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In this paper we present a simple linear-time algorithm constructing a context-free
grammar of size O(glog(N/g)) for the input string, where N is the size of the input string
and g the size of the optimal grammar generating this string. The algorithm works for
arbitrary size alphabets, but the running time is linear assuming that the alphabet ¥ of
the input string can be identified with numbers from {1,..., N} for some constant c.
Otherwise, additional cost of O(Nlog|XZ|) is needed.

Algorithms with such an approximation guarantee and running time are known, the
novelty of this paper is a particular simplicity of the algorithm as well as the analysis
of the algorithm, which uses a general technique of recompression recently introduced by

SLP ] the author. Furthermore, contrary to the previous results, this work does not use the LZ
Compression representation of the input string in the construction, nor in the analysis.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Grammar based compression

In the grammar-based compression text is represented by a context-free grammar (CFG) generating exactly one string.
The idea behind this approach is that a CFG can compactly represent the structure of the text, even if this structure is not
apparent. Furthermore, the natural hierarchical definition of the CFGs makes such a representation suitable for algorithms, in
which case the string operations can be performed on the compressed representation, without the need of the explicit de-
compression [2,8,10,17,3,1]. Lastly, there is a close connection between block-based compression methods and the grammar
compression: it is fairly easy to rewrite the LZW definition as an O(1) larger CFG, LZ77 can also be presented in this way,
introducing a polynomial blow-up in size (reducing the blow up to log(N/¢), where ¢ is the size of the LZ77 representation,
is non-trivial [18,1]).

While grammar-based compression was introduced with practical purposes in mind and the paradigm was used in
several implementations [12,11,16], it also turned out to be very useful in more theoretical considerations. Intuitively, in
many cases large data have relatively simple inductive definition, which results in a grammar representation of a small size.
On the other hand, it was already mentioned that the hierarchical structure of the CFGs allows operations directly on the
compressed representation. A recent survey by Lohrey [13] gives a comprehensive description of several areas of theoretical
computer science in which grammar-based compression was successfully applied.

* An extended abstract of this paper was presented at CPM 2013 conference [4].
E-mail address: aje@cs.uni.wroc.pl.

http://dx.doi.org/10.1016/j.tcs.2015.05.027
0304-3975/© 2015 Elsevier B.V. All rights reserved.


http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:aje@cs.uni.wroc.pl
http://dx.doi.org/10.1016/j.tcs.2015.05.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.05.027&domain=pdf

116 A. Jez | Theoretical Computer Science 592 (2015) 115-134

The main drawback of the grammar-based compression is that producing the smallest CFG for a text is intractable: given
a string w and number k it is NP-hard to decide whether there exists a CFG of size k that generates w [20]. Furthermore,

the size of the grammar cannot be approximated with an approximation factor better than %, unless P=NP [1].

Lastly, it is worth noting that in an extremely simple case of strings of the form a‘'ba®2b-..ba% construction of
the grammar generating a given string is equivalent (up to a small constant factor) to a construction of an addition
chain for the sequence ¢1 < €3 < ... < £, and for the latter problem the best algorithm returns an addition chain of

size log €, + (9( {4‘:1 %) [21], which in particular yields an O(lo?l%) approximation of the size of the small-

est addition chain. Since the addition chains are well studied, showing a construction of an addition chain shorter than

log ¢ + O(Zile log’ﬁ)gfei) seems unlikely. Note, that this construction was not aimed at approximating the shortest addition

chain, so it is still possible that O(k’i) approximation can be improved. In any case, any new result for addition chains

loglogn
would be interesting on its own.
1.2. Approximation

The hardness of the smallest grammar problem naturally leads to two directions of research: on the one hand, several
heuristics are considered [12,11,16], on the other, approximation algorithms, with a guaranteed approximation ratio, are
proposed; in this paper we consider only the latter approach. Note that the heuristical algorithms can work differently
depending on the distribution of letters in the input (and often the principle behind them assumes that the data has some
sort of regularity). On the other hand, the approximation guarantees shown for the latter algorithms are universal, in the
sense that they do not depend on the distribution of letters or any other properties of the provided text.

The first two algorithms with an approximation ratio O(log(N/g)) were developed independently (and simultaneously)
by Rytter [18] and Charikar et al. [1]. They followed a similar approach, we first present Rytter’s one as it is a bit easier to
explain.

Rytter’s algorithm [18] applies the LZ77 compression to the input string and then transforms the obtained LZ77 represen-
tation to an O(£log(N/¢)) size grammar, where ¢ is the size of the LZ77 representation. It is easy to show that £ < g and as
f(x) =xlog(N/x) is increasing, the bound O(glog(N/g)) on the size of the grammar follows (and so a bound O(log(N/g))
on approximation ratio). The crucial part of the construction is the requirement that the intermediate constructed grammar
defines a derivation tree satisfying the AVL condition. The bound on the running time and the approximation guarantee
are all consequences of the balanced form of the derivation tree and of the known algorithms for merging, splitting, etc.
of AVL trees (in fact these procedures are much simpler in this case, as we do not store any information in the internal
nodes [18]). Note that also the final grammar for the input text is balanced, which makes it suitable for later processing.
Since the construction of LZ77 representation can be performed in linear time (assuming that the letters of the input word
can be sorted in linear time), also the running time of the whole algorithm can be easily bounded by a linear function.

Charikar et al. [1] followed more or less the same path, with a different condition imposed on the grammar: it was
required that its derivation tree is length-balanced, i.e. for a rule X — Y Z the lengths of words generated by Y and Z are
within a certain multiplicative constant factor from each other. For such trees efficient implementation of merging, splitting
etc. operations were given (i.e. constructed from scratch) by the authors and so the same running time as in the case of the
AVL trees was obtained.

Lastly, Sakamoto [19] proposed a different algorithm, based on RePair [12], which is one of the practically implemented
and used algorithms for grammar-based compression. His algorithm iteratively replaced pairs of different letters and maxi-
mal blocks of letters (a’ is a maximal block if it cannot be extended by a to either side). A special pairing of the letters was
devised, so that it is ‘synchronising’: if w has 2 disjoint occurrences in the text, then those two occurrences can be repre-
sented as wqw’w;, where wi, wy = O(1), such that both occurrences of w’ in text are paired and compressed in the same
way. The analysis was based on considering the LZ77 representation of the text and proving that due to ‘synchronisation’
the factors of LZ77 are compressed very similarly as the text to which they refer.

However, to the author’s best knowledge and understanding, the presented analysis [19] is incomplete, as the cost of
nonterminals introduced when maximal blocks are replaced is not bounded at all in the paper, see the appendix; the bound
that the author was able to obtain using the approach of Sakamoto is @ (log(N/g)?), so worse than claimed.

1.3. Proposed approach: recompression

In this paper another algorithm is proposed, it is constructed using the general approach of recompression, developed by
the author. In essence, we iteratively apply two replacement schemes to the text T:

pair compression of ab For two different symbols (i.e. letters or nonterminals) a, b such that substring ab occurs in T
replace each of ab in T by a fresh nonterminal c.

a’s block compression For each maximal block a’, where a is a letter or a nonterminal and ¢ > 1, that occurs in T, replace
all as in T by a fresh nonterminal ay.
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Then the returned grammar is obtained by backtracking the compression operations performed by the algorithm: observe
that replacing ab with ¢ corresponds to a grammar production

c—ab (1a)

and similarly replacing a® with a; corresponds to a grammar production

ag—a* . (1b)

The algorithm is divided into phases: in the beginning of a phase, all pairs occurring in the current text are listed and
stored in a list P, similarly, L contains all letters occurring in the current text. Then pair compression is applied to an
appropriately chosen subset of P and all blocks of symbols from L are compressed, then the phase ends. If everything
works perfectly, each symbol of T is replaced and so T’s length drops by half; in reality the text length drops by some
smaller, but constant, factor per phase. For the sake of simplicity, we treat all nonterminals introduced by the algorithm as
letters.

In the previous work of the author it was shown that such an approach can be efficiently applied to text represented in
a grammar compressed form. In this way new results for compressed membership problem [6], fully compressed pattern
matching [8] and word equations [5,7] were obtained. In this paper a somehow opposite direction is followed: the recom-
pression method is applied to the input string. This yields a simple linear-time algorithm: Performing one phase in O(|T|)
running time is relatively easy, since the length of T drops by a constant factor in each phase, the O(N) running time is
obtained. The used space is also linear, under the assumption that a unit machine word can hold 2(logn) bits.

However, the more interesting is the analysis, and not the algorithm itself: it is performed by applying (as a mental
experiment) the recompression to the optimal grammar G for the input text. In this way, the current G always generates the
current string kept by the algorithm and the number of nonterminals introduced during the construction can be calculated
in terms of |G| < g.

A relatively straightforward analysis yields that the generated grammar is of size O(glogN), a slightly more involved
analysis yields a bound O(glog(N/g) + g) (for the same grammar).

1.4. Advantages and disadvantages of the proposed technique

The author believes that the proposed algorithm is interesting, as it is very simple and its analysis for the first time
does not rely on LZ77 representation of the string. Potentially this can help in both design of an algorithm with a better
approximation ratio and in showing a logarithmic lower bound: Observe that LZ77 representation is known to be at most as
large as the smallest grammar, so it might be that some algorithm produces a grammar of size o(glog(N/g)), even though
this is of size 2 (£log(N/¢)), where ¢ is the size of the LZ77 representation of the string. Secondly, as the analysis ‘considers’
the optimal grammar, it may be much easier to observe, where every approximation algorithm performs badly, and so try
to approach a logarithmic lower bound. This is much harder to imagine, when the approximation analysis is done in terms
of the LZ77.

