Testing equivalence of morphisms on
context-free languages *

Wojciech Plandowski 1 **

Instytut Informatyki UW, 02-097 Banacha 2, Warszawa, Poland

Abstract. We present a polynomial time algorithm for testing if two
morphisms are equal on every word of a context-free language. The in-
put to the algorithm are a context-free grammar with constant size pro-
ductions and two morphisms. The best previously known algorithm had
exponential time complexity. Our algorithm can be also used to test in
polynomial tiime whether or not n first elements of two sequences of
words defined by recurrence formulae are the same. In particular, if the
well known 2n conjecture for DOL sequences holds, the algorithm can
test in polynomial time equivalence of two DOL sequences.

Additionally, we extend the result from [5] by proving the existence
of polynomial size test sets for context-free languages not only in free
monoids but in free groups as well. The main points of our proof are
the same as in [6, 5]. The main change is a new short proof of the main
lemma. The previous proof took 10 pages. It was complicated since it
considered many cases and used advanced properties of periodicity of
words. Our proof takes only 2 pages. The simplification is a consequence
of embedding a free monoid into a free group.

1 Introduction

The problem of equivalence of morphisms on context-free languages (cfl, for
short) consists in checking for given two morphisms f, ¢ and a context-free
grammar G (cfg, for short) if they coincide on L(G) (i.e. if f(w) = g(w) for
w € L(G)). The idea to solve the problem is connected to the notion of a test
set. A set of words T is a test set for a language L iff T is a subset of L and for
every two morphisms f, ¢ if they coincide on 7" then they coincide on L. Hence,
it is enough to compare morphisms on words from a test set to decide if they
coincide on a whole language. The existence of finite test sets for cfls was proved
in [2]. The number of words in the test set could be double exponential. This
result was improved to single exponential [4] and later to polynomial, see [6].
The lengths of words in the test set however could be exponential. Moreover,
the length of the shortest word in a cfl defined by a grammar with n productions
can be exponential, see Example 1. Thus, for some cfis it is impossible to list in
polynomial time all words from any test set. To avoid this problem we encode

* Supported by the grant EC Cooperation Action IC 1000 Algorithms for Future
Technologies ALTEC.

** E-mail: wojtekpl@mimuw.edu.pl

461

every word from the test set by a small cfg. Then for each word w from the test set
we find codes for f(w), g(w). Finally, we present a polynomial time algorithm to
test if two codes represent the same word. The algorithm uses similar ideas as the
Makanin algorithm (which is of exponential complexity) for testing whether or
not a word equation has a solution, see [9] and later improvements [3, 7, 10, 11].

We generalize the definition of a test set to all monoids. A subset T of a
language L is a test set for L in a monoid M iff for each two morphisms f,
g 1 X* — M if they coincide on T then they coincide on L. We prove the
existence of polynomial size test sets for cfls in free groups. At one stroke we
extend the result from [5] and obtain a shorter proof! As an example how it is
possible we present two proofs of the fact which is used in the proof of Lemma 2.
The proof in a free monoid considers two cases while the proof for groups uses
inverse elements instead.

Lemmal. X = {uv, uw, zv} is a test set for Y = {uv, uw, zv, zw} in every

group.

Proof. (in a free monoid)
Let f,g be two morphisms. It is enough to prove that if f(z) = g(z) for z € X
then f(xw) = g(zw). Denote s’ = f(s) and s = g(s) for any word s. Since

u'v’ = u"v" two cases are to be considered:
Case 1: v/ is a prefix of u”.
There is a word o such that u” = v'o. Using it in equations u'v’ = u’v"" and

uw' = u” w' and simplifying them we have v/ = ov" and w’ = ocw’, respectively.

Since z'v' = z”v" we obtain z” = z'c and finally z""w" = z'ocw” = z'w’.
Case 2: v” is a prefix of /.
The proof in that case is symmetric to the one in the previous case.

P p

Proof. (in a group)
Let f,g be two morphisms. It is enough to prove that if f(z) = g(z) for z € X
then f(zw) = g(xw). Denote s’ = f(s) and s = g(s) for any word s. We have

", 1 1, .1,..11 H, . 1
) u w

'w' = z'v' (V)W) T e = 2 (u') T e = 2 (ue v =z

and we are done.

