x1, x2, x3)→ G(x1, H(x2, x3)) ,

G(x1, x2)→ f(x1, x2) and H(x1, x2)→ f(x1, x2).

In the next step we want to compact the TSLP by considering the dag of the derivation tree.
For this we first build the derivation tree Dt := DGt from the TSLP Gt as described above.

We now want to identify nonterminals that produce the same tree. Note that if we just omit
the nonterminal labels from the derivation tree, then there might exist isomorphic subtrees of
the derivation tree whose root nonterminals produce different trees. This is due to the fact that
we lost for an A-labelled node of the derivation tree with a left (right, respectively) child that is
labelled with B (C, respectively) the information at which argument position of B the nonterminal

3Here the least common ancestor of x2 and x3 happens to coincide with the node split(f(x1, f(x2, x3))).
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Figure 4: Modified derivation tree of the TSLP from Example 6 and its minimal dag.

C is substituted. This information is exactly given by index(A) ∈ {0, 1, 2, 3}, which was defined in
Section 4. Moreover, we remove every leaf v and write its label into its parent node. We call the
resulting tree the modified derivation tree and denote it by D∗t . Note that D∗t is a full binary tree
with node labels from {1, 2, 3} ∪ labels(t). The modified derivation tree for Example 6 is shown on
the left of Figure 4.

The following lemma shows how to compact our grammar by considering the dag of D∗t .

Lemma 7. Let u and v be nodes of Dt labelled by A and B, respectively. Moreover, let u′ and v′

be the corresponding nodes in D∗t . Then, the subtrees D∗t [u′] and D∗t [v′] are isomorphic (as labelled
ordered trees) if and only if valGt(A) = valGt(B).

Proof. For the if-direction assume that valGt(A) = valGt(B). Hence, when producing the TSLP Gt,
the intermediate productions A→ valGt(A) and B → valGt(B) are split in exactly the same way
(since the splitting process is deterministic). This implies that D∗t [u′] and D∗t [v′] are isomorphic.

We prove the other direction by induction over the size of the trees D∗t [u′] and D∗t [v′]. Consider
u and v labelled by A and B, respectively. We have index(A) = index(B) = i. For the induction
base assume that i = 0. Then u′ and v′ are both leaves labelled by the same terminal. Hence,
valGt(A) = valGt(B) holds. For the induction step assume that i > 0. Let A1 (B1, respectively)
be the label of the left child of u (v, respectively) and let A2 (B2, respectively) be the label of
the right child of u (v, respectively). By induction, we get valGt(A1) = valGt(B1) = s(x1, . . . , xm)
and valGt(A2) = valGt(B2) = t(x1, . . . , xn). Therefore, rank(A) = rank(B) = m + n − 1 and
valGt(A) = s(x1, ..., xi−1, t(xi, ..., xi+n−1), xi+n, ..., xn+m−1) = valGt(B).

By Lemma 7, if two subtrees of D∗t are isomorphic we can eliminate the nonterminal of the
root node of one subtree. Hence, we can compact our TSLP by constructing the minimal dag d of
D∗t . The minimal dag of the TSLP of Example 6 is shown on the right of Figure 4. The nodes
of d are the nonterminals of the final TSLP produced by TreeBiSection. For a nonterminal that
corresponds to an inner node of d (a leaf of d, respectively), we obtain a rule whose right-hand
side has the form (1) ((2), respectively). Let n1 be the number of inner nodes of d and n2 be the
number of leaves. Then the size of our final TSLP is 2n1 + n2, which is bounded by twice the
number of nodes of d.

Example 8. We continue Example 6 and obtain the final TSLP from the minimal dag d of D∗t
shown in Figure 4 on the right. We assign to each node of the minimal dag a fresh nonterminal
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and define the rules according to the labels as follows. Here the start nonterminal is A1.

A1 → A2(A3) A2(x1)→ A4(x1, A6)

A3 → A5(A6) A4(x1, x2)→ A7(x1, x2, A6)

A5(x1)→ A9(x1, A6) A6 → A8(A10)

A7(x1, x2, x3)→ A9(x1, A9(x2, x3)) A8(x1)→ A9(x1, A10)

A9(x1, x2)→ f(x1, x2) A10 → a

Algorithm 1 shows the pseudocode of TreeBiSection. There, we denote for a valid pattern
s(x1, . . . , xk) by lcas(xi, xj) the lowest common ancestor of the unique leaves that are labelled with
xi and xj .

In Section 5.2 we will analyze the running time of TreeBiSection, and we will present a logspace
implementation. In Sections 5.3 and 5.4 we will analyze the size of the produced TSLP.

5.2. Running time and space consumption of TreeBiSection

In this section, we show that TreeBiSection can be implemented so that it works in logspace,
and alternatively in time O(n · log n). Note that these are two different implementations.

Lemma 9. Given a tree t ∈ T (F≤2) of size n one can compute (i) in time O(n log n) and (using
a different algorithm) (ii) in logspace the TSLP produced by TreeBiSection on input t.

Proof. Let t be the input tree of size n. The dag of a tree can be computed in (i) linear time [15]
and (ii) in logspace by Lemma 4. Hence, it suffices to show that the modified derivation tree D∗t
for t can be computed in time O(n · log n) as well as in logspace.

For the running time let us denote with Ptemp,i the set of productions Ptemp after i iterations
of the while loop. Moreover, let ni be the sum of the sizes of all right-hand sides in Ptemp,i. Then,
we have ni+1 ≤ ni: When a single rule A → s is replaced with A1 → t1 and A2 → t2 then each
non-parameter node in t1 or t2 is one of the nodes of s. Hence, we have |s| = |t1|+ |t2| (recall that
we do not count parameters for the size of a tree). We might have ni+1 < ni since rules with a
single terminal symbol on the right-hand side are put into Pfinal. We obtain ni ≤ n for all i. Hence,
splitting all rules in Ptemp,i takes time O(n), and a single iteration of the while loop takes time
O(n) as well. On the other hand, since every second split reduces the size of the tree to which the
split is applied by a constant factor (see (3)). Hence, the while loop is iterated at most O(log n)
times. This gives the time bound.

The inquisitive reader may wonder whether our convention of neglecting parameter nodes for
the size of a tree affects the linear running time. This is not the case: Every right-hand side s in
Ptemp,i has at most three parameters, i.e., the total number of nodes in s is at most |s|+ 3 ≤ 4|s|.
This implies that the split node can be computed in time O(|s|). Doing this for all right-hand sides
in Ptemp,i yields the time bound O(n) as above.