Unfortunately, the obtained grammar is not balanced in any sense, in fact it is easy to give examples on which it returns
grammar of height Q(+/N) (note though that the same applies also to grammar returned by Sakamoto’s algorithm). This
makes the obtained grammar less suitable for later processing; on the other hand, the practically used grammar-based
compressors [12,11,16] also do not produce a balanced grammar, nor do they give a guarantee on its height.

On the good side, there is no reason why the optimal grammar should be balanced, neither can we expect that for an
unbalanced grammar a small balanced one exists. Thus it is possible that while o(log(N/g)) approximation algorithm exists,
there is no such an algorithm that always returns a balanced grammar.

We note that the reason why the grammar returned by the proposed algorithm can have large height is only due to block
compression: if we assume that the nonterminal generating a® has height one, the whole grammar has height O(log N). It
looks reasonable to assume that many data structures for grammar representation of text as well as later processing of it
can indeed process a production a; — a‘ in constant time.

Lastly, the proposed method seems to be much easier to generalise then the LZ77-based ones: generalisations of SLPs to
grammars generating other objects (mostly: trees) are known but it seems that LZ77-based approach does not generalise
to such settings, as LZ77 ignores any additional structure (like: tree-structure) of the data. In recent work of Lohrey and
the author the algorithm presented in this paper is generalised to the case of tree-grammars, yielding a first provable
approximation for the smallest tree grammar problem [9].

Comparison with Sakamoto’s algorithm

The general approach is similar to Sakamoto’s method, and both papers contain separate analyses and estimations for
(variants of) pair compression and block compression. However, the pairing of letters seems more natural in the presented
paper and the analysis is simpler. Also, the construction of nonterminals for blocks of letters is different, the author failed to
show that the bound actually holds for the variant proposed by Sakamoto (see Appendix A). Note, that the analysis for block
compression in this paper is much more involved than the one for pair compression. On the other hand, the connection to
the addition chains suggests that the compression of blocks is the difficult part of the smallest grammar problem.
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Note on computational model

The presented algorithm runs in linear time, assuming that the ¥ can be identified with a continuous subset of natural
numbers of size O(N¢) for some constant ¢ and the RadixSort can be performed on it. Should this not be the case for
the input, we can replace the original letters with such a subset, in O(nlog|X|) time (by creating a balanced tree for
letters occurring in the input string). Note that the same comment applies to previous algorithms: there are many different
algorithms for constructing the LZ77 representation of the text, but all of them first compute a suffix array (or a suffix
tree) of the text, and linear-time algorithms for that are rely on linear-time sorting of letters (treated as integers); although
Sakamoto’s method was designed to work with constant-size alphabet, it can be easily extended to the case when X can
be identified with a sequence of O(N¢) numbers, retaining the linear running-time.

In such a computational model we assume that a unit machine word can store a number using © (logn) bits, and with
such an assumption the space consumption of the algorithm is linear.

Roadmap

In Section 2 we define block and pair compression in detail and explain, how they are used to compute an SLP for
a given string. We also describe, how to perform them in linear time: This is achieved by grouping appropriate substrings
from a string, which is done using RadixSort. Then we show that the size of the input string is reduced by a constant factor
in each phase, which can be used to conclude that the running time is linear.

Next we move to the analysis of the approximation ratio of the algorithm, which is performed in Section 3. To this end
we consider the smallest grammar G generating this text, it is of size g. During the algorithm we modify appropriately
the grammar, so that it always generates the current text T stored by the algorithm. The modifications follow the general
recompression approach [6,8,5,7] and they are of the following type: when a nonterminal X of G generates awb we change
its rule so that it now generates w and replace in each rule X by aXb, so that other nonterminals generate exactly the same
strings. Moreover, only O(1) such modification per phase per variable are done, and so the size of the grammar increases
by O(g) per phase. This is explained in Sections 3.4 and 3.5. The actual cost of the constructed rules is estimated based on
the G stored by the analysis: whenever we perform a compression, we perform it also on the rules of G and thus the size
of G decreases after each compression. The total cost is the size of all such decrements and it is the same as the total size
of increments, which are O(g) per phase. There are only log N phases, which yields the approximation bound.

However, this analysis is unable to cover the cost introduced when very long blocks of letter a are replaced. We show
that we can associate each such long block with a particular rule of a grammar G and so we charge the cost of such
a representation to this rule. Then we show that if a rule is charged p (in total) then it originally produced a piece of input
of length at least 2P, thus at most log N is charged to a rule. This again yields O(glogN) bound on the size of the generated
rules.

Lastly, in Section 4 we improve the analysis to O(g+ glog(N/g)). The crucial observation is that any reasonable grammar
for a string T has size O(|T|), which follows by simple summation of lengths added by the productions. We divide the
computation of the algorithm into two phases: the first one lasts until |T| ~ g and the second begins afterwards and lasts
till the end. We separately calculate the size of grammar productions introduced in those two phases. The latter are of size
O(g), by the already mentioned observation. Using the same analysis as in the case of O(glogN) we can show that the
number of phases till the text is shortened to size g is O(log(N/g)) and so the size of the grammar is O(glog(N/g)). In
most cases the generalisation is straightforward, with the only exception of the analysis for long blocks of a. In this case
we need to make the analysis more precise: for each replaced power a’, instead of charging the cost to the rule, we mark ¢
letters of the input that somehow correspond to this block. We ensure that those markings are disjoint and their number of
those markings is linear in g. Using standard calculus this yields a desired bound O(glog(N/g)). Details of this construction
are separately presented in Section 4.7.

2. The algorithm

Notation conventions

The input sequence to be represented by a context-free grammar is T € X*, we shall use the same letter also for the
text currently kept by the algorithm. By N we denote the initial length of T, by |T| the current one. The algorithm TtoG
introduces new symbols to the instance, those symbols are the nonterminals of the constructed grammar. However, these
are later treated exactly as the original letters, so we insist on calling them letters as well and use common set X for both
letters and nonterminals. We assume that T is represented as a doubly-linked list, so that removal and replacement of its
elements can be performed in constant time (assuming that we have a link to such an occurrence). Note though that if we
were to store T in a table, the running time would be the same. The smallest grammar generating the input sequence is
denoted by G and its size |G|, measured as the length of the productions, is g.

Grammar

The crucial part of the analysis is the modification of G according to the compression performed on T. The terms non-
terminal, rules, etc. always address the optimal grammar G (or its transformed version). To avoid confusion, we do not use
terms ‘production’ and ‘nonterminal’ for a that replaced some substring in T (even though this is formally a nonterminal of
the constructed grammar). Still, when a new ‘letter’ a is introduced to T we need to estimate the length of the ‘productions’
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in the constructed grammar that are needed for a (note that we can of course use all letters previously used in T). The
‘productions’ introduced for a is called a representation of a letter a, the sum of lengths of those ‘productions’ is a cost of rep-
resentation of a letter a (or simply: representation cost). For example, in production (1a) then the representation cost is 2 (as
we have only one rule c — ab) and in a rule (1b) we have a cost ¢; the latter cost can be significantly reduced, for instance
for a'? we can have a representation cost of 8 instead of 12, when we use a subgrammar a; — aa, a3 — aa, dg — azaz and
a1z — agag. Note that when c replaces a pair (as in (1a)), its representation cost is always 2, but when a replaces a block of
letters, say af, the cost might be larger than constant. In the latter case our algorithm constructs a special subgrammar for
a, that generates a’, the exact way is given in Section 2.1.1.

2.1. The algorithm
The algorithm TtoG is divided into phases: in each phase we first list all letters and for each of them we perform the

block compression and then again list all letters, choose appropriate partition and perform the pair compression for each
pair from this partition that occurs in the text.

Algorithm 1 TtoG: outline.
1: while |T| > 1 do
2: L < list of letters in T

3: for eachael do > Blocks compression
4 compress maximal blocks of a > O(TJ)
5: P <« list of pairs

6: find partition of ¥ into ¥, and X, > Covering at least 1/2 of occurrences of letters in T
7: > O(|T]), see Lemma 5
8: forabe PN, %, do > These pairs do not overlap
9: compress pair ab > Pair compression

10: return the constructed grammar

Before we make any analysis, we note that at the beginning of each phase we can make a linear-time preprocessing that
guarantees that the letters in T form an interval of numbers (which makes them more suitable for sorting using RadixSort).

Lemma 1. At the beginning of the phase, in time O(|T|) we can rename the letters used in T so that they form an interval of numbers.

Proof. Observe that we assumed that the input alphabet consists of letters that can be identified with subset of {1, ..., N¢},
see the discussion in the introduction. Treating them as vectors of length ¢ over {0,..., N — 1} we can sort them using
RadixSort in O(cN) time, i.e. linear one. Then we can re-number those letters to 1, 2, ..., n for some n < N.

