
Test ing equivalence of m o r p h i s m s on
context - free languages *

Wojciech Plandowski 1 **

Instytut Informatyki UW, 02-097 Banacha 2, Warszawa, Poland

Abs t rac t . We present a polynomial time algorithm for testing if two
morphisms are equal on every word of a context-free language. The in-
put to the algorithm are a context-free grammar with constant size pro-
ductions and two morphisms. The best previously known algorithm had
exponential time complexity. Our algorithm can be also used to test in
polynomial tiime whether or not n first elements of two sequences of
words defined by recurrence formulae are the same. In particular, if the
well known 2n conjecture for D0L sequences holds, the algorithm can
test in polynomial time equivalence of two D0L sequences.
Additionally, we extend the result from [5] by proving the existence
of polynomial size test sets for context-free languages not only in free
monoids but in free groups as well. The main points of our proof are
the same as in [6, 5]. The main change is a new short proof of the main
lemma. The previous proof took 10 pages. It was complicated since it
considered many cases and used advanced properties of periodicity of
words. Our proof takes only 2 pages. The simplification is a consequence
of embedding a free monoid into a free group.

1 Introduction

The problem of equivalence of morphisms on context-free languages (cfl, for
short) consists in checking for given two morphisms f , g and a context-free
grammar G (cfg, for short) if they coincide on L(G) (i.e. if f (w) = g(w) for
w E L(G)). The idea to solve the problem is connected to the notion of a test
set. A set of words T is a test set for a language L iff T is a subset of L and for
every two morphisms f , g if they coincide on T then they coincide on L. Hence,
it is enough to compare morphisms on words from a test set to decide if they
coincide on a whole language. The existence of finite test sets for cfls was proved
in [2]. The number of words in the test set could be double exponential. This
result was improved to single exponential [4] and later to polynomial, see [6].
The lengths of words in the test set however could be exponential. Moreover,
the length of the shortest word in a cfl defined by a grammar with n productions
can be exponentiM, see Example 1. Thus, for some cfis it is impossible to list in
polynomial time all words from any test set. To avoid this problem we encode

* Supported by the grant EC Cooperation Action IC 1000 Algorithms for Future
Technologies ALTEC.
E-mail: wojtekpl@mimuw.edu.pl

461

every word from the test set by a small cfg. Then for each word w from the test set
we find codes for f (w) , g(w). Finally, we present a polynomial t ime algori thm to
test if two codes represent the same word. The algorithm uses similar ideas as the
Makanin algorithm (which is of exponential complexity) for testing whether or
not a word equation has a solution, see [9] and later improvements [3, 7, 10, 11].

We generalize the definition of a test set to all monoids. A subset T of a
language L is a test set for L in a monoid M iff for each two morphisms f ,
g : E* --* M if they coincide on T then they coincide on L. We prove the
existence of polynomial size test sets for cfls in free groups. At one stroke we
extend the result f rom [5] and obtain a shorter proof! As an example how it is
possible we present two proofs of the fact which is used in the proof of L e m m a 2.
The proof in a free monoid considers two cases while the proof for groups uses
inverse elements instead.

L e m m a l . X = {uv, uw, xv} is a test set for Y = {uv, uw, xv , x w } in every
group.

Proof. (in a free monoid)
Let f , g be two morphisms. It is enough to prove that if f (z) = g(z) for z E X
then f (x w) = g (xw) . Denote s' -- f (s) and s" "- g(s) for any word s. Since
C C = u ' v " two cases are to be considered:
C a s e 1: u I is a prefix of u ' .
There is a word ~r such that u" = C~r. Using it in equations C C = u ' v " and
ulw ~ = u ' w " and simplifying them we have C = av" and w ~ = a w ' , respectively.
Since x~v ~ = x ' v " we obtain x" = x ~ and finally x ' w " = x~crw" = x~w ~.
C a s e 2: u" is a prefix of C.
The proof in that case is symmetr ic to the one in the previous case.

Proof. (in a group)
Let f , g be two morphisms. It is enough to prove that if f (z) = g(z) for z E X
then f (x w) = g (xw) . Denote s ' = f(8) and s" = g(s) for any word s. We have

x ' w ' = x ' v ' (v ') - l (u ') - l u ' w ' = v ' (u ' ' = x " w " =

and we are done.

The fact above is an extension of the main fact in [4] and allows to prove using
the same construction as in [4] that in every group every regular language has a
linear size test set.