For the logspace version, we first describe how to represent a single valid pattern occurring in t
in logspace and how to compute its split node. Let s(x1, . . . , xk) be a valid pattern which occurs
in t and has k parameters where 0 ≤ k ≤ 3, i.e., s(t1, . . . , tk) is a subtree of t for some subtrees
t1, . . . , tk of t. We represent the tree s(x1, . . . , xk) by the tuple rep(s) = (v0, v1 . . . , vk) where
v0, v1, . . . , vk are the nodes in t corresponding to the roots of s, t1, . . . , tk, respectively. Note that
rep(s) can be stored using O((k + 1) · log(n)) many bits. Given such a tuple rep(s) = (v0, . . . , vk),
we can compute in logspace the size |s| by a preorder traversal of t, starting from v0 and skipping
subtrees rooted in the nodes v1, . . . , vk. We can also compute in logspace the split node v of s: If s
has at most two parameters, then v = split(s). Note that the procedure from Lemma 5 can be
implemented in logspace since the size of a subtree of s can be computed as described before. If
s has three parameters, then v is the lowest common ancestor of either v1 and v2, or of v2 and
v3, depending on which node has the larger distance from v0. The lowest common ancestor of
two nodes can also be computed in logspace by traversing the paths from the two nodes to the
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Algorithm 1: TreeBiSection(t, k)

input : binary tree t
Ptemp := {S → t}
Pfinal := ∅
while Ptemp 6= ∅ do

foreach (A→ s) ∈ Ptemp do
Ptemp := Ptemp \ {A→ s}
if rank(s) = 3 then

v := the lower of nodes lcas(x1, x2), lcas(x2, x3)
else

v := split(s)
end
t1 := s[v]; t2 := s \ v
r1 := rank(t1); r2 := rank(t2)
Let A1 and A2 be fresh nonterminals.
foreach i = 1 to 2 do

if |ti| > 1 then
Ptemp := Ptemp ∪ {Ai(x1, . . . , xri)→ ti}

else
Pfinal := Pfinal ∪ {Ai(x1, . . . , xri)→ ti}

end

end
r := r1 + r2 − 1
Let k be the number of nodes in s labelled by parameters that are smaller than v
w.r.t. <s.
Pfinal := Pfinal ∪ {A(x1, . . . , xr)→
A1(x1, . . . , xk, A2(xk+1, . . . , xk+r2), xk+r2+1, . . . , xr)}

end

end
Let G be the TSLP (S, Pfinal).
Construct the modified derivation tree D∗t of G.
Compute the minimal dag of D∗t and let H be the corresponding TSLP.
return TSLP H
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root upwards. From rep(s) = (v0, . . . , vk) and a split node v we can easily determine rep(s[v]) and
rep(s \ v) in logspace.

Using the previous remarks we are ready to present the logspace algorithm to compute D∗t .
Since D∗t is a binary tree of depth O(log n) we can identify a node of D∗t with the string u ∈ {0, 1}∗
of length at most c · blog nc that stores the path from the root to the node, where c > 0 is a suitable
constant. We denote by su the tree (with at most three parameters) described by a node u of D∗t
in the sense of Lemma 7. That is, if u′ is the corresponding node of the derivation tree Dt and u′

is labelled with the nonterminal A, then su = valGt(A).
To compute D∗t , it suffices for each string w ∈ {0, 1}∗ of length c · blog nc to check in logspace

whether it is a node of D∗t and in case it is a node, to determine the label of w in D∗t . For this, we
compute for each prefix u of w, starting with the empty word, the tuple rep(su) and the label of u
in D∗t , or a bit indicating that u is not a node of D∗t (in which case also w is not a node of D∗t ).
Thereby we only store the current bit strings w, u and the value of rep(su), which fit into logspace.
If u = ε, then rep(su) consists only of the root of t. Otherwise, we first compute in logspace the
size |su| from rep(su). If |su| = 1, then u is a leaf in D∗t with label λ(u) and no longer prefixes
represent nodes in D∗t . If |su| > 1, then u is an inner node in D∗t and, as described above, we can
compute in logspace from rep(su) the tuples rep(su0) and rep(su1), from which we can easily read
off the label of u from {1, 2, 3}. If u = w, then we stop, otherwise we continue with ui and rep(sui),
where i ∈ {0, 1} is such that ui is a prefix of w.

5.3. Size of the minimal dag

In order to bound the size of the TSLP produced by TreeBiSection we have to bound the
number of nodes in the dag of the modified derivation tree. To this end, we prove in this section a
general result about the size of dags of certain weakly balanced binary trees, which might be of
independent interest.

Let t be a binary tree and let 0 < β ≤ 1. The leaf size of a node v is the number of leaves
of the subtree rooted at v. We say that an inner node v with children v1 and v2 is β-balanced if
the following holds: If ni is the leaf size of vi, then n1 ≥ βn2 and n2 ≥ βn1. We say that t is
β-balanced if the following holds: For all inner nodes u and v such that v is a child of u, we have
that u is β-balanced or v is β-balanced.

Theorem 10. If t is a β-balanced binary tree having σ different node labels and n leaves (and hence
|t|, σ ≤ 2n− 1), then the size of the dag of t is bounded by O

(
α·n

logσ n

)
, where α = 1 + log1+β(β−1)

only depends on β.4

Proof. Let us fix a tree t = (V, λ) as in the theorem with n leaves. Moreover, let us fix a number k
that will be defined later. We first bound the number of different subtrees with at most k leaves in
t. Afterwards we will estimate the size of the remaining top tree. The same strategy is used for
instance in [21, 32] to derive a worst-case upper bound on the size of binary decision diagrams.

Claim 1. The number of different subtrees of t with at most k leaves is bounded by dk with
d = 16σ2.

A subtree of t with at most k leaves has at most 2k − 1 nodes, each of which is labelled with one
of σ many labels. Hence, by Lemma 1 we can bound the number of subtrees of t with at most k
leaves by 4

3 (4σ)2k−1 = 1
3σ (4σ)2k ≤ (16σ2)k.

Let top(t, k) be the tree obtained from t by removing all nodes with leaf size at most k. Recall
that α = 1 + log1+β(β−1).

Claim 2. The number of nodes of top(t, k) is bounded by 4α · nk .

The tree top(t, k) has at most n/k leaves since it is obtained from t by removing all nodes with
leaf size at most k. Each node in top(t, k) has at most two children. We show that the length of

4Since 0 < β ≤ 1, we have α ≥ 1.
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Figure 5: A chain within a top tree. The subtree rooted at v1 has more than k leaves.

every unary chain in top(t, k) is bounded by 2α. This implies that top(t, k) has at most 4α · n/k
many nodes.

Let v1, . . . , vm be a unary chain in top(t, k) where vi is the single child node of vi+1. Moreover,
let v′i be the removed sibling of vi in t, see Figure 5. Note that each node v′i has leaf size at most k.

We claim that the leaf size of v2i+1 is larger than (1 + β)ik for all i with 2i+ 1 ≤ m. For i = 0
note that v1 has leaf size more than k since otherwise it would have been removed in top(t, k). For
the induction step, assume that the leaf size of v2i−1 is larger than (1 + β)i−1k. One of the nodes
v2i and v2i+1 must be β-balanced. Hence, v′2i−1 or v′2i must have leaf size at least β(1 + β)i−1k.
Hence, v2i+1 has leaf size more than (1 + β)i−1k + β(1 + β)i−1k = (1 + β)ik.

If m ≥ 2α+ 1, then v2α−1 exists and has leaf size at least (1 + β)α−1k = k/β, which implies
that the leaf size of v′2α−1 or v′2α (both nodes exist) is more than k, which is a contradiction. Hence,
we must have m ≤ 2α. Figure 5 shows an illustration of our argument.

Using Claim 1 and 2 we can now prove the theorem: The number of nodes of the dag of t is
bounded by the number of different subtrees with at most k leaves (Claim 1) plus the number of
nodes of the remaining tree top(t, k) (Claim 2). Let k = 1

2 logd n. Recall that d = 16σ2 and hence
log d = 4 + 2 log σ, which implies that logd n ∈ Θ(logσ n). With Claim 1 and 2 we get the following
bound on the size of the dag:

dk + 4α · n
k

= d(logd n)/2 +
8α · n
logd n

=
√
n+

8α · n
logd n

∈ O
(
α · n

logd n

)
= O

(
α · n

logσ n

)
This proves the theorem.