Suppose that at the beginning of the phase the letters form an interval [m, .., m+k]. Each new letter, introduced in place
of a compressed substring (i.e. a block a® or a pair ab), is assigned a consecutive number, and so after the phase the letters
occurring in T are within an interval [m..m + k'] for some k' > k. It is now left to re-number the letters from [m..m + k'],
so that the ones appearing in T indeed form an interval, which begins at m + k’ + 1. For each symbol a in the interval
[m..m + k'] we set a flag to flag[a] = 0. Moreover, we set a variable next to m +k’ + 1. Then we read T. Whenever we spot
a letter a € [m..m + k'] with flagla] = 0, we set flag[a] := 1; new[a] := next, and next := next + 1. Moreover, we replace this
a by new[a]. When we spot a symbol a € [m..m + k'] with flag[a] = 1, then we replace this a by new[a]. Clearly the running
time is O(|T|) and after the algorithm the symbols form a subinterval [m +k’ +1..m +k’ + k] for appropriate k" < |T|. O

2.1.1. Blocks compression

The blocks compression is very simple to implement: We read T, for a maximal block of as of length greater than 1 we
create a record (a, £, p), where £ is a length of the block, and p is the pointer to the first letter in this block. We then sort
these records lexicographically using RadixSort (ignoring the last component). There are only O(|T|) records and we assume
that ¥ can be identified with an interval, see Lemma 1, this is all done in O(|T|). Now, for a fixed letter a, the consecutive
tuples with the first coordinate a correspond to all blocks of a, ordered by the size. It is easy to replace them in O(|T|)
time with new letters. Clearly, the space consumption is linear as well.

Lemma 2. Block compression runs in O(O(|T|)) time and space.
Note that so far we did not care about the cost of representation of new letters that replaced a-blocks. We use a partic-
ular schema to represent ay,, dy,, ..., dg,, Which shall have a representation cost (’)(Zif:][l + log(¢; — €¢i—1)]), where £p =0

for convenience.

Lemma 3. Givenalist 1 < £1 < {3 < --- < £, we can represent letters ay, , ay,, . .., ay, that replace blocks a1, at2, ..., a% witha cost
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k
o(Zn +log(¢i —fzil)]) :

i=1

where £y = 0.

Proof. Firstly observe that without loss of generality we may assume that the list ¢1, €2, ..., ¢, is given to us in a sorted
way, as it can be easily obtained from the sorted list of occurrences of blocks. For simplicity define ¢g =0 and let ¢ =
maxk_, (¢; — €i_q).

In the following, we shall define rules for certain new letters a,,, each of them ‘derives’ a™ (in other words, a,, represents
a™). For each 1 <i <log¢ introduce a new letter a,;, defined as a,i — a,i—1a,i-1, where a; simply denotes a. Clearly a,

represents a® and the representation cost summed over all i < ¢ is 2log¢ = O(log?).
Now introduce new letters ag, 4, , for each i > 0, which shall represent ati—ti-1, They are represented using the binary
expansion, i.e. by concatenation of at most 1+ log(¢; — ¢;_1) from among the letters ai, az, a4, ..., Qyllogt;—t; )] - This has

a representation cost (’)(ZL1 [1+1log(t;i — £i—1)]).
Lastly, each ay; is represented as ay — dg;,—¢;_,ae;_,, Which has a total representation cost O(k).

Summing up O(logt), O(fozl[l + log(¢; — ¢i—1)]) and O(k) we obtain O(Zle[l +log(4i — ¢i—1)]). O

In the following we shall also use a simple property of the block compression: since no two maximal blocks of the same
letter can be next to each other, after the block compression there are no blocks of length greater than 1 in T.

Lemma 4. In TtoG right after the block compression, so in line 5, there are no two consecutive letters aain T.

Proof. Suppose for the sake of contradiction that there are such two letters. There are two cases:

a was present in T before block compression, so in line 2 of TtoG But then a was listed in L in line 2 and aa was replaced
by another letter in line 4.

a was introduced during block compression, so in line 4 of TtoG Both a replaced some maximal blocks b thus aa replaced
b2%¢, and so each of those two b’s was not a maximal block. O

2.1.2. Pair compression

The pair compression is performed similarly as the block compression. However, since the pairs can overlap, compressing
all pairs at the same time is not possible. Still, we can find a subset of non-overlapping pairs in T such that a constant
fraction (1/4) of letters T is covered by occurrences of these pairs. This subset is defined by a partition of ¥ into ¥, and
% and choosing the pairs with the first letter in X, and the second in X,; for a choice of ¥,X; we say that occurrences of
abe PN X, X, are covered by X, %,.

Observe that the problem of finding such a partition reduces to the problem of finding a maximal weight cut in a directed
weighted graph: for the reduction, we create a node for each letter and put an edge from a to b with weight k if there are
k occurrences of pair ab in T. It is easy to see that a (directed) cut of weight k corresponds to a partition of letters covering
exactly k occurrences of pairs and vice-versa. We use a standard solution to this problem [15, Section 6.3] presented in our
terminology. We do that mostly for the reasons of running-time analysis.

The existence of a partition covering at least one fourth of the occurrences can be shown by a simple probabilistic
algorithm: divide ¥ into X, and X, randomly, where each letter goes to each of the parts with probability 1/2. Consider
two consecutive letters ab in T, note that they are different by Lemma 4. Then a € ¥, and b € ¥, with probability 1/4.
There are |T| — 1 such pairs in T, so the expected number of pairs in T from X;X, is (|T| — 1)/4. Observe, that if we
were to count the number of pairs that are covered by X;3, or by XX, then the expected number of pairs covered by
ST U is (IT|—1)/2.

The deterministic construction of such a partition follows by a simple derandomisation [15, Section 6.3], using the
conditional expectation approach. It is easier to first find a partition such that at least half of pairs’ occurrences in T are
covered by ;X U X, X, and then choose X;X, or X,X,, depending on which of them covers more occurrences.

Lemma 5. For T in O(|T|) time we can find (in line 6 of TtoG) a partition of T into Xy, X, such that number of occurrences of pairs
ab e X, in T is at least (|T| — 1) /4.
In the same running time we can provide, for each ab € P N X %, a lists of pointers to occurrences of ab in T.

Proof. Suppose that we have already assigned some letters to X, and X, and we are to decide, where the next letter a is
assigned. If it is assigned to X¢, then all occurrences of pairs from aX, U X,a are not going to be covered, while occurrences
of pairs from aX, U X;a are; similarly observation holds for a being assigned to X,. The algorithm makes a greedy choice,
maximising the number of covered pairs in each step. As there are only two options, the choice brings in at least half of
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occurrences considered. Lastly, as each occurrence of a pair ab from T is considered exactly once (i.e. when the second of
a, b is considered in the main loop), this procedure guarantees that at least half of occurrences of pairs in T is covered.

In order to make the selection effective, the algorithm GreedyPairs keeps an up to date counters countg[a] and count,[a],
denoting, respectively, the number of occurrences of pairs from aX, U X¢a and aX; U 3,a in T (for the current assignment
of letters to X, and ;). Those counters are updated as soon as a letter is assigned to X, or X,.

Algorithm 2 GreedyPairs.
. L < set of letters used in P

—_

2 Yy <X <0 > Organised as a bit vector
3: forael do
4: county[a] < count,[a] <0 > Initialisation
5: forael do
6: if count,[a] > county[a] then > Choose the one that guarantees larger cover
7: choice < ¢
8: else
9: choice < r
10: Zchoice <~ Lchoice U {a}
11: for each ab or ba occurrence in T do
12: countcppice[b] < counteppice[b] + 1

13: if # occurrences of pairs from XX, in T> # occurrences of pairs from ;X in T then
14: switch ¥, and Xy
15: return (X,, ¥;)

By the argument given above, when X is partitioned into X, and X, by GreedyPairs, at least half of the occurrences
of pairs from T are covered by ¥, U X, %,. Then one of the choices ¥;%; or £,¥, covers at least one fourth of the
occurrences.

It is left to give an efficient variant of GreedyPairs, the non-obvious operations are the choice of the actual partition in
lines 13-14 and the updating of count,[b] or count,[b] in line 12. All other operations clearly take at most O(|T|) time. The
former is simple: since we organise ¥, and X, as bit vectors, we can read T from left to right and calculate the number of
pairs from ¥, and those from XX, in O(|T|) time (when we read a pair ab we check in O(1) time whether ab € X, X%,
or ab € ¥, %;). Afterwards we choose the partition that covers more occurrences of pairs in T.

To implement the count, for each letter a in T we have a right list right(a) = {b | ab occurs in T}, represented as a list.
Furthermore, the element b on right list right(a) stores a list of all occurrences of the pair ab in T. There is a similar left list
left(a) = {b | ba occurs in T}. We comment, how to create left lists and right lists later.

Given right and left, performing the update in line 12 is easy: we go through right(a) (left(a)) and increase the count,[b]
(or count,[b]) for each occurrence of ab (ba, respectively). Note that in this way each of the list right(a) (left(a)) is read once
during GreedyPairs, and so this time can be charged to their creation.

It remains to show how to initially create right(a) (left(a) is created similarly). We read T, when reading a pair ab
we create a record (a, b, p), where p is a pointer to this occurrence. We then sort these records lexicographically using
RadixSort. There are only O(|T|) records and we assume that ¥ can be identified with an interval, see Lemma 1, so this all
is done in O(|T|). Now, for a fixed letters a, the consecutive tuples with the first coordinate a can be turned into right(a):
for b € right(a) we want to store a list I of pointers to occurrences of ab, and on a sorted list of tuples the {(a, b, p)}per are
consecutive elements.

Lastly, in order to get for each ab € PN X; %, the lists of pointers to occurrences of ab in T it is enough to read right and
filter the pairs such that a € Xy and b € X;; the filtering can be done in O(1) as X; and X, are represented as bitvectors.
The needed time is O(|T|).

The total running time is O(|T|[), as each subprocedure has time constant per pair processed or O(|T|) in total. O

When for each pair ab € ¥,%; the list of its occurrences in T is provided, the replacement of pairs is done by going
through the list and replacing each of the pair, which is done in linear time. Note, that as X;, ¥, are disjoint, the considered
pairs cannot overlap.

Lemma 6. Pair compression runs in O(O(|T|)) time and space.