The fact above is an extension of the main fact in [4] and allows to prove using
the same construction as in [4] that in every group every regular language has a
linear size test set.

2 Polynomial size test sets for context-free languages

Recall, that a cfg is in Chomsky normal form if each production of the grammar
is either in form A — BC or in form A — w where A, B, C are nonterminal
symbols and w is a terminal symbol. Since every cfg whose productions are
of constant size can be transformed in polynomial time to a cfg in Chomsky
normal form we restrict our considerations to cfgs which are in that form. A

462

linear context-free grammar is a cfg whose productions are of the form A — uBv
or A — u where u, v are terminal words and A, B nonterminal symbols. For
every nonterminal A let ws be any shortest word derivable from A. For a cfg
G in Chomsky normal form we define a linear cfg lin(G) by replacing every
production of form A — BC by three productions A — wgC, A — Buwg,
A— wpwe.

Lemma?2. Let G be a cfg in Chomsky normal form. Then L(lin(G)) is a test
set for L(G) in every group.

Proof. The proof is the same as the proof of Lemma 2 in [5], see also the proof
of Theorem 1 in [6)

As we shall see in the next lemma to check if in a given group the size of a
minimal test set can be bounded by a polynomial it is enough to consider test
sets for finite languages Li which are defined by the following linear cfg Gy:

A; — a;Ai_16; | biA,'_II;,' forl<i<k
A —ay | b

where nonterminals are in capitals, terminal symbols in lower case letters and
Ay, is the starting symbol. The language L;, consists of 2% words and it is defined
over an alphabet consisting of 4k — 2 symbols. Let p; be the only word from Ly
consisting of letters b; and b;. Define T = Ly — {u}.

A linear cfg G can be viewed as the digraph graph(G) whose vertices cor-
respond to nonterminals and there is an edge from A to B labeled by a pair of
terminal words (u,v) if A — uBuv is a production in G. Additionally we add a
terminal node ¢. There is an edge from A to ¢ labelled (u, v) if v = € and thereis a
production A — u in G. In such a graph every path from the starting nonterminal
S to t corresponds to a derivation in G of a word from L(G). On the other hand
each derivation of a word from L(G) has its corresponding path in graph(G) from
S tot. A word w whose derivation corresponds to a path A = (S, v1),..., (vg,?)
can be obtained in the following way. If (wo, W), . .., (wk, Wx) are labels corre-
sponding to consecutive edges of A then w = wp ... wrpwy . .. Wo.

For each node v of graph(G) we build a tree tree(v) rooted at v containing
all vertices reachable from v in graph(G). With each sequence of not necessarily
adjacent edges (u1,v1),...,(ug, vk) We associate a path which starts at S goes in
tree(S) to up then it traverses (ui,vy) and then goes in tree(vy) to a vertex us
runs through (ug, v9) ete. Finally, it goes via (ug, vx) and tree(vy) to t. Observe,
that for some sequences of edges there are no paths which satisfy the conditions
above and since there is exactly one path in a tree which starts at the root and
ends with a given vertex of the tree the path if exists is unique. Let Ff™¢¢(G) be
a set of words corresponding to paths associated with a sequence of at most k
edges. The index tree in F} ¢¢(G) means that the contents of this set depends
on the function tree. The number of words in Fi™*¢(G) does not exceed the
number of sequences of at most k edges. Since the number of edges of graph(G)
is equal to the number of productions in G, the size of F{"*¢(G) does not exceed

463

Ef:o n* < (k+1)n* where n is the number of productions in G. Suppose the sizes
of productions from G are O(1). Since the length of a path in a tree embedded in
graph(G) does not exceed n the length of a path associated with a sequence of
k edges does not exceed kn and the words in F}(G) are not longer than O(kn).

Lemma 3. Let G be a linear cfg and Gr be a group. If Ty is a test set for Ly, in
Gr then Fir°(G) is a test set for L(G) in Gr.

Proof. The proof is a straightforward generalization of the proof of Lemma 3
from [5], see also the proof of Lemma 2 in [6].