Obviously, one could relax the definition of β-balanced by only requiring that if (v1, v2, . . . , vδ)
is a path down in the tree, where δ is a constant, then one of the nodes v1, v2, . . . , vδ must be
β-balanced. Theorem 10 would still hold with this definition (with α depending linearly on δ).

Before we apply Theorem 10 to TreeBiSection let us present a few other results on the size of
dags that are of independent interest. If β is a constant, then a β-balanced binary tree t has depth
O(log |t|). One might think that this logarithmic depth is responsible for the small dag size in
Theorem 10. But this intuition is wrong:
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Figure 6: Tree t16 from the proof of Theorem 11.

Theorem 11. There is a family of trees tn ∈ T ({a, b, c}) with a ∈ F0, b ∈ F1, and c ∈ F2 (n ≥ 1)
with the following properties:5

• |tn| ∈ Θ(n)

• The depth of tn is Θ(log n).

• The size of the minimal dag of tn is at least n.

Proof. Let k = n
logn (we ignore rounding problems with log n, which only affect multiplicative

factors). Choose k different binary trees s1, . . . , sk ∈ T ({a, c}), each having log n many internal
nodes. This is possible: By the asymptotic formula for the Catalan numbers (see e.g. [17, p. 38])
the number of different binary trees with log n many internal nodes is asymptotically equal to

4logn√
π · log3 n

=
n2√

π · log3 n
> n.

Then consider the trees s′i = blogn(si). Each of these trees has size Θ(log n) and depth Θ(log n).
Next, let un(x1, . . . , xk) ∈ T ({c, x1, . . . , xk}) be a balanced binary valid pattern (all non-parameter
nodes are labelled with c) of depth Θ(log k) = Θ(log n) and size Θ(k) = Θ( n

logn ). We finally take

tn = un(s′1, . . . , s
′
k). Figure 6 shows the tree t16. We obtain |tn| = Θ( n

logn ) + Θ(k · log n) = Θ(n).

The depth of tn is Θ(log n). Finally, in the minimal dag for tn the unary b-labelled nodes cannot
be shared. Basically, the pairwise different trees t1, . . . , tn work as different constants that are
attached to the b-chains. But the number of b-labelled nodes in tn is k · log n = n.

Note that the trees from Theorem 11 are not β-balanced for any constant 0 < β < 1, and by
Theorem 10 this is necessarily the case. Interestingly, if we assume that every subtree s of a binary
tree t has depth at most O(log |s|), then Hübschle-Schneider and Raman [22] have implicitly shown

the bound O
(n·log logσ n

logσ n

)
for the size of the minimal dag.

Theorem 12 ([22]). Let α be a constant. Then there is a constant β that only depends on α such
that the following holds: If t is a binary tree of size n with σ many node labels such that every
subtree s of t has depth at most α log n+α, then the size of the dag of t is at most β·n·log logσ n

logσ n
+ β.

Interestingly, we can show that the bound in this result is sharp:

Theorem 13. There is a family of trees tn ∈ T ({a, b, c}) with a ∈ F0, b ∈ F1, and c ∈ F2 (n ≥ 1)
with the following properties:6

• |tn| ∈ Θ(n)

• Every subtree s of a tree tn has depth O(log |s|).

5The unary node label b can be replaced by the pattern c(d, x), where d ∈ F0 \ {a}, to obtain a binary tree.
6Again, the unary node label b can replaced by the pattern c(d, x), where d ∈ F0 \ {a} to obtain a binary tree.
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• The size of the minimal dag of tn is Ω(n·log logn
logn ).

Proof. The tree tn is similar to the one from the proof of Theorem 11. Again, let k = n
logn . Fix

a balanced binary tree vn ∈ T ({a, c}) with log k ∈ Θ(log n) many leaves. From vn we construct
k many different trees s1, . . . , sk ∈ T ({a, b, c}) by choosing in vn an arbitrary subset of leaves
(there are k such subsets) and replacing all leaves in that subset by b(a). Note that |si| ∈ Θ(log n).
Moreover, every subtree s of a tree si has depth O(log |s|) (since vn is balanced). Then consider the
trees s′i = blog logn(si) (so, in contrast to the proof of Theorem 11, the length of the unary chains
is log log n). Clearly, |s′i| ∈ Θ(log n). Moreover, we still have the property that every subtree s of a
tree s′i has depth O(log |s|): This is clear, if that subtree is rooted in a node from si. Otherwise,
the subtree s has the form bh(si) for some h ≤ log log n. This tree has depth h+ Θ(log log n) =
Θ(log logn) and size Θ(log n). Finally we combine the trees s′1, . . . , s

′
k ∈ T ({a, b, c}) in a balanced

way to a single tree using the binary valid pattern un(x1, . . . , xk) from the proof of Theorem 11,
i.e., tn = un(s′1, . . . , s

′
k). Then, |tn| = Θ(n). Moreover, by the same argument as in the proof

of Theorem 11, the dag for tn has size Ω(n·log logn
logn ) since the nodes in the k = n

logn many unary
chains of length log log n cannot be shared with other nodes. It remains to show that every
subtree s of tn has depth O(log |s|). For the case that s is a subtree of one of the trees s′i, this
has been already shown above. But the case that s is rooted in a node from un(x1, . . . , xk) is
also clear: In that case, s is of the form s = u′(s′i, . . . , s

′
j), where u′(xi, . . . , xj) is a subtree of

un(x1, . . . , xk). Assume that d is the depth of u′(xi, . . . , xj). Since un(x1, . . . , xk) is a balanced
binary tree, we have |u′(xi, . . . , xj)| ∈ Ω(2d) and j − i+ 1 ∈ Ω(2d). Hence, s = u′(s′i, . . . , s

′
j) has

size Ω(2d + 2d · log n) = Ω(2d · log n) and depth d+ Θ(log log n). This shows the desired property
since log(2d · log n) = d+ log log n.

Hübschle-Schneider and Raman [22] used Theorem 12 to prove the upper bound O
(n·log logσ n

logσ n

)
for the size of the top dag of an unranked tree of size n with σ many node labels. It is not clear
whether this bound can be improved to O

(
n

logσ n

)
. The trees used in Theorem 13 do not seem to

arise as the top trees of unranked trees.

5.4. Size of the TSLP produced by TreeBiSection

Let us fix the TSLP Gt for a tree t ∈ T (F≤2) that has been produced by the first part of
TreeBiSection. Let n = |t| and σ be the number of the different node labels that appear in t. For
the modified derivation tree D∗t we have the following:

• D∗t is a strictly binary tree with n leaves and hence has 2n− 1 nodes.

• There are σ + 3 possible node labels, namely 1, 2, 3 and those appearing in t.

• D∗t is (1/7)-balanced by (3). If we have two successive nodes in D∗t , then we split at one of
the two nodes according to (3). Now, assume that we split at node v according to (3). Let
v1 and v2 be the children of v, let ni be the leaf size of vi, and let n = n1 + n2 be the leaf
size of v. We get 1

8n ≤ n1 ≤ 3
4n and 1

4n ≤ n2 ≤ 7
8n (or vice versa). Hence, n1 ≥ 1

8n ≥
1
7n2

and n2 ≥ 1
4n ≥

1
3n1.

Recall that the nodes of the dag of D∗t are the nonterminals of the TSLP produced by TreeBiSection
and that this TSLP is in Chomsky normal form. Moreover, recall that the depth of D∗t is in
O(log n). Hence, with Lemma 9 we get:

Corollary 14. For a tree from T (F≤2) of size n with σ different node labels, TreeBiSection produces
a TSLP in Chomsky normal form of size O

(
n

logσ n

)
and depth O(log n). Every nonterminal of that

TSLP has rank at most 3, and the algorithm can be implemented in logspace and, alternatively, in
time O(n · log n).