2.2. Size and running time

It remains to estimate the total running time, summed over all phases. Clearly each subprocedure in a phase has a run-
ning time O(|T|) so it is enough to show that |T| is reduced by a constant factor per phase.
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Lemma 7. In each phase |T| is reduced by a constant factor.

Proof. Let m = |T| at the beginning of the phase. Let m’ <m be the length of T after the compression of blocks. First
observe that if m <5 then we satisfy the lemma when we make at least one compression, which can be always done, so in
the following we assume that m > 5.

By Lemma 5 at least (m’ — 1)/4 pairs are compressed during the pair compression, hence after this phase |T'| <m’ —
m-1/4<3m+} O

Theorem 1. TtoG runs in linear time and linear space.

Proof. Each phase clearly takes O(|T|) time and by Lemma 7 the |T| drops by a constant factor in each phase. As the initial
length of T is N, the total running time is O(N).
The space consumption is also linear. O

3. Size of the grammar: SLPs and recompression

To bound the cost of representation of letters introduced during the construction of the grammar, we start with the
smallest grammar G generating (the input) T and then modify the grammar so that it generates T (i.e. the current string
kept by TtoG) after each of the compression steps. Then the cost of representing the introduced letters is paid by various
credits assigned to G. Hence, instead of the actual representation cost, which is difficult to estimate, we calculate the total
value of issued credit. Note that this is entirely a mental experiment for the purpose of the analysis, as G is not stored or
even known to the algorithm. We just perform some changes on it depending on the TtoG actions.

3.1. Definitions

We assume that grammar G is a Straight Line Programme (SLP), however, we relax the notion a bit (and call it an SLP with
explicit letters, when an explicit reference is needed):

o the nonterminals are X1, ..., Xp;

e each nonterminal has exactly one rule, which has at most two nonterminals in its body (i.e. there are two, one or none
nonterminals and an arbitrary number of letters in the rule’s body);

o if X;j — «; is a rule and X; occurs in «; then j <.

Note that every CFG generating a unique string can be transformed into an SLP with explicit letters, with the size increased
only by a constant factor:

e The renaming of nonterminals is obvious, we also remove the useless nonterminals.

o If a nonterminal X with a rule X — « has more than two nonterminals in ¢, we can replace a substring YwZ in o by
a new nonterminal X’ with a rule X’ — YwZ. In this way the number of nonterminals in & drops by 1 and the size of
the grammar increases by 1.

e As only one string is generated, we can reorder the nonterminals.

We call the letters (strings) occurring in the productions the explicit letters (strings, respectively). The unique string
derived by X; is denoted by val(Xj); the grammar G shall satisfy the condition val(X;) = T. We do not assume that
val(X;) # €, however, if val(X;) = € then X; is not used in the productions of G (as this is a mental experiment, such X; can
be removed from the rules and in fact from the SLP).

3.2. Intuition and road map

3.2.1. Paying the representation cost: credit

With each explicit letter we associate two units of credit and pay most of the cost of representing the letters introduced
during TtoG with these credits. More formally: when the algorithm modifies G and in the process it creates an occurrence
of a letter, we issue (or pay) 2 new credits. On the other hand, if we do a compression step in G, then we remove some
occurrences of letters. The credit associated with these occurrences is then released and can be used to pay for the represen-
tation cost of the new letters introduced by the compression step as well as for the credit for the newly introduced letters
(so that the algorithm does not issue new credit). For pair compression the released credit indeed suffices to pay both the
credit of the new letters occurrences and their representation cost, but for chain compression the released credit does not
suffice, as it is not enough to pay the representation cost. Here we need some extra amount that is estimated separately
later on in Section 3.6. In the end, the total cost is the sum of credit that was issued during the modifications of G plus the
value that we estimate separately in Section 3.6.
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3.2.2. Additional cost

The additional cost of representing letters during the block compression is estimated separately. In most cases, the cost
of creating blocks can be cover by released credit, the only exception is when two long blocks of a are joined together. This
can happen only between nonterminals in some rule of G and then the additional cost is charged towards this rule. Then
we show that one rule has only O(log N) cost charged to it: if we charge ) ;log¢; cost to a rule, then it originally derived
a word of length at least [T; ¢;. This is described in detail in Section 3.6.

3.3. Modifying the grammar

Recall that whenever we say nonterminal, rule, production etc., we mean one of G.

When we replace each occurrence of the pair ab in T, we should also do this in G. However, this may not be pos-
sible, as some abs generated by G do not come from explicit pairs in G but rather are ‘between’ a nonterminal and
a letter, for instance in a simple grammar X; — a, X2 — X1b the pair ab has such a problematic occurrence. If there
are no such occurrences, it is enough to replace each explicit ab in G and we are done. To deal with the problematic
ones, we need to somehow change the grammar, in the example above we replace X; with a, leaving only X, — ab, for
which the previous procedure can be applied. It turns out that this ad-hoc approach can be turned into a systematic pro-
cedure that deals with all such problems at once, by removing appropriate letters from rules and introducing them to
other rules. This procedure is the main ingredient of this section and it is given in Section 3.4. Similar problems occur
also when we want to replace maximal blocks of a and the solution to this problem is similar and it is given in Sec-
tion 3.5.

Note that in the example above, when X; is replaced with a, 2 credit for the occurrence of a in X7 — a is released and
wasted. Then we issue 2 credit for the new occurrence of a in the rule X,. When ab is replaced with c, 4 credit is released
when ab is removed from the rule, 2 of this credit is used for the credit of ¢ and the remaining 2 can be used to pay the
representation cost for ¢ — ab.

3.4. Pair compression

A pair of letters ab has a crossing occurrence in a nonterminal X; (with a rule X; — «;) if ab is in val(X;) but this
occurrence does not come from an explicit occurrence of ab in «; nor it is generated by any of the nonterminals in o;j.
A pair is non-crossing if it has no crossing occurrence. Unless explicitly written, we use this notion only to pairs of different
letters.

By PCgp_c(w) we denote the text obtained from w by replacing each ab by a letter ¢ (we assume that a # b). We say
that a procedure (that changes a grammar G with nonterminals Xi, ..., Xy to G’ with nonterminals X7, ..., X;,) properly
implements the pair compression of ab to c, if val(X},) = PCgp—c(val(Xp)) and G’ is an SLP with explicit letters. When a pair
ab is noncrossing the procedure that implements the pair compression is easy to give: it is enough to replace each explicit
ab with c.

Algorithm 3 PairCompNCr(ab, ¢): compressing a non-crossing pair ab.
1: replace each explicit ab in G by ¢

In order to distinguish between the nonterminals, grammar, etc. before and after the application of compression of ab
(or, in general, any procedure) we use ‘primed’ letters, i.e. X/, G’, T' for the nonterminals, grammar and text after this
compression and ‘unprimed’, i.e. X;, G, T for the ones before.

Lemma 8. If ab is a noncrossing pair, then PairCompNCr(ab, ¢) properly implements the pair compression of ab. The credit of new
letters in G’ and cost of representing the new letter c is paid by the released credit; no new credit is issued. If a pair de, where d # ¢ # e,
is noncrossing in G, it is in G'.

Proof. By induction on i we show that val(X]) = PCgp_..(val(X;)). Consider any occurrence of ab in the string generated by
X;. If it is an explicit string then it is replaced by PairCompNCr(ab, c). If it is contained within substring generated by some
X, this occurrence was compressed by the inductive assumption. The remaining case is the crossing occurrence of ab: since
the only modifications to the rules made by PairCompNCr(ab, c) is the replacement of ab by c, such a crossing pair existed
already before PairCompNCr(ab, c), but this is not possible by the lemma assumption that ab is non-crossing.

Each occurrence of ab had 4 units of credit while ¢ has only 2, so the replacement released 4 units of credit, 2 of which
are used to pay for the credit of ¢ and the other 2 to pay the cost of representation of c (if we replace more than one
occurrence of ab then some credit is wasted).

Lastly, replacing ab in G by a new letter ¢ cannot make de (where d # c # e) a crossing pair in G, as no new occurrence
of d, e was introduced on the way. O
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If all pairs in X; %, are non-crossing, iteration of PairCompNCr(ab, ¢) for each pair ab in £,X, properly implements the
pair compression for all pairs in X; 3, (note that as ¥, and X, are disjoint, occurrences of different pairs from X; ¥, cannot
overlap and so the order of replacement does not matter). So it is left to assure that indeed the pairs from X, %, are all
noncrossing. It is easy to see that ab € X,;%; is a crossing pair if and only if one of the following three ‘bad’ situations
occurs:

CP1 there is a nonterminal X;, where i <m, such that val(X;) begins with b and aX; occurs in one of the rules;

CP2 there is a nonterminal X;j, where i <m, such that val(X;) ends with a and X;b occurs in one of the rules;

CP3 there are nonterminals X;, X;, where i, j <m, such that val(X;) ends with a and val(X;) begins with b and X;X; occurs
in one of the rules.

Consider (CP1), let bw = val(X;). Then it is enough to modify the rule for X; so that val(X;) = w and replace each X; in
the rules by bX;j, we call this action the left-popping b from X;. Similar operation of right-popping a letter a from X; is
symmetrically defined. It is shown in Lemma 9 below that they indeed take care of all crossing occurrences of ab.

Furthermore, left-popping and right-popping can be performed for many letters in parallel: the below procedure
Pop(X¢, ;) ‘uncrosses’ all pairs from the set X,X, assuming that X, and X, are disjoint subsets of ¥ (and we apply
Pop(X¢, Z;) only in the cases in which they are).