Theorem 4. Let Gr be a group. There is a polynomial upper bound in Gr for the
size of minimal test sets for contert-free languages which are defined by context-
Jree grammars with constant size productions iff there is k > 0 such that T, is a
test set for Ly in Gr.

Proof. Let G be a cfg in Chomsky normal form with n productions. If there
exists k > 0 such that T is a test set for Li then, by Lemma 3 and Lemma 2,
Fi1e%(lin(@)) is a test set for L(G). Since F{£°%(lin(G)) contains at most (2k —
1)(3n)2*-2 words the polynomial upper bound exists. Suppose, there does not
exist £ > 0 such that T} is a test set for Lg. Since the number of words in L
is 2F and it is defined by a grammar Gy which can be easily transformed to a
grammar in Chomsky normal form with O(k) productions the result follows.

By Theorem 4, to prove in a group the existence of polynomial size test set
for cfl it is enough to find k such that T} is a test set for Ly in the group. The
next lemma proves that for k£ = 4 it is true in free groups.

Denote w® = a~lwa. Note, that (w?®)? = w?®

Lemma5. Consider morphisms f, g. Denote s’ = f(s) and s" = g(s) for each
element s of a free group. Let 7, p, w, 0, 7, a, b, ¢, d be elements of the free
group. Then

L Ifwur=1wand pr =71p and 7 # 1 then wp = pw.
2.

o.a,rc: Tca.a

obre = réa? — obrd = TdO'b ,
UaTd: TdO'a

3. If o’ = 2'G for x € T3 then oply = p4v,
4. If &' = 2" for x € Ty then p) = pf.
5. Ty is a test set for Ly in a free group.

Proof.

1. The proof of this point is a consequence of the fact that every subgroup
of a free group is free. We omit details.

464

2. It is a consequence of point 1. We may assume that o ;é land 7 # 1. We
apply point 1 to the first two equations to obtain 0%¢® = o®0®. Now, we apply
point 1 again to obtained equation and the third equation.

3. We have & = (z')~loz’ = ¢® for & € Ts. Hence ¢ = oV’ for ¢,y € T; and
therefore 0*'¥'™" = ¢ for z,y€T3. Forz = agazaldgag, y= agazblagc‘zg we have
g3 s e = 6 (). Similarly, we obtain 2415795 'a5" = & (8) and

gbaaaaibyla ot - (7). Now, we transform the equation (a) Let p= alb' L
-1
-1

We have a“'a”az a5 = =0 Thus 0'“3” T = 6% and therefore (%)?" R
Finally, we obtain ¢4 p% = = p% "% Similarly, we transform equations (,B),
(7) to have 0% pbs " = p"lz_ 0% ! Y3995 " = pai o, respectively. Now, we apply
point 2 to obtain & 3p 2= =pt 2 ot By transforming the last equation in the
reverse order than previously we obtain obsbaatd T8 = Whlch is equivalent
to o#s = ¢*' where v = b3b2a1b2b3 Since v € T3 we have ¢ = 7 and finally
o#s = & which is equivalent to p3T = ops.
4. The system of equations ' = " for * € Ty can be written in form

ayz'ay = ajz"al for z € L3

bya'bly, = blya"by for x € T3.

Hence for ¢ € T3 we have
(14:8 a4 —aﬁ{x"a”_a‘,b” l(b// //b//)b// 1 4 - a4b" lb /b/b// 1- Z
and therefore (b 164a}la})z’' = gb’ Lb4~1a4a,!). Now, we apply point 3 and
obtain (bf{lbi{ai{ tal) = pa(byby aﬁ{af, iy _
Hence, we have bja ' (ajubay)ay ' = byusbyby . Since ajyuhal = afplal we
have b4,¢43bﬁ1 = by psbY and finally pfy = pj.

5. This point is a reformulation of point 4.

We say, that a grammar G defines ¢ word w if it is a cfg in Chomsky normal
form without useless nonterminals such that each nonterminal is on the left hand
side of exactly one production and L(G) = {w}. In such a grammar the word w
has exactly one derivation.