In particular, for an unlabelled tree of size n we obtain a TSLP of size O
(

n
logn

)
.

17



5.5. Extension to trees of larger degree

If the input tree t has nodes with many children, then we cannot expect good compression by
TSLPs. The extreme case is tn = fn(a, . . . , a) where fn is a symbol of rank n. Hence, |tn| = n+ 1
and every TSLP for tn has size Ω(n). On the other hand, for trees in which the maximal rank is
bounded by a constant r ≥ 1, we can easily generalize TreeBiSection. Lemma 5 allows to find a
splitting node v satisfying

1

2(r + 2)
· |t| ≤ |t[v]| ≤ r + 1

r + 2
· |t|. (4)

The maximal arity of nodes also affects the arity of patterns: we allow patterns of rank up to r.
Now assume that t(x1, . . . , xr+1) is a valid pattern of rank r + 1, where r is again the maximal
number of children of a node. Then we find a subtree containing k parameters, where 2 ≤ k ≤ r:
Take a smallest subtree that contains at least two parameters. Since the root node of that subtree
has at most r children, and every proper subtree contains at most one parameter (due to the
minimality of the subtree), this subtree contains at most r parameters. By taking the root of that
subtree as the splitting node, we obtain two valid patterns with at most r parameters each. Hence,
we have to change TreeBiSection in the following way:

• As long as the number of parameters of the tree is at most r, we choose the splitting node
according to Lemma 5.

• If the number of parameters is r + 1 (note that in each splitting step, the number of
parameters increases by at most 1), then we choose the splitting node such that the two
resulting fragments have rank at most r.

As before, this guarantees that in every second splitting step we split in a balanced way. But the
balance factor β from Section 5.3 now depends on r. More precisely, if in the modified derivation
tree D∗t we have a node v with children v1 and v2 of leaf size n1 and n2, respectively, and this node
corresponds to a splitting satisfying (4), then we get

1

2(r + 2)
· n ≤ n1 ≤

r + 1

r + 2
· n,

1

r + 2
· n =

(
1− r + 1

r + 2

)
· n ≤ n2 ≤

(
1− 1

2(r + 2)

)
· n =

2r + 3

2(r + 2)
· n

or vice versa. This implies

n1 ≥ 1

2(r + 2)
· n ≥ 1

2r + 3
· n2,

n2 ≥ 1

r + 2
· n ≥ 1

r + 1
· n1 ≥

1

2r + 3
· n1.

Hence, the modified derivation tree becomes β-balanced for β = 1/(2r + 3). Moreover, the label
alphabet of the modified derivation tree now has size σ + r + 1 (since the TSLP produced in the
first step has nonterminals of rank at most r + 1). Theorem 10 yields the following bound on the
dag of the modified derivation tree and hence the size of the final TSLP:

O

(
n

logσ+r(n)
· log1+ 1

2r+3
(2r + 3)

)
= O

(
n

logσ+r(n)
· log(2r + 3)

log(1 + 1
2r+3 )

)
Note that log(1 + x) ≥ x for 0 ≤ x ≤ 1. Hence, we can simplify the bound to

O

(
n · log(σ + r) · r · log r

log n

)
.

By Lemma 5, the depth of the produced TSLP can be bounded by 2 · d, where d is any number
that satisfies

n ·
(
r + 1

r + 2

)d
≤ 1.
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Hence, we can bound the depth by

2 ·
⌈

log n

log(1 + 1
r+1 )

⌉
≤ 2 · d(r + 1) · log ne ∈ O(r · log n).

Theorem 15. For a tree of size n with σ different node labels, each of rank at most r, TreeBiSection

produces a TSLP in Chomsky normal form of size O
(n·log(σ+r)·r·log r

logn

)
and depth O(r · log n). Every

nonterminal of that TSLP has rank at most r + 1.

For the running time we obtain the following bound:

Theorem 16. TreeBiSection can be implemented such that it works in time O(r · n · log n) for a
tree of size n in which each symbol has rank at most r.

Proof. TreeBiSection makes O(r · log n) iterations of the while loop (this is the same bound as
for the depth of the TSLP) and each iteration takes time O(n). To see the latter, our internal
representation of trees with parameters from Section 4 is important. Using this representation, we
can still compute the split node in a right-hand side s from Ptemp in time O(|s|): We first compute
for every non-parameter node v of s (i) the size of the subtree rooted at v (as usual, excluding
parameters) and (ii) the number of parameters below v. This is possible in time O(|s|) using a
straightforward bottom-up computation. Using this information, we can compute the split node
in s in time O(|s|) for both cases (number of parameters in s is r + 1 or smaller than r + 1) by
searching from the root downwards.

In particular, if r is bounded by a constant, TreeBiSection computes a TSLP of size O
(

n
logσ n

)
and depth O(log n) in time O(n · log n). Moreover, our logspace implementation of TreeBiSection
(see Lemma 9) directly generalizes to the case of a constant rank.

On the other hand, for unranked trees in which the number of children of a node is arbitrary
and not determined by the node label (which is the standard tree model in XML) all this fails:
TreeBiSection only yields TSLPs of size Θ(n) and this is unavoidable as shown by the example
from the beginning of this subsection. Moreover, the logspace implementation from Section 5.2 no
longer works since nonterminals have rank at most r + 1 and we cannot store anymore the pattern
derived from a nonterminal in space O(log n) (we have to store r + 1 many nodes in the tree).

Fortunately there is a simple workaround for all these problems: An unranked tree can be
transformed into a binary tree of the same size using the well known first-child next-sibling encoding
[8, 30]. Then, one can simply apply TreeBiSection to this encoding to get in logspace and time
O(n · log n) a TSLP of size O

(
n

logσ n

)
.

For the problem of traversing a compressed unranked tree t (which is addressed in [6] for
top dags) another (equally well known) encoding is more favorable. Let c(t) be a compressed
representation (e.g., a TSLP or a top dag) of t. The goal is to represent t in space O(|c(t)|) such
that one can efficiently navigate from a node to (i) its parent node, (ii) its first child, (iii) its next
sibling, and (iv) its previous sibling (if they exist). For top dags [6], it was shown that a single
navigation step can be done in time O(log |t|). Using a suitable binary encoding, we can prove the
same result for TSLPs: Let r be the maximal rank of a node of the unranked tree t. We define the
binary encoding bin(t) by adding for every node v of rank s ≤ r a binary tree of depth dlog se with
s many leaves, whose root is v and whose leaves are the children of v. This introduces at most 2s
many new binary nodes, which are labelled by a new symbol. We get |bin(t)| ≤ 3|t|. In particular,
we obtain a TSLP of size O

(
n

logσ n

)
for bin(t), where n = |t| and σ is the number of different node

labels. Note that a traversal step in the initial tree t (going to the parent node, first child, next
sibling, or previous sibling) can be simulated by O(log r) many traversal steps in bin(t) (going to
the parent node, left child, or right child). But for a binary tree s, it was recently shown that a
TSLP G for s can be represented in space O(|G|) such that a single traversal step takes time O(1)
[35].7 Hence, we can navigate in t in time O(log r) ≤ O(log |t|).