Algorithm 4 Pop(Z;, ¥;): Popping letters from ¥, and X,.
1: fori < 1..m—1 do

2 let the production for X; be X; — «;

3 if the first symbol of «; is b € &, then > Left-popping b
4 remove this b from «;

5: replace X; in G’s productions by bX;

6 if val(X;) = € then

7 remove X; from G’s productions

g: fori<1..m—1do

9 let the production of X; be X; — «;

10: if the last symbol of «; is a € X; then > Right-popping a
11: remove this a from ¢;

12: replace X; in G’s productions by X;a

13: if val(X;) = € then

14: remove X; from G’s productions

Lemma 9. After application of Pop(Z¢, ), where £, N £, = , none of the pairs ab € £, %, is crossing. Furthermore, val(X},) =
val(X,). At most O(m) credit is issued during Pop(Z¢, Xr).

Proof. Observe first that whenever we remove b from the front of some «; we replace each of X; occurrence with bX;
and if afterwards val(X;) = € then we remove X; from the rules, hence the words derived by each other nonterminal (in
particular X;;) do not change, the same applies to replacement of X; with X;a. Hence, in the end val(X},) =val(Xp) =T
(note that we do not pop letters from Xp,).

Secondly, we show that if val(X}) begins with a letter b’ € X then we left-popped a letter from X; (which by the
code is some b € ¥;), a similar claim (by symmetry) of course holds for the last letter of val(X;) and ¥,. So sup-
pose that the claim is not true and consider the nonterminal X; with the smallest i such that val(X]) begins with
b’ € &, but we did not left-pop a letter from X;j. Consider what was the first symbol in «; when Pop considered X;
in line 3. As Pop did not left-pop a letter from X;, the first letter of val(X;) and val(X}) is the same and hence it is
b’ € ;. So «; cannot begin with a letter as then it is b’ € ;, which should have been left-popped. Hence it is some
nonterminal X; for j <i. But then val(X;.) begins with b’ € £, and so by the induction assumption Pop left-popped
a letter from X;. But there was no way to remove this letter from «;, so «; should begin with a letter, contradic-
tion.

Suppose that after Pop there is a crossing pair ab € ¥,X,. There are three already mentioned cases (CP1)-(CP3): consider
only (CP1), in which aX; occurs in the rule and val(X;) begins with b. Note that as a ¢ X, is the letter to the left of le,
X; did not left-pop a letter. But it begins with b € %, so it should have. Contradiction. The other cases are dealt with in
a similar manner.

Note that at most 4 new letters are introduced to each rule (2 per nonterminal) thus at most 8m credit is issued. O

In order to compress pairs from X,X, it is enough to first uncross them all using Pop(X;, ;) and then compress them
all by PairCompNCr(ab, c) for each ab € X, %;.
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Algorithm 5 PairComp(Z¢, ¥;): compresses pairs from X,X,.

1: run Pop(Zy, ;)
2: forab e 2,3, do
3: run PairCompNCr(ab, c) > c is a fresh letter

Lemma 10. PairComp implements pair compression for each ab € X, X.. It issues O(m) new credit to G, where m is the number
of nonterminals of G. The credit of the new letters introduced to G and their representation costs are covered by the credit issued or
released by PairComp.

Proof. By Lemma 9 after Pop(Z¢, ¥;) each pair in ;X is non-crossing and O(m) credit is issued in the process, further-
more val(Xp,) does not change.

By Lemma 8 for a non-crossing pair ab the PairCompNCr(ab, ¢) implements the pair compression, furthermore, any other
non-crossing pair a’b’ € ¥, %, remains non-crossing. Lastly, all occurrences of different pairs from X, %, are disjoint (as X,
and X, are disjoint subsets of X) as so the order of replacing them does not matter and so we implemented the pair
compression for all pairs in X, ;. The cost of representation and credit of new letters is covered by the released credit, see
Lemma 8. O

Using Lemma 10 we can estimate the total credit issued during the pair compression.

Corollary 1. The compression of pairs issues in total O(mlog N) credit during the run of TtoG; the credit of the new letters introduced
to G and their representation costs are covered by the credit issued or released during PairComp.

3.5. Blocks compression

Similar notions and analysis as the ones for pairs are applied for blocks. Consider occurrences of maximal a-blocks in T
and their derivation by G. Then a block a‘ has a crossing occurrence in X; with a rule X; — «;, if it is contained in val(X;)
but this occurrence is not generated by the explicit as in the rule nor in the substrings generated by the nonterminals in «;.
If a-blocks have no crossing occurrences, then a has no crossing blocks. As for noncrossing pairs, the compression of a blocks,
when it has no crossing blocks, is easy: it is enough to replace each explicit maximal a-block in the rules of G. We use
similar terminology as in the case of pairs: we say that a subprocedure properly implements a block compression for a.

Algorithm 6 BlockCompNCr(a), which compresses a blocks when a has no crossing blocks.

1: for each a’m do
2: replace every explicit maximal block a‘™ in G by ag,,

Lemma 11. If a has no crossing blocks then BlockCompNCr(a) properly implements the a’s blocks compression.
Furthermore, if a letter b from T had no crossing blocks in G, it does not have them in G'.

The proof is similar to the proof of Lemma 8 and so it is omitted. Note that we do not yet discuss the issued credit, nor
the cost of the representation of letters representing blocks (the latter is done in Section 3.6).

It is left to ensure that no letter has a crossing block. The solution is similar to Pop, this time though we need to remove
the whole prefix and suffix from val(X;) instead of a single letter. The idea is as follows: suppose that a has a crossing block
because aX; occurs in the rule and val(X;) begins with a. Left-popping a does not solve the problem, as it might be that
val(X;) still begins with a. Thus, we keep on left-popping until the first letter of val(X;) is not g, i.e. we remove the a-prefix
of val(X;). The same works for suffixes.

Algorithm 7 RemCrBlocks: removing crossing blocks.
1: fori < 1..m—1 do
2: let a, b be the first and last letter of val(X;)
let ¢;, r; be the length of the a-prefix and b-suffix of val(X;)

> If val(X;) € a* then r; =0 and ¢; = | val(Xj)|
remove a‘ from the beginning and b"i from the end of ¢;
replace X; by a% X;b"i in the rules
if val(X;) = € then
remove X; from the rules

® NI AW

Lemma 12. After RemCrBlocks no letter has a crossing block and val(Xy,) = val(X],).
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Proof. Firstly, val(X},) = val(Xm): observe that when we remove a-prefix a% from «; we replace each X; with a%X; (and
similarly for the b-suffix), also when we remove X; from the rules then val(X;) = €. Hence when processing Xj, the strings
generated by all other nonterminals are not affected. In particular, as we do not remove the prefix and suffix of Xy, the
string generated by X;; remains the same after RemCrBlocks.

By above observation, the value of val(X;) does not change until RemCrBlocks considers X;. We show that when
RemCrBlocks considers X; such that val(X;) has a-prefix a® and b-suffix b"i, then «; begins with a% and ends with b"i
(the trivial case, when val(X;) = a% is shown in the same way). Suppose that this is not the case and consider X; with
smallest i for which this is not true. Clearly it is not Xy, as there are no nonterminals in &7 and so val(X1) = «1. So let X;
have a rule X; — «;, we deal only with the a-prefix, the proof of b-suffix is symmetrical. Since the a-prefix of val(X;) and
«; are different, this means that the a-prefix of val(X;) is partially generated by the first nonterminal in «;, let it be X;. By
the choice of i we know that X; popped its prefix (of some letter, say a’) and so it was replaced with a'ti X}. Furthermore,

val(X}) begins with a” # a’. Since there is no way to remove this a’ prefix from «;, this a’% is part of the a-prefix of val(X;),
in particular a’ = a. However, val(X;.) begins with a” # a, so the a-prefixes of «; and val(X;) are the same, contradiction.

As a consequence, if aX; occurs in any rule after RemCrBlocks, then a is not the first letter of val(Xj), as prefix of letters
a was removed from X;. Other cases are handled similarly. So there are no crossing blocks after RemCrBlocks. O

The compression of all blocks of letters is done by first running RemCrBlocks and then compressing each of the block by
BlockCompNCr. Note that we do not compress blocks of letters that are introduced in this way. Concerning the number of
credit, the arbitrary long blocks popped by RemCrBlocks are compressed (each into a single letter) and so at most 8 credit
per rule is issued.

Algorithm 8 BlockComp: compresses blocks of letters.
1: run RemCrBlocks

2: L < list of letters in T

3: for eachae L do

4: run BlockCompNCr(a)

Lemma 13. BlockComp properly implements the blocks compression for each letter a occurring in T before its application and issues
O(m) credit. The issued credit covers the cost of credit of letters introduced during the BlockComp (but not their representation cost).

The proof is similar as the proof of Lemma 10 so it is omitted.

Corollary 2. During the whole TtoG the BlockComp issues in total O(mlog N) credit. The credit of the new letters introduced to G is
covered by the issued credit.

Note that the cost of representation of letters replacing blocks is not covered by the credit, this cost is separately esti-
mated in the next subsection.

3.6. Calculating the cost of representing letters in block compression

The issued credit is enough to pay the 2 credit for occurrences of letters introduced during TtoG and the released credit
is enough to pay the credit of the letters introduced during the pair compression and their representation cost. However,
credit alone cannot cover the representation cost of letters replacing blocks. The appropriate analysis is presented in this
section. The overall plan is as follows: firstly, we define a scheme of representing the letters based on the grammar G and
the way G is changed by BlockComp (the G-based representation). Then for such a representation schema, we show that
the cost of representation is O(glogN). Lastly, it is proved that the actual cost of representing the letters by TtoG (the
TtoG-based representation) is smaller than the G-based one, hence it is also O(glogN).