Fzample 1. Some grammars define a word of exponential size with respect to the
number of their productions, e.g. the grammar with productions A; — 4;_14;_1
for 1 < i <k, Ay — a and the starting symbol Ay defines the word a?*. We
treat a grammar defining w as a compressed representation of w.

Theorem 6. In a free group every cfl generated by a grammar in Chomsky nor-
mal form with n productions has a test set of size at most 7(3n)®. Grammars
defining every word from the test set can be found in polynomial time.

Proof. Let G be a cfg in Chomsky normal form with n productions. By Lemma 2,
Lemma 3 and Lemma 5 F¢"¢(lin(G)) is a test set for L(G). Since lin(G) has at
most 3n productions F¢ ¢¢(lin(G)) has at most 7(3n)® words and the first part
of the theorem is proved.

465

Since the shortest words derivable from nonterminals in grammar G can
be of exponential size the productions of lin(G) can be of exponential size.
Fortunately, for each nonterminal A there is a shortest word derivable from A
which is defined by a subgrammar of G. Take such a word as a w4. Now, we
treat all w4 as terminal symbols in the grammar lin(G) remembering that those
symbols represent words which are defined by grammars. On the basis of the
graph for lin(G) we find Fg(lin(G)). The words are of lengths O(n) and they
can be found in polynomial time. They consist of terminal symbols of lin(G)
which correspond to words defined by grammars. Now, for each word from the
test set we can find a grammar defining this word.

3 A polynomial time algorithm for testing if two
morphisms coincide on a context-free language

From now on we deal with a free monoid. Let f be a morphism and let G be a
grammar defining w. A grammar defining the word f(w) is easily derived from
G by replacing every production of form A — u where u is a terminal symbol
by A — f(u). By Theorem 6 to find a polynomial time algorithm for morphism
equivalence problem for a cfl it is enough to find a polynomial time algorithm for
testing if two grammars define the same word. We describe a polynomial time
algorithm for a more general problem.

We say, that a grammar G defines a set of words S if the grammar is context-
free in Chomsky normal form (there can be useless nonterminals), each nonter-
minal is on left hand side of exactly one production, every nonterminal generates
exactly one terminal word and for each w € S there is a nonterminal A in G such
that A —* w. In particular, if G defines a word then it defines a set of words
derivable from nonterminals of G. Denote by w4 the terminal word derivable
from A in G if A is a nonterminal and A if A is a terminal symbol.

Ezample 2. For fixed k consider a grammar G containing the following set of
productions:

. A — AgAj
Az — Az_lA,_l for 1 S 2 S k A: R A:'_lAi—l for 1 S i S k
A() —a A, —a
1
Since wya,; = a2 for 0 i<k wy = a?-1! for 1 i<k wy = a?" the

grammar defines the set of words
{a2i :ogigk}u{a?‘lzlgigk}.

We describe a polynomial time algorithm for the following problem:
The Problem
Let G be a grammar which defines a set of words and S be a set of pairs of
nonteminals from G. Check if wq = wp for every pair (A, B) from S.

Let G be a grammar with n productions which defines a set of words W.
Since the shortest words derivable from a nonterminal of a grammar in Chomsky

466

normal form with n productions are of size not exceeding 2" the lengths of
words from W are not longer than 2". Such numbers can be stored in n bits.
Standard algorithms for basic operations (comparing, addition, substraction,
division, multiplication) on such numbers work in polynomial time with respect
to n. This allows to compute the length of every word from W in polynomial
time.

The key point of our algorithm is to consider relations between words wy.
The relations are stored as sets of triples (A, B.i) where A, B are nonterminal
or terminal symbols and ¢ is a nonnegative integer. We divide the triples into
two groups which we call suffiz and subword triples. Let |w| be the length of the
word w. A triple (A, B,) is a suffix triple iff ¢ + |wp| > |wa| and it is a subword
triple iff ¢ + |wp| < |wa| and ¢ > 1. The basic relation in our considerations
is SUFSU B(G). Intuitively, a triple (4, B, i) is in SUFSU B(G) iff starting at
position ¢ + 1 in word wy4 consecutive symbols of w4 are the same as in wg
starting from the beginning. More precisely:

(A, B,i) € SUFSUB(G) ift
(A, B, 1) is a suffix triple and wa[i +1...|wal] = wp[l...|wa}—i] or
(A, B, 1) is a subword triple and wali+1...i+ |wg|] = wp

Now, The Problem can be refomulated as follows:

Given a grammar G defining a set of words and a set S of pairs of nonterminals
from G. For each pair (A, B) from S check if lwa| = |wp| and (A4, B,0) €
SUF SU B(G).