2 P o l y n o m i a l s i z e t e s t s e t s f o r c o n t e x t - f r e e l a n g u a g e s

Recall, that a cfg is in Chomsky normal f o rm if each production of the g r a m m a r
is either in form A -~ B C or in form A -~ w where A, B, C are nonterminal
symbols and w is a terminal symbol. Since every cfg whose productions are
of constant size can be transformed in polynomial t ime to a cfg in Chomsky
normal form we restrict our considerations to cfgs which are in tha t form. A

462

linear context-free grammar is a cfg whose productions are of the form A -+ uBv
or A ~ u where u, v are terminal words and A, B nonterminal symbols. For
every nonterminal A let wA be any shortest word derivable from A. For a cfg
G in Chomsky normal form we define a linear cfg lin(G) by replacing every
production of form A --* BC by three productions A --* wBC, A --* Bwc,
A ~ wBwc.

L e m m a 2 . Let G be a cfg in Chomsky normal form. Then L(lin(G)) is a test
set for L(G) in every group.

Proof. The proof is the same as the proof of Lemma 2 in [5], see also the proof
of Theorem 1 in [6]

As we shall see in the next lemma to check if in a given group the size of a
minimal test set can be bounded by a polynomial it is enough to consider test
sets for finite languages Lk which are defined by the following linear cfg Gk:

Ai --* aiAi-l~i] biAi-lbi for 1 < i _< k

A1 ~ al] bl

where nonterminals are in capitals, terminal symbols in lower case letters and
Ak is the starting symbol. The language Lk consists of 2 k words and it is defined
over an alphabet consisting of 4k - 2 symbols. Let/~k be the only word from Lk
consisting of letters bi and hi- Define T~ = Lk - {/~k}.

A linear cfg G can be viewed as the digraph graph(G) whose vertices cor-
respond to nonterminals and there is an edge from A to B labeled by a pair of
terminal words (u, v) if A --* uBv is a production in G. Additionally we add a
terminal node t. There is an edge from A to t labelled (u, v) if v = e and there is a
production A --~ u in G. In such a graph every path from the starting nonterminal
S to l corresponds to a derivation in G of a word from L(G). On the other hand
each derivation of a word from L(G) has its corresponding path in graph(G) from
S to I. A word w whose derivation corresponds to a path A = (S, v l) , . . . , (vk,t)
can be obtained in the following way. If (w0, ~ 0) , . . . , (wk, ~k) are labels corre-
sponding to consecutive edges of A then w = w0 �9 �9 �9 wkto~.., too.

For each node v of graph(G) we build a tree tree(v) rooted at v containing
all vertices reachable from v in graph(G). With each sequence of not necessarily
adjacent edges (ul, Vl), . . . , (uk, Vk) we associate a path which starts at S goes in
tree(S) to Ul then it traverses (Ul, vl) and then goes in free(v1) to a vertex u2
runs through (u2, v2) etc. Finally, it goes via (uk, vk) and tree(vk) to t. Observe,
that for some sequences of edges there are no paths which satisfy the conditions
above and since there is exactly one path in a tree which starts at the root and
ends with a given vertex of the tree the path if exists is unique. Let F~*e(G) be
a set of words corresponding to paths associated with a sequence of at most k
edges. The index tree in F~ee(G) means that the contents of this set depends
on the function tree. The number of words in F~re*(G) does not exceed the
number of sequences of at most k edges. Since the number of edges of graph(G)
is equal to the number of productions in G, the size of F~re*(G) does not exceed

463

~ = o ni <- (k + l) nk where n is the number of productions in G. Suppose the sizes
of productions from G are O(1). Since the length of a path in a tree embedded in
graph(G) does not exceed n the length of a path associated with a sequence of
k edges does not exceed kn and the words in Fk(G) are not longer than O(kn) .

L e m m a 3. Let G be a linear cfg and Gr be a group. I f Tk is a test set for Lk in
Gr then F ~ ' s is a test s e t / o r L(G) in a r .

Proof. The proof is a straightforward generalization of the proof of Lemma 3
from [5], see also the proof of Lemma 2 in [6].

T h e o r e m 4 . Let Gr be a group. There is a polynomial upper bound in Gr for the
size of minimal test sets for context-free languages which are defined by context-
free grammars with constant size productions iff there is k > 0 such that Tk is a
test set for Lk in Gr.