3.6.1. G-based representation

The intuition is as follows: while the a blocks can have exponential length, most of them do not differ much, as in most
cases the new blocks are obtained by concatenating letters a that occur explicitly in the grammar and in such a case the
released credit can be used to pay for the representation cost. This does not apply when the new block is obtained by
concatenating two different blocks of a (popped from nonterminals) inside a rule. However, this cannot happen too often:

when blocks of length pq, p2, ..., pe¢ are compressed (at the cost of O(Zle ¢! +logp,-)) = (’)(log(]_[f:] pi)), as each

pi > 2), the length of the corresponding text in the input text is ]_[f:1 pi, which is at most N. Thus O(Zle(l + log p,~)> =

O(log ]_[f:1 pi) = O(log N) cost per nonterminal is scored.
Getting back to the representation of letters: we create a new letter for each a block in the rule X; — «; after
RemCrBlocks popped prefixes and suffixes from Xi,..., Xj_1 but before it popped letters from X;. (We add the artificial
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empty block € to streamline the later description and analysis.) Such a block is a power if it is obtained by concatenation of
two a-blocks popped from nonterminals inside a rule (and perhaps some other explicit letters a), note that this power may
be then popped from a rule (as it may be a prefix or suffix in this rule). This implies that in the rule X; — uX;vX,w the
popped suffix of X; and popped prefix of Xj are blocks of the same letter, say a, and furthermore v € a*. Note that it might
be that one (or both) of X; and X; were removed in the process (in this case the power can be popped from a rule as well).
For each block a’ that is not a power we may uniquely identify another block a (perhaps €, not necessarily a power) such
that a® was obtained by concatenating ¢ — k explicit letters to a* in some rule.

Lemma 14. For each block at represented in the G-based representation that is not a power there is block a* (perhaps k = 0) such that
a¥ is also represented in G-based representation and a* was obtained in a rule by concatenating € — k explicit letters that existed in
the rule to a*.

Note that the block a¥ is not necessarily unique: it might be that there are several a’ blocks in G which are obtained as
different concatenations of a* and ¢ — k explicit letters.

Proof. Let a; be created in the rule for X;j, after popping prefixes and suffixes from Xi,..., Xj_1. Consider, how many
popped prefixes and suffixes take part in this af.

If two, then it is a power, contradiction.

If one, then let the popped prefix (or suffix) be aX. Since it was popped, say from X j» then a¥ was a maximal block in X |
before popping, so it is represented as well. Then in the rule for X; the a® is obtained by concatenating ¢ — k letters a to a*.
None of those letters come from popped prefixes and suffixes, so they are all explicit letters that were present in this rule.

If there are none popped prefixes and suffixes that are part of this af, then all its letters are explicit letters from the rule
for X;, and we treat it as a concatenation of k explicit letters to €. O

We represent the blocks as follows:

1. for a block a‘ that is a power we represent a, using the binary expansion, which costs O(1 + log¢);
2. for a block af that is obtained by concatenating £ — k explicit letters to a block a* (see Lemma 14) we represent
ag as ay u , which has a representation cost of ¢ — k + 1, this cost is covered by the 2(£ — k) > £ — k + 1 credit
£—k times
released by the £ —k explicit letters a. Note that the credit released by those letters was not used for any other purpose.
(Furthermore recall that the 2 units of credit per occurrence of a, in the rules of grammar are already covered by the
credit issued by BlockComp, see Lemma 13.)

We refer to cost in 1 as the cost of representing powers and redirect this cost to the nonterminal in whose rule this power is
created. The cost in 2, as marked there, is covered by released credit.

3.6.2. Cost of G-based representation

We now estimate the cost of representing powers. The idea is that if nonterminal X; is charged the cost of representing
powers of length pq, p2, ..., pe, Which have representation cost (’)(Zf:l 1+logpi) = (’)(log(]_[f:1 pi)), then in the input
this nonterminal generated a text of length at least p;-p,---p¢ <N and so the total cost of representing powers is O(log N)
(per nonterminal). This is formalised in the lemma below.

Lemma 15. The total cost of representing powers by G-based representation charged towards a single rule is O(log N).

Proof. There are two cases: first, after the creation of the power in a rule X; — uX;vX;w one of the nonterminals X;, X
is removed. But this happens at most once for the rule and the cost of O(log N) of representing the power can be charged
to a rule.

The second and crucial case is when after the creation of power both nonterminals remained in a rule X; — uX;vX,w.
Note that creation of the a power here means that val(X;) has a-suffix, val(Xy) an a-prefix and v e a*.

Fix this rule and consider all such creations of powers performed on this rule. Let the consecutive letters, whose blocks
are compressed, be aV, a®, ..., a®®© and their lengths pq, pa, ..., p¢. Lastly, the p, repetitions of a‘®© are replaced by
a1 (Observe, that a1 does not need to be the letter that replaced the a”’s block, as there might have been some
other compression performed on that letter.) Then the cost of the representing powers is constant time more than

L 12
Y (1+logp)=<2) logp; . (2)

i=1 i=1

Define weight: for a letter it is the length of the substring of the original input string that it ‘derives’. Note that the
maximal weight of any letter is N, the length of the input word.
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Consider the weight of the strings between X; and X;. Clearly, after the i-th blocks compression it is exactly p; - w(a®),
as the block of p; letters a) was replaced by one letter. We claim that w(a®™"V) > p; w(a®): right after the i-th blocks
compression the string between X; and X is simply a letter agi), which replaced the p; block of a®¥). After some operations,
this string consists of p;, letters a1, Observe that (a@*+1D)Pi+1 ‘derives’ al(,?: indeed all operations performed by TtoG do
not remove the letters from string between X; and X in a rule, only replace strings with single letters and perhaps add

letters at the ends of this string. But if (a@t1)Pi+1 ‘derives’ agi), i.e. a single letter, then also a®tD ‘derives’ agi), hence

w(@™) = wiap)) = piwia?) .

Since w(a®) > 1 it follows that w(@“*t") > [T, pi. As w(@**V) < N we have

¢
N=>]]pi
i=1

and so it can be concluded that

4
log(N) > log (H p,->

i=1
4
=Y logp; .
i=1

Therefore, the whole cost Zle log pi, as estimated in (2), is O(log N), as claimed. O
Corollary 3. The cost of G-based representation is O(g + glogN).

Proof. Concerning the cost of representing powers, by Lemma 15 we redirect at most O(log N) against each of the m< g
rules of G. The cost of representing non-powers is covered by the released credit; the initial value of credit is at most
2g and by Corollary 1 and Corollary 2 at most O(glogN) credit is issued during the whole run of TtoG, which ends the
proof. O

3.6.3. Comparing the G-based representation cost and TtoG-based representation cost

We now show that the cost of TtoG-based representation is at most as high as G-based one. We first represent G-based
representation cost using a weighted graph G¢, such that the G-based representation is (up to a constant factor) w(Gc), i.e.
the sum of weights of edges of G¢.

Lemma 16. The cost of G-based representation of all blocks is ® (w(Gg¢)), where nodes of G are labelled with blocks represented in
the G-based representation and edge from a® to a¥, where ¢ > k, has weight £ — k or 1 + log(¢ — k) (in this case additionally k = 0).
Each node (other than a and €) has at least one outgoing edge.

The former corresponds to the representation cost covered by the released credit while the latter to the cost of representing powers.

Proof. We give a construction of the graph Gg.

Fix the letter a and consider any of the blocks a‘ that is represented by G, we put a node a’ in G¢. Note that a single
a’ may be represented in many ways: different occurrences of a are replaced with a; and may be represented in different
ways (or even twice in the same way), this means that Gz may have more than one outgoing edge per node.

e when a is a power, we create an edge from the node labelled with a’ to €, the weight is 1+ log¢ (recall that this is
the cost of representing this power);

e when a; is represented as a concatenation of £ — k letters to ai, we create and edge from the node a‘ to a*, the weight
is £ — k (this is the cost of representing this block; it was paid by the credit on the ¢ — k explicit letters a).

Then the sum of the weight of the created graph is a cost of representing the blocks using the G-based representation (up
to a constant factor). O

Similarly, the cost of TtoG-based representation has a graph representation Grig.

Lemma 17. The cost of TtoG-representation for blocks of a letter a is ® (W(Grog)), Where the nodes of Griog are labelled with blocks
represented by TtoG-representation and it has an edge from a’ to a* if and only if £ and k are two consecutive lengths of a-blocks. Such
an edge has weight 1 + log(¢ — k).
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Proof. Observe that this is a straightforward consequence of the way the blocks are represented: Lemma 3 guarantees
that when blocks a‘l,a‘2,...,a% (where 1 < ¢; < &, < --- < £) are represented the TtoG-representation cost is
(’)(Z:-‘:1 [1 + log(¢; — £i_1)]), so we can assign cost 1+ log(¢; — ¢i_1) to a’i (and make it the weight on the edge to
the previous block). O

We now show that G; can be transformed to Griog without increasing the sum of weights of the edges. This is done by
simple redirection of edges and changing their cost.

Lemma 18. G can be transformed to Griog without increasing the sum of weights of the edges.

Proof. Fix a letter a, we show how to transform the subgraph of G; induced by nodes labelled with blocks of a to the
corresponding subgraph of Gr,g, without increasing the sum of weights.