7This generalizes a corresponding result for strings [20].
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5.6. Linear Time TSLP Construction

We showed that TreeBiSection can be implemented such that it works time O(n · log n) for a
tree of size n. In this section we present a linear time algorithm BU-Shrink (for bottom-up shrink)
that also constructs a TSLP of size O

(
n

logσ n

)
for a given tree of size n with σ many node labels of

constant rank. The basic idea of BU-Shrink is to merge in a bottom-up way nodes of the tree to
patterns of size roughly k, where k is defined later. This is a bottom-up computation in the sense
that we begin with individual nodes and gradually merge them into larger fragments (the term
“bottom-up” should not be understood in the sense that the computation is done from the leaves of
the tree towards the root). The dag of the small trees represented by the patterns then yields the
compression.

For a valid pattern p of rank r we define the weight of p as |p|+ r. This is the total number of
nodes in p including those nodes that are labelled with a parameter (which are not counted in the
size |p| of p). A pattern tree is a tree in which the labels of the tree are valid patterns. If a node v
is labelled with the valid pattern p and rank(p) = d, then we require that v has d children in the
pattern tree. For convenience, BU-Shrink also stores in every node the weight of the corresponding
pattern. For a node v, we denote by pv its pattern and by w(v) the weight of pv.

Let us fix a number k ≥ 1 that will be specified later. Given a tree t = (V, λ) of size n such
that all node labels in t are of rank at most r, BU-Shrink first creates a pattern tree t′ by replacing
every label f ∈ F by the valid pattern f(x1, . . . , xd) of weight d+ 1, where d is the rank of f . Note
that the parameters in these patterns correspond to the edges of the tree t. We will keep this
invariant during the algorithm, which will shrink the pattern tree t′. Hence, the total number of
all parameter occurrences in the patterns that appear as labels in the current pattern tree t′ will
be always the number of nodes of the current tree t′ minus 1. This allows us to ignore the cost of
handling parameters for the running time of the algorithm.

After generating the initial pattern tree t′, BU-Shrink creates a queue Q that contains references
to all nodes of t′ having at most one child (excluding the root node) in an arbitrary ordering.
During the run of the algorithm, the queue Q will only contain references to non-root nodes of the
current tree t′ that have at most one child (but Q may not contain references to all such nodes).
For each node v of the queue we proceed as follows. Let v be the ith child of its parent node u. If
w(v) > k or w(u) > k, we simply remove v from Q and proceed. Otherwise we merge the node
v into the node u. More precisely, we delete the node v, and set the ith child of u to the unique
child of v if it exists (otherwise, u loses its ith child). The pattern pu is modified by replacing the
parameter at the position of the ith child by the pattern pv and re-enumerating all parameters
to get a valid pattern. We also set the weight w(u) to w(v) + w(u) − 1 (which is the weight of
the new pattern pu). Note that in this way both the number of edges of t′ and the total number
of parameter occurrences in all patterns decreases by 1 and so these two sizes stay equal. For
example, let u be a node with pu = f(x1, x2) and let v be its second child with pv = g(x1). Then
the merged pattern becomes f(x1, g(x2)), and its weight is 4. If the node u has at most one child
after the merging and its weight is at most k, then we add u to Q (if it is not already in the queue).
We do this until the queue is empty. Note that every pattern appearing in the final pattern tree
has rank at most r (the maximal rank in the initial tree).

Now consider the forest consisting of all patterns appearing in the resulting final pattern tree.
We construct the dag of this forest, which yields grammar rules for each pattern with shared
nonterminals. The dag of a forest (i.e., a disjoint union of trees) is constructed in the same way
as for a single tree. This dag has for every subtree appearing in the forest exactly one node.
The parameters x1, x2, . . . , xr that appear in the patterns are treated as ordinary constants when
constructing the dag. As usual, the dag can be viewed as a TSLP, where the nodes of the dag are
the nonterminals. In this way we obtain a TSLP in which each pattern is derived by a nonterminal
of the same rank. Finally, we add to the TSLP the start rule S → s, where s is obtained from
the pattern tree by labelling each node v with the unique nonterminal A such that A derives p(v).
Algorithm 2 shows the pseudocode for BU-Shrink.

Example 17. Consider the pattern tree depicted in Figure 7. Assuming no further merg-
ings are done, the final TSLP is S → A(B(C), B(B(C))), A(x1, x2) → f(g(x1), x2), B(x1) →
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Algorithm 2: BU-Shrink(t, k)

input : tree t = (V, λ), number k ≤ |t|
Q := ∅
foreach v ∈ V do

let f = λ(v) ∈ Fd be the label of node v
w(v) := 1 + d (the weight of node v)
pv := f(x1, . . . , xd) (the pattern stored in node v)
if d ≤ 1 and v is not the root then

Q := Q ∪ {v}
end

end
while Q 6= ∅ do

choose arbitrary node v ∈ Q and set Q := Q \ {v}
let u be the parent node of v
if w(v) ≤ k and w(u) ≤ k then

d := rank(pv); e := rank(pu)
let v be the ith child of u
w(u) := w(u) + w(v)− 1
pu := pu(x1, . . . , xi−1, pv(xi, . . . , xi+d−1), xi+d, . . . , xd+e−1)
if v has a (necessarily unique) child v′ then

set v′ to the ith child of u
end
delete node v
if d+ e− 1 ≤ 1 and w(u) ≤ k then

Q := Q ∪ {u}
end

end

end
P := ∅
compute the minimal dag for the forest consisting of all patterns pv, where v is a node of t
foreach node v of t do

create a fresh nonterminal Av of rank d := rank(pv)
P := P ∪ {Av(x1, . . . , xd)→ pv(x1, . . . , xd)}
λ(v) := Av (the new label of node v)

end
return TSLP (S, P ∪ {S → t})
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Figure 7: BU-Shrink first transforms the input tree on the top left into the pattern tree on the top right (the weights
are omitted to improve readability). Then it starts to shrink this pattern tree. The two trees at the bottom depict
possible intermediate trees during the shrinking process.

f(C, x1), C → g(a).

It is easy to see that BU-Shrink runs in time O(n) for a tree of size n. First of all, the number
of mergings is bounded by n, since each merging reduces the number of nodes of the pattern tree
by one. Moreover, if a node is removed from Q (because its weight or the weight of its parent node
is larger than k) then it will never be added to Q again (since weights are never reduced). A single
merging step needs only a constant number of pointer operations and a single addition (for the
weights). For this, it is important that we do not copy patterns, when the new pattern (for the
node u in the above description) is constructed. The forest, for which we construct the dag, has
size O(n): The number of non-parameter nodes is exactly n, and the number of parameters is at
most n− 1: initially the forest has n− 1 parameters (as there is a parameter for each node except
the root) and during BU-Shrink we can only decrease the total amount of parameters.

Let us now analyze the size of the constructed TSLP. In the following, let t be the input tree of
size n and let r be the maximal rank of a label in t. Let Σ = labels(t) and σ = |Σ|.

Lemma 18. Let tp be the pattern tree resulting from BU-Shrink. Then |tp| ≤ 4·r·n
k + 2.

Proof. Let us first assume that r ≥ 2. The number of non-root nodes in tp of arity at most one is
at least |tp|/2− 1. For each of those nodes, either the node itself or the parent node has weight at
least k. We now map in tp each non-root node of arity at most one to a node of weight at least k:
Let u be a node of tp (which is not the root) having arity at most one. If the weight of u is at least
k, we map u to itself, otherwise we map u to its parent node, which then must be of weight at least
k. Note that at most r nodes are mapped to a fixed node v: If v has arity at most one, then v and
its child (if it exists) can be mapped to v; if v has arity greater than one then only its children can

be mapped to v, and v has at most r children. Therefore there must exist at least
|tp|−2

2r many
nodes of weight at least k. Because the sum of all weights in tp is at most 2n, this yields

|tp| − 2

2r
· k ≤ 2n,
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which proves the lemma for the case r ≥ 2. The case r = 1 can be proved in the same way: Clearly,
the number of non-root nodes of arity at most one is |tp| − 1 and at most 2 nodes are mapped to a

fixed node of weight at least k (by the above argument). Hence, there exist at least
|tp|−1

2 =
|tp|−1

2r
many nodes of weight at least k.