Let rel be a set of triples. We define an operation Split(A, rel) which elim-
inates occurrences of a nonterminal A from triples of rel and does not lose the
information from rel. Assume, A — EF is a production of G. For one triple the
operation Split(A, (B, C,1)) is defined as follows:

—Case AZBand A#C

Split(A, (B, C,i)) = (B, C,i)
— Case A=Band A#C

((E,C,i)U(C, F, |wg| - i)
if lwg| > i and |we| +i > |wgl,
(E,C,1)
if jwg| > i and |we|+1 < |wgl,
. . C,F,0
split(4,(4,0,0) =4 CTW o fwel < fwel,
(F,C,0)
if lwg| =i and |we| > |wr|,
(F,C,i—|wg|)
L if |lwg| < 1.

467

— Case A#Band A=C
(B’E’i)
" . lfl’U)E-I-ZZ wg|,
Solit(A, (8,4, =1 (5,55 U3 7 o] 2
if |’LUE|+i < |’U)B|.
— CaseA=Band A=C
(0
ifi=0
(E,E,i))U(E, F,|wg|—1)
if lwgl >i>1andi> |wpl,
(E,E,i)U(F, F,i)U(E, F,|wg| — i)
if lwg|>i>1andi<|wp|,
(E, F,0)
if |lwg| =1 and |wg| > |wp|,
(F,E,0)U (F, F, i)
if |lwg| =1 and |wg| < |wpl,
(F’E’i_ IwE'l)
if |lwg| <% andi> |wrl|,
(F,E,i—IWEl)U(F,F,i)
if IwE| <iandi< prl.

Split(A, (A, A, 1)) =

\
For a set of triples rel we define Split(A,rel) = g ¢ i)erea SPIt(4, (B, C,1)).
The definition of Split looks very complicated, but the 1dea is to eliminate nonter-
minal A from triples of rel without losing the information about the dependences
between words in rel. Our next lemma states in formal way that the relation
Split(A, rel) is equivalent to rel.

Lemma 7. rel C SUFSUB(G) iff Split(A,rel) C SUFSUB(G) for any non-
terminal A

Proof. The proof from left to right is a consequence of the fact that on the basis
of the relation rel we define Split and we do not add dependences which are not
derivable from rel. The proof from right to left is a consequence of the fact that
having Split we can restore rel since all the information from rel were moved to
Split. The formal proof of the above is simple but tedious. It consists of several
cases corresponding to the cases in the definition of Split.

Let #suffiz(rel) and #subword(rel) be the number of suffix and subword
triples in rel, respectively. Let #sufsub(rel) = #suf fiz(rel) + #subword(rel).
Clearly, #sufsub(rel) is the number of triples in rel. The following lemma will
be useful later.

Lemma 8. Let rel be a set of triples such that for every (B,C,i) € rel |lwal >
max{|wg|, |lwc|}. Then
#suf fiz(Split(A, rel)) < 3#sufsub(rel)
#subword(Split(A, rel)) < #subword(rel) + 3#suf fiz(rel)

468

Proof. The first equality is clear since one triple from rel corresponds to at most
three triples in Split(A, rel). The second one is a consequence of the fact that
every triple from rel corresponds to at most one subword triple in Split. Look
at the definition of Split. In most cases triples correspond to one triple. Since
(H, H,17) for any H is always a suffix triple it remains to consider the case A = B
and A # C for |wg| > i and |wc| + i > |wg| and the case A # B and A = C
for i + |wg| < |wp|. In the first case (E,C, 1) is a suffix triple, in the second one
since |lwa| > |lwp| (B, F, |wg| + 7) is a suffix triple.

The second operation we define for a set of triples rel is the operation
Compact(rel). It reduces the number of suffix triples in relation rel.