Firstly, let us sort the nodes according to the increasing length of the blocks. For each node af, if it has many edges, we
delete all except one and then we redirect this edge to a’’s direct predecessor (say a¥) and label it with a cost 1+ log(£ —k).
This cannot increase the sum of weights of edges:

o deleting does not increase the sum of weights;

e if a; has an edge to € with weight 1+ log¢ then 1+ log¢ > 1+ log(¢ —k);

e otherwise it had an edge to some k' <k with a weight £ —k’. Then 1+log({ —k) <£—k < -k, as claimed (note that
1+logx <x for x>1).

Some blocks labelling nodes in G¢ perhaps do not label the nodes in Grig. For such a block a® we remove its node a;
and redirect its unique incoming edge to its predecessor, say a,/, changing the weight appropriately. Since 1 + log(x) + 1 +
log(y) > 1+ log(x+ y) when x, y > 1, we do not increase the total weight.

It is left to observe that if a node labelled with a‘ exists in Grog then it also exists in G, i.e. all blocks represented
in TtoG occur in T. After RemCrBlocks there are no crossing blocks, see Lemma 12. So any maximal block in T (i.e. one
represented by TtoG-based representation) is also a maximal block a‘ in some rule (after RemCrBlocks), say in X;. But then
this block is present in X; also just before action of RemCrBlocks on X; and so it is represented by G-based representation.

In this way we obtained a graph corresponding to the TtoG-based representation. O

Corollary 4. The total cost of TtoG-representation is O(g log N).
Proof. By Lemma 18 it is enough to show this for the G-based representation, which holds by Corollary 3. O

4. Improved analysis

Intuitively, each “reasonable” grammar should have size O(|T|): application of a rule X — « makes the current text
longer by at least || — 1, so the sum of all lengths of right-hand sides (so |x|s) cannot be shorter than the input text.
In some extreme cases this estimation might be better than O(glogN) guaranteed by TtoG, thus TtoG should have an
approximation guarantee O(min(N, glog N)). This approach can be further improved: the trivial upper bound applies to any
intermediate string obtained during TtoG and we can choose any of those estimations. We choose a specific point, where
|T| ~ g. As a result, we divide the analysis of a computation of TtoG into two stages: the first one lasts while |T|> g and
then the second one begins. We separately estimate the cost of representation in the first stage, by O(glog(N/g)), and in
the second, by O(g). In total this yields O(g + glog(N/g)); this matches the best known results for the smallest grammar
problem [18,1,19] and is not worse than both O(glogN) and O(g).

Theorem 2. The TtoG runs in linear time and returns a grammar of size O (g + glog (%)) where g is the size of the optimal grammar
for the input text.

Note that the time analysis was done already in Theorem 1, in the rest of this section we focus on the improved size
analysis.

4.1. Outline

Firstly, in Section 4.2 we show that indeed any reasonable grammar for a text T has size O(T). This follows by simple
calculation and shows that it is enough to calculate the cost of representation for the grammar when |T| > g. From Corol-
lary 1 and Lemma 13 we know that those costs are covered by the issued credit and the additional representation cost
for a-blocks. The analysis for credit is easy: since in each phase we introduce O(m) < O(g) credit, it is enough to bound
the number of phases and this follows from the fact that we shorten the text in each phase, see Lemma 7; this is done in
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Section 4.3. On the other hand, the analysis of the representation cost for blocks is much more involved. The general outline
remain as it was as in Section 3.6: we again use the G-based representation as a middle step, estimate its cost and compare
it with the TtoG-based one. The difference is in the estimation of the G-based representation cost. We no longer can simply
charge O(log N) cost to a rule, we need a more subtle analysis. Instead of direct charging to a rule X; — «;, we associate
the cost with some of the letters (of the original text) generated by X;. To this end we ‘mark’ those letters and distinguish
between different such markings. We ensure that such markings are disjoint, there are at most 2 of them per non-terminal
and that the cost of representation is related to the total size of the markings, to be more precise, when we have markings
of lengths p1, p2, ..., px then the G-representation cost is 0(21‘21 1+ log p;). Then the estimation of the size of the whole
grammar is just a matter of calculation. The markings and the analysis of representation cost using them is performed in
Section 4.4. For technical reasons we also consider the cost of representation in the phase in which |T| is reduced from
more than g to smaller than g separately, the analysis is a simple combination of the case when |T| > g and when |T| < g
and is done in Section 4.5. Wrapping up all estimations and giving the proof of Theorem 2 is done in Section 4.6. What
is left is to describe the way we modify the markings to ensure their properties. This technical construction is presented
separately in Section 4.7.

4.2. Linear bound

We begin with formalising the argument that any “reasonable” grammar has size O(|T}|).

Lemma 19. Let SLP G contain no production X — o with || < 1 and assume that every production is used in the derivation defined
by G. Then |G| < 2|T| — 1.

In particular, if at any point the letters created so-far by TtoG have representation cost k and the remaining text is T then the final
grammar for the input tree has size at most k +2|T| — 1.

Note that the grammar produced by TtoG clearly has the properties assumed by Lemma 19: we introduce new letters in
place of substrings of length at least 2 and each of them is used in the derivation of the input text.

Proof. Assume that G has the properties from the lemma. An application of a rule X; — «; to the current string increases
its size by |oj| —1 > 1 for each occurrence of X; in the string derived so far. As we assume that each production is used
in the derivation, each of |aj| — 1> 1 is added at least once and so we get > i, (letj| — 1) < |T|. Thus >_[1; |evi| < |T|+m
and so it is left to estimate m. As there are m productions and each application increases the size of the derived string by
at least 1, and we start the derivation with a text of length 1, we get m < |T| — 1. Thus > i, || < |T| +m <2|T| — 1.

The second claim now easily follows: when the current string kept by TtoG is T then we can take as a whole grammar
X — T together with the representation for the so-far created letters. O

In the following analysis we focus on the phase such that the text before it has length greater or equal to g and after
it is smaller than g. Such phase exists: clearly N > g (as we can take the grammar with T on the right-hand side) and so
initially |T| > g and in the end T is reduced to a single letter.

Lemma 20. There is a phase in computation of TtoG such that at the beginning of the phase |T| > g and at the end of the phase
IT| <g.

We separately estimate the cost of representation (i.e. issued credit and the cost of TtoG-based representation) up to the
phase from Lemma 20, in this phase and after it. For the first two we show an upper bound of O(g + glog(N/g)), for the
latter we use Lemma 19 to get an estimation O(g) on the representation cost.

4.3. Credit and pair compression when text is long

Lemma 21. If at the beginning of the phase |T| > g then O(g + glog(N/g)) credit was issued.

Proof. Initial grammar G has at most g credit. The input text is of length N and the current one is of t =|T| and so there
were O(log(N/t)) phases, as in each phase the length of T drops by a constant factor, see Lemma 7. As t > g, we obtain

a bound O(log(N/g)) on the number of phases. Due to Lemmata 10, 13, at most O(m) < O(g) credit per phase is issued
during the pair compression and block compression, so in total O(g + glog(N/g)) credit was issued. O

From Lemma 10 we know that the representation cost of letters introduced by pair compression is covered by the credit.
Thus

Corollary 5. Suppose that at the beginning of the phase |T| > g. Then the representation cost of letters introduced by pair compression
till this phase is O(g + glog(N/g)).
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4.4. Cost of representing blocks when text is long

For the cost of representing blocks, we define the G-based and TtoG-based representations in the same way as previously.
However, we slightly extend the notion: we consider those representations at any point of TtoG, not only at the end; this
does not effect those notions in any way.

For both the G-based representation and the TtoG-based representation we again define graphs G¢ and Griog and by
Lemma 16 the cost of G-based representation is ®(w(Gg)) and by Lemma 17 the cost of TtoG-based representation is
O(W(GTt0G)). Then Lemma 18 shows that we can transform G to Griog Without increasing the sum of weights. Hence it is
enough to show that the G-based representation cost is at most O(g + log(N/g)).

The G-based representation cost consists of some released credit and the cost of representing powers, see Lemma 16.
The former was already addressed in Lemma 21 (the whole issued credit is O(g + glog(N/g))) and so it is enough to
estimate the latter, i.e. the cost of representing powers.

The outline of the analysis is as follows: when a new power a’ is represented, we mark some letters of the input text
(and perhaps modify some other markings) those markings are associated with nonterminals and are named X;-pre-power
marking and X;-in marking (which are defined in detail in Section 4.7). The markings satisfy the following conditions:

(M1) each marking marks at least 2 letters, no two markings mark the same letter;

(M2) for each X; there is most one X;-pre-power marking and at most one X;-in marking;

(M3) when the substrings of length p1, p», ..., px are marked, then the so-far cost of representing the powers by G-based
representation is CZL]“ + log p;) (for some fixed constant c).

We show that when we have a marking satisfying (M1)-(M3) then indeed the cost of representing blocks is O(g +
glog(N/g)). The construction of the markings and the analysis of it is technical and does not affect further estimations of
th grammar size, so it is moved to a separate Section 4.7.

Lemma 22. If at the beginning of the phase |T| > g then so far the cost of representing blocks by TtoG is O(g + glog(N/g)).