Note that each node in the final pattern tree has weight at most 2k since BU-Shrink only merges
nodes of weight at most k. By Lemma 1 the number of different patterns in T (Σ∪ {x1, . . . , xr}) of
weight at most 2k is bounded by 4

3 (4(σ+ r))2k ≤ dk for d = (6(σ+ r))2. Hence, the size of the dag
constructed from the patterns is bounded by dk. Adding the size of the start rule, i.e. the size of
the resulting pattern tree (Lemma 18) we get the following bound for the constructed TSLP:

dk +
4 · r · n
k

+ 2.

Let us now set k = 1
2 · logd n. We get the following bound for the constructed TSLP:

d
1
2 ·logd n +

8 · n · r
logd n

+ 2 =
√
n+O

(
n · r

logd n

)
= O

(
n · r

logσ+r n

)
= O

(
n · log(σ + r) · r

log n

)
.

Theorem 19. BU-Shrink computes for a given tree of size n with σ many node labels of rank at

most r in time O(n) a TSLP of size O
(n·log(σ+r)·r

logn

)
. Every nonterminal of that TSLP has rank at

most r.

Clearly, if r is bounded by a constant, we obtain the bound O
(

n
logσ n

)
. On the other hand,

already for r ∈ Ω(log n) the bound O
(

n·r
logr+σ n

)
is in ω(n). But note that the size of the TSLP

produced by BU-Shrink can never exceed n.

Combining TreeBiSection and BU-Shrink to achieve logarithmic grammar depth. Recall that
TreeBiSection produces TSLPs in Chomsky normal form of logarithmic depth, which will be
important in the next section. Clearly, the TSLPs produced by BU-Shrink are not in Chomsky
normal form. To get a TSLP in Chomsky normal form we have to further partition the right-hand
sides of the TSLP. Let us assume in this section that the maximal rank of symbols appearing in
the input tree is bounded by a constant. Hence, BU-Shrink produces for an input tree t of size n
with σ many node labels a TSLP of size O

(
n

logσ n

)
. The weight and hence also the depth of the

patterns that appear in tp is O(logd n) = O(logσ n) ≤ O(log n). The productions that arise from
the dag of the forest of all patterns have the form A → f(A1, . . . , Ar) and A → x where f is a
node label of the input tree, r is bounded by a constant, and x is one of the parameters (recall
that in the dag construction, we consider the parameters appearing in the patterns as ordinary
constants). Productions A→ x are eliminated by replacing all occurrences of A in a right-hand
side by the parameter x. All resulting productions (except the start rule S → s) have the form
A→ f(α1, . . . , αr) where r is a constant and every αi is either a nonterminal or a parameter. These
productions are then split such that all resulting productions (except the start rule S → s) are in
Chomsky normal form. This is straightforward. For instance the production A→ f(A1, A2, A3) is
split into A→ B(A3), B(x)→ C(A2, x), C(x, y)→ D(A1, x, y) and D(x, y, z)→ f(x, y, z). Recall
that we assume that the maximal rank of terminal symbols is bounded by a constant. Therefore,
the above splitting increases the size and depth only by a constant.

Recall that for the start rule S → s, where s is the tree returned by BU-Shrink, the tree s has
size O

(
n

logσ n

)
= O

(
n·log σ
logn

)
. We want to apply TreeBiSection to balance the tree s. But we cannot

use it directly because the resulting running time would not be linear if σ is not a constant: Since
TreeBiSection needs time O(|s| log |s|) on trees of constant rank (see the paragraph after the proof
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of Theorem 16), this yields the time bound

O(|s| log |s|) = O

(
n · log σ

log n
· log

(
n · log σ

log n

))
= O

(
n · log σ

log n
· (log n+ log log σ − log log n)

)
= O(n log σ).

To eliminate the factor log σ, we apply BU-Shrink again to s with k = log σ ≤ log n. Note that
the maximal rank in s is still bounded by a constant (the same constant as for the input tree).
By Lemma 18 this yields in time O(|s|) ≤ O(n) a tree s′ of size O

(
n

logn

)
on which we may now

use TreeBiSection to get a TSLP for s′ in Chomsky normal form of size O(|s′|) = O
(

n
logn

)
(note

that every node of s′ may be labelled with a different symbol, in which case TreeBiSection cannot
achieve any compression for s′, when we count the size in bits) and depth O(log |s′|) = O(log n).
Moreover, the running time of TreeBiSection on s′ is

O(|s′| · log |s′|) = O

(
n

log n
log

(
n

log n

))
= O

(
n

log n
· (log n− log log n)

)
= O(n).

Let us call this combined algorithm BU-Shrink+TreeBiSection.

Theorem 20. BU-Shrink+TreeBiSection computes for a given tree t of size n with σ many node
labels of constant rank each in time O(n) a TSLP in Chomsky normal form of size O

(
n

logσ n

)
and

depth O(log n). The rank of every nonterminal of that TSLP is bounded by the maximal rank of a
node label in t (a constant).

6. Arithmetical Circuits

In this section, we present our main application of Corollary 14 and Theorem 20. Let S = (S,+, ·)
be a (not necessarily commutative) semiring. Thus, (S,+) is a commutative monoid with identity
element 0, (S, ·) is a monoid with identity element 1, and · left and right distributes over +.

We use the standard notation of arithmetical formulas and circuits over S: An arithmetical
formula is just a labelled binary tree in which internal nodes are labelled with the semiring
operations + and ·, and leaf nodes are labelled with variables y1, y2, . . . or the constants 0 and
1. An arithmetical circuit is a (not necessarily minimal) dag whose internal nodes are labelled
with + and · and whose leaf nodes are labelled with variables or the constants 0 and 1. The depth
of a circuit is the length of a longest path from the root node to a leaf. An arithmetical circuit
evaluates to a multivariate noncommutative polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are
the variables occurring at the leaf nodes. Two arithmetical circuits are equivalent if they evaluate
to the same polynomial.

Brent [9] has shown that every arithmetical formula of size n over a commutative ring can be
transformed into an equivalent circuit of depth O(log n) and size O(n) (the proof easily generalizes
to semirings). By first constructing a TSLP of size O

(
n·logm

logn

)
, where m is the number of different

variables in the formula, and then transforming this TSLP into a circuit, we will refine the size
bound to O

(
n·logm

logn

)
. Moreover, by Corollary 14 (Theorem 20, respectively) this conversion can be

done in logspace (linear time, respectively).
In the following, we consider TSLPs, whose terminal alphabet consists of the binary symbols +

and · and the constant symbols 0, 1, y1, . . . , ym for some m. Let us denote this terminal alphabet
with Σm. For our formula-to-circuit conversion, it will be important to work with monadic TSLPs,
i.e., TSLPs in which every nonterminal has rank at most one.