Proof. Let G be a cfg in Chomsky normal form with n productions. If there
exists k > 0 such that Tk is a test set for Lk then, by Lemma 3 and Lemma 2,
F~e_e~(lin(G)) is a test set for L(G). Since F ~ 2 (l i n (G)) contains at most (2k -
1)(3n) 2k-2 words the polynomial upper bound exists. Suppose, there does not
exist k > 0 such that Tk is a test set for Lk. Since the number of words in Lk
is 2 k and it is defined by a grammar Gk which can be easily transformed to a
grammar in Chomsky normal form with O(k) productions the result follows.

By Theorem 4, to prove in a group the existence of polynomial size test set
for cfl it is enough to find k such that Tk is a test set for Lk in the group. The
next lemma proves that for k = 4 it is true in free groups.

Denote w a = a - l w a . Note, that (wa) b = w ab

L e m m a 5. Consider morphisms f , g. Denote s' = f (s) and s" = g(s) for each
element s of a free group. Let r, p, w, cr, -if, a, b, c, d be elements of the free
group. Then

1. I f tar = rw and pr = rp and r ~ 1 then wp = pw.
2.

O.aT c ~ TcO "a

o 'bT c ~ TcO "b ~ o 'bT d ~ T d o "b

O'aT d ~ T d o "a

i-ff 3. I f qx ' = xl-ff for x E T3 then ~#~3 = #3 ,
4. I f x ' = x" for x E T4 then #'4 = #~.
5. T4 is a test set for L4 in a free group.

Proof.

1. The proof of this point is a consequence of the fact that every subgroup
of a free group is free. We omit details.

464

2. It is a consequence of point 1. We m a y assume tha t cr # 1 and r # 1. We
apply point 1 to the first two equat ions to obtain tract b = crbtr a. Now, we apply
point 1 again to obta ined equat ion and the third equation.

3. We have ~ = (x /) - l ~ x / = ~=' for x E T3. Hence cr =' -- crY' for x, y E T3 and

therefore ~='Y'-~ = a for x, y E T3. For x = a3a2alct2CZa, y = aaa2bl(t2a3 we have
I l I - - 1 I - - 1 l - - 1 I I l - - 1 I - - 1 I - - 1

o.aaa2azbz a, a a = (r (~). Similarly, we obta in o'%b,a~b~ b, % = cr (#) and

trb'~d~a'lb'('a~ "lb~-~ = a (7)" Now, we t ransform the equat ion (c 0 . Let p = a~b~ -1.
I - - 1 I I r I I r I - - 1 I I - - 1

We have o "a3p u a 3 = a. Thus (7a3 p 2 : a% and therefore (a%)P ~ : a%.
l I - - 1 l - - 1 t

Finally, we obta in o'a3p% = pa2 o "aa. Similarly, we t rans form equations (fl),
I I - - 1 l - - 1 l I I - - 1 I - - 1 I

(7) t o h a v e qaapbu = pb2 o'aa, (7b3fla2 -7_ pa2 ff b3, respectively�9 Now, we apply

point 2 to obta in ab'~pb'2 -~ = pb'~-~a b'~. By t ransforming the last equat ion in the
I I I - - 1 I - - 1 I - - 1

reverse order than previously we obta in 0 "b~b~a~b* b~ b 3 - - o" which is equivalent
to crg~ = cr ~' where v = b3b2alb~b3. Since v ~ T3 we have cr ~' = ~ and finally
(rg~ = ~ which is equivalent t o / 2 ~ = a/2~.

4. The sys tem of equat ions x / = x" for x ~ T4 can be wri t ten in form

/ / - I I I / / - / /
a 4 x a 4 = a 4 z a 4

/ I - - / / / / / - - I /
b4x b4 = b4x b4

for x E L3

for x ETa .

Hence for x E T3 we have
I I - I I I I I - - l l I l I l l - - l / l l l I I ~ l l X z l l - - l - - t l I I ~ l t - - l ~ l I ~ l 1 " I t - - l - - I t

a 4 x a 4 = a 4 x a 4 = a404 (0 4 x 04)04 a4 - - a404 04x 0404 a4
t - 1 /t / / - 1 / / / - / - / / - 1 - / / - / - 1 and therefore (b 4 b4a 4 a4)x = x (b4b 4 a4a 4). Now, we apply point 3 and

�9 I - - 1 / / / / - - 1 / / / - l - / l - - I - / I - l - - 1
obta in (b 4 b4a 4 a4)/23 = / 2 3 (b 4 b 4 a 4 a 4).
Hence, w e have o4a:~'////-l~[a4/23a4)a 4 / i - / ~ - / / - 1 = ~176176 / ~ . - 1 . Since a4/23a 4 / t - t _ a41t/23//-//a4 w e

/ / - / i t / / / i / /
have b4/23b4 = 04/23o 4 and finally/2~ =/2~.