Lemma9. (periodicity lemma, see [8])
If z, y are periods of a word w and z +y < |w| then ged(z,y) is also a period of
w where ged stands for the greatest common divisor.

Computing the greatest common divisor of two n bit numbers takes polynomial
time, see [1].

Define the operation SimpleCompact(rel) in the following way. If there are
three suffix triples (A, B, 1), (4, B, j), (A4, B, k) in rel such that (j —1)+(k—i) <
|wa| —¢ and ¢ < j < k then the operation replaces them by two triples (4, B, i),
(A, B, i+gcd(j—1, k—1)). If there are no such three triples it fails. A Compact(rel)
becomes from rel by applying SimpleCompact to rel until it fails.

Lemma 10. rel C SUFSUB(G) iff Compact(rel) C SUFSUB(G)

Proof. It is enough to prove that rel C SUFSUB(G) iff SimpleCompact(rel) C
SUFSUB(G). If rel C SUFSUB(G) and SimpleCompact does not fail then
both j — ¢ and k — ¢ are periods of the word w = wg|[l...|ws| — ¢] and by
periodicity lemma ged(j — i, k —7) is also a period of it. Hence, (A, B, i+ ged(j —
i, k—1)) is in SUFSUB(G). On the other hand if (4, B, 1) and (A4, B, i+ ged(j —
i,k — 1)) are in SUFSUB(G) then ged(j — i,k — ¢) is a period of w. Then j — i,
k —i as multiplies of ged(j —¢, k—1) are periods of w and therefore both (4, B, j),
(A, B, k) are in SUFSUB(G).

Lemmall. Ifrel is a set of triples then #suf fiz(Compact(rel)) < (2n+1)n2.

Proof. Let (A, B,11), (A, B,i2),..., (A, B, ir) be a sequence of all suffix triples of
form (A, B, i) from Compact(rel) sorted on :. Since the operation SimpleCompact
fails we have i,49 — iy + 4,41 — i, > |wa| — 4,. Hence, 2i,45 — i, > |wal| and
therefore 1(|wa| — ir) > (Jwa| — ir42). Since |wa| — i1 < 27, the sequence of
numbers |wy| — iy, ..., lwa| — i has at most 2n + 1 elements. Therefore the
number of all suffix triples in Compact(rel) does not exceed (2n + 1) * n?.

Algorithm Test;

{ input:
grammar G which defines a set of words
set S of pairs of nonterminals from G

469

output:
test if for each (4,B) € S wa = wp}
begin
compute |wa| for each nonterminal A;
if there is (A, B) € S such that [w4| # |wp| then return false;
(A1, ..., Ap):=sort nonterminals in descending order according to |w,|;
rel:=U4,yes (4, B, 0);
for i:=1 to n do
begin rel:=Split(A; rel); rel:=Compact(rel) end;
{there are no nonterminals in triples of rel}
if 3(a, b, 0) € suffix and a # b then return false else return true
end.

Theorem 12. The worst-case performance of the algorithm Test is polynomial
with respect to the size of input.

Proof. Let rel; be the value of the variable rel before the i-th iteration of the
algorithm. The correctness of the algorithm is a consequence of Lemma 7 and
Lemma 10. To prove.the polynomial worst-case performance of the algorithm
it is enough to prove that the #sufsub(rel;) can be polynomially bounded.
Initially, #subword(rely) = 0 and #suffiz(rely) = |S| < n% By Lemma 8
we have #suffiz(rel;) < (2n + 1)n? for i > 1. Since the operation Compress
do not touch subword triples we have #subword(rel;) < #subword(rel;_1) +
3#suf fiz(rel;_1) for i > 1. Solving this recurrence we obtain #subword(rel;) <
3i(2n + 1)n? < 3n(2n + 1)n? and finally #sufsub(rel;) < (3n+ 1)(2n + 1)n?.

Theorem 13. Testing of a set of equivalences between words from a set of words
defined by a grammar G can be done in polynomial time.