Lemma 21. From a given tree t ∈ T (Σm) of size n one can construct in logspace (linear time,
respectively) a monadic TSLP H of size O

(
n·logm

logn

)
and depth O(log n) with val(H) = t and such

that all productions are of the following forms:
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• A→ B(C) for A,C ∈ N0, B ∈ N1,

• A(x)→ B(C(x)) for A,B,C ∈ N1,

• A→ f(B,C) for f ∈ {+, ·}, A,B,C ∈ N0,

• A(x)→ f(x,B), A(x)→ f(B, x) for f ∈ {+, ·}, A ∈ N1, B ∈ N0,

• A→ a for a ∈ {0, 1, y1, . . . , ym}, A ∈ N0,

• A(x)→ B(x) for A,B ∈ N1,

• A(x)→ x for A ∈ N1.

Proof. The linear time version is an immediate consequence of Theorem 3 and Theorem 20.8

It remains to show the logspace version. We first apply TreeBiSection (Corollary 14) to get in
logspace a TSLP G in Chomsky normal form of size O

(
n·logm

logn

)
and depth O(log n) with val(G) = t.

Note that every nonterminal of G has rank 3. Moreover, for every nonterminal A of rank k ≤ 3,
TreeBiSection computes k + 1 nodes v0, v1, . . . , vk of t that represent the pattern valG(A): v0 is the
root node of an occurrence of valG(A) in t and vi (1 ≤ i ≤ k) is the node of the occurrence to
which the parameter xi is mapped, see also the proof of Lemma 9. We can assume that for every
nonterminal A of rank k this tuple sA has been computed.

We basically show that the construction from [36], which makes a TSLP monadic, works
in logspace if all nonterminals and terminals of the input TSLP have constant rank.9 For a
nonterminal A of rank 3 with sA = (v0, v1, v2, v3), the pattern valG(A) has two possible branching
structures, which are the branching structures shown in Figure 2. By computing the paths from the
three nodes v1, v2, v3 up to v0, we can compute in logspace, which of the two branching structures
valG(A) has. Moreover, we can compute the two binary symbols f1, f2 ∈ {+, ·} at which the three
paths that go from v1, v2, and v3, respectively, up to v0 meet. We finally associate with each of
the five dashed edges in Figure 2 a fresh unary nonterminal Ai (0 ≤ i ≤ 4) of the TSLP H. In this
way we can built up in logspace what is called the skeleton tree for A. It is one of the following
two trees, depending on the branching structure of valG(A), see also Figure 8:

1. A0(f1(A1(f2(A2(x1), A3(x1))), A4(x3)))

2. A0(f1(A1(x1), A2(f2(A3(x2), A4(x3)))))

For a nonterminal A of rank two there is only a single branching structure and hence a single
skeleton tree A0(f(A1(x1), A2(x2))) for f ∈ {+, ·}. Finally, for a nonterminal A of rank at most
one, the skeleton tree is A itself (this is in particular the case for the start nonterminal S, which
will be also the start nonterminal of H), and this nonterminal then belongs to H (nonterminals of
G that have rank larger than one do not belong to H). What remains is to construct in logspace
productions for the nonterminals of H that allow to rewrite the skeleton tree of A to valG(A). For
this, let us consider the productions of G, whose right-hand sides have the form (1) and (2). A
production A(x1, . . . , xk)→ f(x1, . . . , xk) with k ≤ 1 is copied to H. On the other hand, if k = 2,
then A does not belong to H and hence, we do not copy the production to H. Instead, we introduce
the productions Ai(x1)→ x1 (0 ≤ i ≤ 2) for the three nonterminals A0, A1, A2 that appear in the
skeleton tree of A. Now consider a production

A(x1, . . . , xk)→ B(x1, . . . , xi−1, C(xi, . . . , xi+l−1), xi+l, . . . , xk),

8Note that productions of the form A(x)→ B(x) and A(x)→ x do not appear in Theorem 3. We allow them
in the lemma, since they make the logspace part of the lemma easier to show and do not pose a problem in the
remaining part of this section.

9We only consider the case that nonterminals have rank at most three and terminals have rank zero or two,
which is the case we need, but the general case, where all nonterminals and all terminals of the input TSLP have
constant rank could be handled in a similar way in logspace.
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Figure 8: The two possible skeleton trees for a nonterminal A of rank three

where k, l, k − l + 1 ≤ 3 (note that l is the rank of C and k − l + 1 is the rank of B). We
have constructed the skeleton trees tA, tB , tC for A,B, and C, respectively. Consider the tree
tB(x1, . . . , xi−1, tC(xi, . . . , xi+l−1), xi+l, . . . , xk). We now introduce the productions for the non-
terminals that appear in tA in such a way that tA(x1, . . . , xk) can be rewritten to the tree

tB(x1, . . . , xi−1, tC(xi, . . . , xi+l−1), xi+l, . . . , xk).

There are several cases depending on k, l, and i. Let us only consider two typical cases (all other
cases can be dealt in a similar way): The trees tA(x1, x2, x3) and tB(x1, tC(x2, x3)) for a production
A(x1, x2, x3)→ B(x1, C(x2, x3)) are shown in Figure 9. Note that the skeleton tree tA(x1, x2, x3)
is the right tree from Figure 8. We add the following productions to H:

A0(x)→ B0(x) A1(x)→ B1(x) A2(x)→ B2(C0(x))

A3(x)→ C1(x) A4(x)→ C2(x)

Let us also consider the case A(x1, x2)→ B(x1, x2, C). The trees tA(x1, x2) and tB(x1, x2, tC) =
tB(x1, x2, C) are shown in Figure 10 (we assume that the skeleton tree for B is the left one from
Figure 8). We add the following productions to H:

A0(x)→ B0(f1(B1(x), B4(C))), A1(x)→ B2(x), A2(x)→ B3(x). (5)

Other cases can be dealt with similarly. In each case we write out a constant number of productions
that clearly can be produced by a logspace machine using the shape of the skeleton trees. Correctness
of the construction (i.e., val(G) = val(H)) follows from valH(tA) = valG(A), which can be shown
by a straightforward induction, see [36]. Clearly, the size and depth of H is linearly related to the
size and depth, respectively, of G. Finally, productions of the form A(x)→ B(f(C(x), D(E))) (or
similar forms) as in (5) can be easily split in logspace into productions of the forms shown in the
lemma. For instance, A(x)→ B(f(C(x), D(E))) is split into A(x)→ B(F (x)), F (x)→ G(C(x)),
G(x)→ f(x,H), H → D(E). Again, the size and depth of the TSLP increases only by a linear
factor.

Going from a monadic TSLP to a circuit (or dag) that evaluates over every semiring to the
same noncommutative polynomial is easy:

Lemma 22. From a given monadic TSLP G over the terminal alphabet Σm such that all productions
are of the form shown in Lemma 21, one can construct in logspace (linear time, respectively) an
arithmetical circuit C of depth O(depth(G)) and size O(|G|) such that over every semiring, C and
val(G) evaluate to the same noncommutative polynomial in m variables.

Proof. Fix an arbitrary semiring S and let R be the polynomial semiring R = S[y1, . . . , ym].
Clearly, for a nonterminal A of rank 0, valG(A) is a tree without parameters that evaluates to an
element pA of the semiring R. For a nonterminal A(x) of rank 1, valG(A) is a tree, in which the
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Figure 10: The skeleton tree tA(x1, x2) and the tree tB(x1, x2, tC)

only parameter x occurs exactly once. Such a tree evaluates to a noncommutative polynomial
pA(x) ∈ R[x]. Since the parameter x occurs exactly once in the tree val(A), it turns out that pA(x)
is linear and contains exactly one occurrence of x. More precisely, by induction on the structure of
the TSLP G we show that for every nonterminal A(x) of rank 1, the tree valG(A) evaluates in R[x]
to a noncommutative polynomial of the form

pA(x) = A0 +A1xA2,

where A0, A1, A2 ∈ R = S[y1, . . . , ym]. Using the same induction, one can build up a circuit of size
O(|G|) and depth O(depth(G)) that contains gates evaluating to A0, A1, A2. For a nonterminal A
of rank zero, the circuit contains a gate that evaluates to the semiring element pA ∈ R, and we
denote this gate with A as well.