Proof. The G-based representation cost consists of some released credit and the cost of representing powers, see Lemma 16.
The former is bounded by O(g + glog(N/g)), see Lemma 21, in the following we estimate the cost of representing powers.
Using (M1)-(M3) the cost of representing powers (in G-based representation) can be upper-bounded by (a constant
times):
k k
k + Zlogpi, where k < 2m and Zpi <N. (3a)
i=1 i=1

It is easy to show that (3a) is maximised for k = 2m and each p; equal to N/2m: clearly, the sum is maximised for
ZL] pi = N. Then for a fixed k and Zif:l pi = N the sum Zif:] log p; is maximised when all p; are equal, which follows

from the fact that log(x) is concave, hence we can set p; = 5, arriving at

N
2k + 2klog <ﬂ> . (3b)

The function x + xlog(N/x) attains its maximum for x = 2N/e and it monotonically increases on the interval [0, 2N/e].
If g <N/e then (as | <m < g) we get that (3b) is at most

N N
2g+2glog<g> :(’)(g—i—glog <E>> . (30)

If g > N/e then by Lemma 19 the trivial estimation for the size of the whole grammar returned by TtoG is 2N — 1 <
2eg—1=0 <g+g10g<%)), so also as claimed. O

4.5. Intermediate phase

We bounded the representation cost before the phase from Lemma 20 and after it, so it is left to estimate the cost
within this phase.

Lemma 23. The cost of representing letters in the phase from Lemma 20 is O(g + glog(N/g)).

Proof. Let at the beginning of this phase T have length t; and after t;, where t; > g > t3.
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The cost of representing letters introduced during the pair compression is covered by the released credit, see Lemma 10.
There was at most O(g + glog(N/g)) credit in the grammar at the beginning of the phase, see Lemma 21, and during this
phase at most O(g) credit was issued, see Lemma 10 and Lemma 13. So the total credit is O(g + glog(N/g)).

Consider the cost of representing blocks. This consists of representing blocks that are not powers, which is covered by
the released credit, and the cost of representing powers. The former is already covered, as we already known that at most
O(g + glog(N/g)) credit was issued till the end of this phase. Thus we consider only the cost of representing powers. As
T at the end of the phase has ty letters, at most 2t, letters representing blocks could be introduced in this phase (since
at most two blocks can be merged into one letter by pair compression afterwards). Let pq, ..., px be the lengths of those
powers. Then (see Lemma 3) the cost of representing those powers is proportional to

k k
k+ Zlogpi, where k < 2ty and Zpi <t .
i=1 i=1

Using similar analysis as in the case of (3) it can be concluded that this is at most

t1 N
2k + 2k1 — ) <2k + 2kl —
K 0g<2k> = ok og(2k>

with the equality following from t; < N. Again, as in (3), if g < N/e then (recall that k < t; < g) this is

N N N
2k +2klog| — ) <2glog| — | =O | glog | —
2k 2g g

and if g > N/e then Lemma 19 yields that the whole returned grammar has size O(N) = O(g) =0 (g log (%)) m]

4.6. Proof of Theorem 2

Concerning the size of the returned grammar, consider the phase from Lemma 20. By Corollary 5 the cost of letters
introduced before this phase by pair compression is O (g log (g)) Similarly, the cost of representation of letters introduced

by block compression before this phase is O (g log (%)), see Lemma 22. The cost of representing letters introduced during
this phase is also O <g log(%)), by Lemma 23. Lastly, by Lemma 19, the cost of representing letters after this phase is

O(g). Thus, in total, the whole representation cost is O <g log (%)), as claimed.

4.7. Markings’ modification

What is left to show is how to mark the letters and how to modify those markings so that (M1)-(M3) are preserved.

The idea of preserving (M1)-(M3) is as follows: if a new power of length ¢ is represented, this yields a cost O(1+1log¢) =
O(log?), see Lemma 16; we can choose ¢ in (M3) so that this is at most clog¢ (as £ > 2). Then either we mark new £
letters or we remove some marking of length ¢’ and mark ¢ - ¢’ letters, it is easy to see that in this way (M1)-(M3) is
preserved (still, those details are repeated later).

Whenever we are to represent powers a‘l, a‘2, ..., for each power a‘, where ¢ > 1, we find the right-most maximal
block a® in T. Let X; be the smallest nonterminal that derives (before RemCrBlocks) this right-most occurrence of maximal
a® (clearly there is such a non-terminal, as X, derives it). It is possible that this particular a® in X;s’ rule was obtained as
a concatenation of ¢ — k explicit letters to a* (so, not as a power). In such a case we are lucky, as the representation of
this a, is paid by the credit and we do not need to separately consider the cost of representing power a‘. Otherwise the
a’ in this rule is obtained as a power and we mark some of the letters in the input that are ‘derived’ by this a‘. The type
of marking depends on the way this particular a® is ‘derived’: If one of the nonterminals in X;'s production was removed
during RemCrBlocks, this marking is an X;-pre-power marking. Otherwise, this marking is an X;j-in marking.

%)

Lemma 24. There is at most one X;-pre-power marking.
When X;-in marking is created for a’ then after the block compression X; has two nonterminals inside its rule and between them
there is exactly ay.

Proof. Concerning the X;-pre-power marking, let a’ be the first power that gets this marking. Then by the definition of the
marking, afterwards in the rule for X; there is at most one nonterminal. But this means that no power can be created in
this rule later on, in particular, no new marking associated with X; (pre-power marking or in-marking) can be created.
Suppose that a® was assigned an X;-in marking, which as in the previous case means that the right-most occurrence
of maximal block a’ is generated by X; but not by the nonterminals in the rule for X;. Since a’ is a power it is obtained
in the rule as a concatenation of the a-prefix and the a-suffix popped from nonterminals in the rule for X;. In particular
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this means that each nonterminal in the rule for X; generates a part of this right-most occurrence of a‘. If any of those
nonterminals were removed during the block compression a‘ would be assigned an X;-pre-power marking, which is not
the case. So both those nonterminals remained in the rule. Hence after popping prefixes and suffixes, between those two
nonterminals there is exactly a block a, which is then replaced by a,, as promised. O

Consider the a® and the ‘derived’ substring w’ of the input text. We show that if there are markings inside w¢, they are
all inside the last among those ws.

Lemma 25. Let a’ be an occurrence of a maximal block to be replaced with a, which ‘generates’ w' in the input text. If there is any
marking within this w® then it is within the last among those ws.

Proof. Consider any pre-existing marking within w¢, say it was done when some b¥ was replaced by by. As by is a single
letter and a‘ derives it, each a derives at least one by. The marking was done inside the string generated by the right-most
by (as we always put the marking within the rightmost occurrence of the string to be replaced). Clearly the right-most by
is ‘derived’ by the right-most a within af, so in particular it is inside the right-most w in this w¢. So all markings within
w? are in fact within the right-most w. O

We now demonstrate how to mark letters in the input text. Suppose that we replace a power a‘, let us consider the
right-most occurrence of this a® in T and the smallest X; that generates this occurrence. This a’ generates some w¢ in the
input text. If there are no markings inside w’ then we simply mark any ¢ letters within w’. In the other case, by Lemma 25
we know that all those markings are in fact in the last w. If any of them is the (unique) X;-in marking, let us choose it.
Otherwise choose any other marking. Let ¢’ denote the length of the chosen marking. Consider, whether this marking in w
is unique or not

unique marking Then we remove it and mark arbitrary ¢ - ¢’ letters in w¢; this is possible, as |w| > ¢ and so |w¢| >
£ - ¢, Since log(¢ - £') =log¢ + log ¢/, the (M3) is preserved, as it is enough to account for the 1+ log¢ < clog?
representation cost of af as well as the clog¢’ cost associated with the previous marking of length ¢'.

not unique Then |w| > ¢’ +2 (the 2 for the other markings, see (M1)). We remove the marking of length ¢’, let us calculate
how many unmarked letters are in w¢ afterwards: in w‘~! there are at least (¢ — 1) - (¢/ + 2) letters (by the
Lemma 25: none of them marked) and in the last w there are at least £/ unmarked letters (from the marking that
we removed):

=1 (0 +2)+ =l +20 -0 =2)+ 1
=00 +20-2
> 00 .

We mark those £ - ¢’ letters, as in the previous case, the associated clog(¢¢’) is enough to pay for the cost.

There is one issue: it might be that we created an X;-in marking while there already was one, violating (M2). However,
we show that if there were such a marking, it was within w® (and so within the last w, by Lemma 25) and so we could
choose it as the marking that was deleted when the new one was created. Consider the previous X;-in marking. It was
introduced for some power b¥, replaced by by that was a unique letter between the nonterminals in the rule for X;, by
Lemma 24. Consider the rightmost substring of the input text that is generated by the explicit letters between nonterminals
in the rule for X;. The operations performed on G cannot shorten this substring, in fact they often expand it. When by, is
created, this substring is generated by by, by Lemma 24. When ay is created, it is generated by a;, by Lemma 24, i.e. this is
exactly wt. So in particular w¢ includes the marking for by.

This shows that (M1)-(M3) are preserved.
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Appendix A. Sakamoto’s algorithm [19]

In proof that bounds the number of introduced nonterminals [19, Theorem 2], it is first estimated that in one execution
of the while loop for a factor f; the introduced nonterminals occur in fif,--- fi_1, except perhaps a constant number of



134 A. JeZ / Theoretical Computer Science 592 (2015) 115-134

them. This argument follows from observation that f; is compressed to ¢Sy, where |¢| and |y | are bounded by a constant
and the earlier occurrence of the same string as f; is compressed to «’By’ (where also |«| and |y’| are bounded by a
constant). This is true, however, when « and y represent nonterminals introduced by repetition procedure (i.e. they are
blocks in the terminology used here) we need to take into the account also the additional nonterminals that are introduced
for representation of those blocks. The estimation of (O(1) is not enough, as in the worst case Q2(logN) are needed to
represent a single block of as. We do not see any easy patch to repair this flaw.

The improved analysis [19, Theorem 2], in which the number of nonterminals is bounded by O (g + log (%)) has the
same shortcoming.
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