As a consequence of the above theorem we have

Theorem 14. Testing mophism equivalence on a contert-free language can be
done in polynomial time

Proof. To compare words f(w), g(w) defined by grammars Gf, G, consider the
grammar Gy UG, and the one element set of pairs of nonterminals {(Ay, A,)}
where Ay, A,y are starting symbols of grammars Gy, G4, respectively.

Because of shortage of space two other applications of algorithm Test are pre-
sented in examples.

FEzample 3. Using algorithm Test we can compare first n elements of two se-
quences of words which are defined by recurrence formulae of form:

Jfats+1 = F(fn, .., fats) where F' is a composition of concatenations and s is a
constant. For example to compare first n elements of sequences f; = a, fo = b,
fosr = firifefor L< k<n—2and fl = a, f} = b, flyy = Fiflys for
1 <k < n—2 we consider a grammar

Fl — a, F2—>b, Fk+2—>Fk+1Fk fOI‘].SkSTl—2

F{—a, F3—b F ,— F{F for1<k<n-2

and a set of pairs {(Fr, F{): 1< k < n}.

470

Ezample 4. A DOL sequence (w, f, X) is a sequence of words w, f(w), f%(w),
...where w is a starting word, f : 2* — X* is a morphism and X' is an n letter
alphabet. A well known 2n conjecture for DOL sequences states that if two DOL
sequences coincide on first 2n elements then they are the same. Up to now it is not
known whether or not the conjecture holds true. If it is true however then our al-
gorithm can test in polynomial time whether or not two DOL sequences are iden-
tical. Consider for example two DOL sequences (w, f, {a,b}), (w, g, {a, b}) where
w = aba, f(a) = ab, f(b) = ba and h(a) = aab, h(b) = baa. In the construc-
tion of a grammar to our algorithm we use the identities f¥*1(a) = f¥(a)f*(d),
FHE) = FFO)fH(a), W) = RE(@)RH(@hH(b), h™F1 = hE(B)hE (@) (a).
The grammar looks as follows

FM1 _ Fkpk FFYY S FEFE FE — FEFFFFfor 0<k<2n—1=3,

H¥ o grHRHE HFYY — HEHEHE HE — HFHEHE for 0 <k <3,

Fl —a, F? —»b, HY — a, H) — b,

and a set of pairs to test is {(F¥,,, HY

aba

):0<k<2n-1=3}.

Acknowledgements
The author would like to thank Prof. Wojciech Rytter from Instytut Informatyki
UW for useful comments to the paper.

References

1. J. Aho, J. Hopcroft, J. Ullman, “The design and analysis of computer algorithms”,
Addison-Wesley, 1974.

2. J. Albert, K. Culik II, J. Karhumiki, Test sets for context-free languages and al-

gebraic systems of equations, Inform. Control 52(1982), 172-186.

J. Jaffar, Minimal and complete word unification, JACM 37(1), 47-85.

4. S. Jarominek, J. Karhumiki, W. Rytter, Efficient construction of test sets for reg-
ular and context-free languages, Theoret. Comp. Science (to appear).

5. J. Karhumaki, W. Plandowski, W. Rytter, Polynomial size test sets for context-
free languages, JCSS (to appear).

6. J. Karthumaki, W. Plandowski, W. Rytter, Polynomial size test sets for context-
free languages, in Proceedings of ICALP’92, Lect. Notes in Comp. Science 623
(1992), 53-64.

7. A. Koscielski, L. Pacholski, Complexity of unification in free groups and free semi-
groups, in Proc. 3st Annual IEEE Symposium on Foundations of Computer Sci-
ence, Los Alamitos 1990, 824-829.

8. M. Lothaire, “Combinatorics on words”, Addison-Wesley Publishing Company,
Massachussets, 1983.

9. G.S. Makanin, The problem of solvability of equations in a free semigroup, Math.
USSR Sbornik 32, 2(1977), 129-198.

10. J.P. Pecuchet, Equations avec constantes et algorithme de Makanin, These de doc-
torat, Laboratoire d’informatique, Rouen, 1981.

11. K.U. Schultz, Makanin’s algorithm for word equations - two improvements and
a generalization, CS Report 91-39, Centrum fiir Informations und Sprachverar-
beitung, University of Munique, 1991.

@«