The induction uses a straightforward case distinction on the rule for A(x). The cases that
the unique rule for A has the form A(x) → x, A(x) → B(x), A(x) → f(x,B), A(x) → f(B, x),
A→ f(B,C), or A→ a is clear. For instance, for a rule A(x)→ +(B, x), we have pA(x) = B+1·x·1,
i.e., we set A0 := B, A1 := 1, A2 := 1. Now consider a rule A(x) → B(C(x)) (for A → B(C)
the argument is similar). We have already built up a circuit containing gates that evaluate to
B0, B1, B2, C0, C1, C2, where

pB(x) = B0 +B1x1B2, pC(x) = C0 + C1xC2.
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We get

pA(x) = pB(pC(x))

= B0 +B1(C0 + C1xC2)B2

= (B0 +B1C0B2) +B1C1x1C2B2

and therefore set
A0 := B0 +B1C0B2, A1 := B1C1, A2 := C2B2.

So we can define the polynomials A0, A1, A2 using the gates B0, B1, B2, C0, C1, C2 with only 5
additional gates. Note that also the depth only increases by a constant factor (in fact, 2).

The output gate of the circuit is the start nonterminal of the TSLP G. The above construction
can be carried out in linear time as well as in logspace.

Now we can show the main result of this section:

Theorem 23. A given arithmetical formula F of size n having m different variables can be
transformed in logspace (linear time, respectively) into an arithmetical circuit C of depth O(log n)
and size O

(
n·logm

logn

)
such that over every semiring, C and F evaluate to the same noncommutative

polynomial in m variables.

Proof. Let F be an arithmetical formula of size n and let y1, . . . , ym be the variables occurring in
F . Fix an arbitrary semiring S and let R be the polynomial semiring R = S[y1, . . . , ym]. Using
Lemma 21 we can construct in logspace (linear time, respectively) a monadic TSLP G of size
O
(
n·logm

logn

)
and depth O(log n) such that val(G) = F . Finally, we apply Lemma 22 in order to

transform G in logspace (linear time, respectively) into an equivalent circuit of size O
(
n·logm

logn

)
and

depth O(log n).

Theorem 23 can also be shown for fields instead of semirings. In this case, the expression is built
up using variables, the constants −1, 0, 1, and the field operations +, · and /. The proof is similar to
the semiring case. Again, we start with a monadic TSLP of size O

(
n·logm

logn

)
and depth O(log n) for

the arithmetical expression. Again, one can assume that all rules have the form A(x)→ B(C(x)),
A→ B(C), A(x)→ f(x,B), A(x)→ f(B, x), A→ f(B,C), A(x)→ B(x), A(x)→ x, or A→ a,
where f is one of the binary field operations and a is either −1, 0, 1, or a variable. Using this
particular rule format, one can show that every nonterminal A(x) evaluates to a rational function
(A0+A1x)/(A2+A3x) for polynomials A0, A1, A2, A3 in the circuit variables, whereas a nonterminal
of rank 0 evaluates to a fraction of two polynomials. Finally, these polynomials can be computed
by a single circuit of size O

(
n·logm

logn

)
and depth O(log n).

Lemma 22 has an interesting application to the problem of checking whether the polynomial
represented by a TSLP over a ring is the zero polynomial. The question, whether the polynomial
computed by a given circuit is the zero polynomial is known as polynomial identity testing (PIT).
This is a famous problem in algebraic complexity theory. For the case that the underlying ring is Z
or Zn (n ≥ 2) polynomial identity testing belongs to the complexity class coRP (the complement
of randomized polynomial time), see [1]. PIT can be generalized to arithmetic expressions that are
given by a TSLP. Using Lemma 22 and Theorem 3 we obtain:

Theorem 24. Over any semiring, the question, whether the polynomial computed by a given TSLP
is the zero polynomial, is equivalent with respect to polynomial time reductions to PIT. In particular,
if the underlying semiring is Z or Zn, then the question, whether the polynomial computed by a
given TSLP is the zero polynomial, belongs to coRP.

7. Future work

In [45] a universal (in the information-theoretic sense) code for binary trees is developed. This
code is computed in two phases: In a first step, the minimal dag for the input tree is constructed.
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Then, a particular binary encoding is applied to the dag. It is shown that the average redundancy
of the resulting code converges to zero (see [45] for definitions) for every probability distribution on
binary trees that satisfies the so-called domination property and the representation ratio negligibility
property. Whereas the domination property is somewhat technical and easily established for many
distributions, the representation ratio negligibility property means that the average size of the dag
divided by the tree size converges to zero for the underlying probability distribution. This is, for
instance, the case for the uniform distribution, since the average size of the dag is Θ

(
n√

logn

)
[18].

We construct TSLPs that have worst-case size O
(

n
logn

)
assuming a constant number of node

labels. We are confident that replacing the minimal dag by a TSLP of worst-case size O
(

n
logn

)
in the universal encoder from [45] leads to stronger results. In particular, we hope that for the
resulting encoder the maximal pointwise redundancy converges to zero for certain probability
distributions. For strings, such a result was obtained in [28] using the fact that every string of
length n over a constant size alphabet has an SLP of size O

(
n

logn

)
.

It would be interesting to know the worst-case output size of the grammar-based tree compressor
from [27]. It works in linear time and produces a TSLP of size O(rg log(n/rg)) for a tree of size n
and maximal rank r, where g is the size of a smallest TSLP. Since this function is monotonically
increasing with g and g ∈ O(n/ logσ n) for trees of constant rank, the algorithm in [27] yields
for a tree of constant rank a TSLP of size O(n log logσ n/ logσ n). It remains open, whether the
additional factor log logσ n is necessary.

In [6] the authors proved that the top dag of a given tree t of size n is at most by a factor log n
larger than the minimal dag of t. It is not clear, whether the TSLP constructed by TreeBiSection
has this property too. The construction of the top dag is done in a bottom-up way, and as a
consequence identical subtrees are compressed in the same way. This property is crucial for the
comparison with the minimal dag. TreeBiSection works in a top-down way. Hence, it is not
guaranteed that identical subtrees are compressed in the same way. In contrast, BU-Shrink works
bottom-up (although in a somehow different way as for the dag), and one might compare the size
of the produced TSLP with the size of the minimal dag.

Acknowledgment. We thank Anna Gál and the anonymous referees for helpful comments. The
third, fourth and fifth author acknowledge support from the DFG research project QUANT-KOMP
(Lo 748/10-1). The third author was additionally supported by Humboldt Foundation return
fellowship.

[1] M. Agrawal and R. Saptharishi. Classifying polynomials and identity testing. Current Trends
in Science — Platinum Jubilee Special, pages 149–162, 2009

[2] T. Akutsu. A bisection algorithm for grammar-based compression of ordered trees. Inf.
Process. Lett., 110(18–19):815–820, 2010.
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[26] A. Jeż. A really simple approximation of smallest grammar. Theor. Comput. Sci., 616:141–150,
2016.
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