5. This point is a reformulat ion of point 4.

We say, t ha t a g r a m m a r G defines a word w if it is a cfg in Chomsky normal
form wi thout useless nonterminals such tha t each nonterminal is on the left hand
side of exactly one product ion and L(G) = {w}. In such a g r a m m a r the word w
has exactly one derivation.

Example 1. Some g r a m m a r s define a word of exponential size with respect to the
number of their product ions, e.g. the g r a m m a r with product ions Ai ~ A i - l A i - 1
for 1 < i < k, A0 --~ a and the s tar t ing symbol Ak defines the word a 2k. We
treat a g r a m m a r defining w as a compressed representat ion of w.

T h e o r e m 6. In a free group every cfl generated by a grammar in Chomsky nor-
mal form with n productions has a test set of size at most 7(3n) 6. Grammars
defining every word from the test set can be found in polynomial time.

Proof. Let G be a cfg in Chom sk y normal form with n product ions. By L e m m a 2,
L e m m a 3 and L e m m a 5 F~r~e(lin(G)) is a test set for L(G). Since lin(G) has at
mos t 3n product ions F~r~(lin(G)) has at most 7(3n) 6 words and the first par t
of the theorem is proved�9

465

Since the shortest words derivable from nonterminals in g r a m m a r G can
be of exponentiM size the productions of f in (G) can be of exponential size.
Fortunately, for each nonterminal A there is a shortest word derivable f rom A
which is defined by a subgrammar of G. Take such a word as a WA. Now, we
treat all WA as terminal symbols in the g r a m m a r l in (G) remembering tha t those
symbols represent words which are defined by grammars . On the basis of the
graph for l in (G) we find F6(lin(G)). The words are of lengths O(n) and they
can be found in polynomial time. They consist of terminal symbols of l i n (G)
which correspond to words defined by grammars . Now, for each word f rom the
test set we can find a g rammar defining this word.

3 A p o l y n o m i a l t i m e a l g o r i t h m for test ing i f t w o

morphisms coincide on a context-free language

From now on we deal with a free monoid. Let f be a morphism and let G be a
g r a m m a r defining w. A g rammar defining the word f (w) is easily derived f rom
G by replacing every production of form A --~ u where u is a terminal symbol
by A ~ f (u) . By Theorem 6 to find a polynomial t ime algorithm for morph ism
equivalence problem for a cfl it is enough to find a polynomial t ime algori thm for
testing if two grammars define the same word. We describe a polynomial t ime
algori thm for a more general problem.

We say, that a g rammar G defines a set o f words S if the g r a m m a r is context-
free in Chomsky normal form (there can be useless nonterminals), each nonter-
minal is on left hand side of exactly one production, every nonterminal generates
exactly one terminM word and for each w E S there is a nonterminal A in G such
tha t A ---** w. In particular, if G defines a word then it defines a set of words
derivable from nonterminals of G. Denote by WA the terminal word derivable
f rom A in G if A is a nonterminal and A if A is a terminal symbol.

Example 2. For fixed k consider a g r ammar G containing the following set of
productions:

A' --* AoA~
Ai ~ A i - l A i - l for l < i < k

A i ~ A~_IAi_I for 1 < i < k
Ao ---+ a A t ---+ a

Since WA, = a 2~ for 0 < i < k, WA~ = a ~ - 1 for 1 < i < k, WA, = a sk the
g r a m m a r defines the set of words

{a 2 ' : 0 < i < k } t 0 { a 2~-1 : l < i < k } .

We describe a polynomial t ime algorithm for the following problem:
T h e P r o b l e m
Let G be a g r am mar which defines a set of words and S be a set of pairs of
nonteminals from G. Check if WA = WB for every pair (A, B) from S.

Let G be a g r amm ar with n productions which defines a set of words W.
Since the shortest words derivable from a nonterminal of a g r a m m a r in Chomsky

466

normal form with n productions are of size not exceeding 2 n the lengths of
words from W are not longer than 2 n. Such numbers can be stored in n bits.
Standard algorithms for basic operations (comparing, addition, substraction,
division, multiplication) on such numbers work in polynomial time with respect
to n. This allows to compute the length of every word from W in polynomial
time.

The key point of our algorithm is to consider relations between words WA.
The relations are stored as sets of triples (A, B.i) where A, B are nonterminal
or terminal symbols and i is a nonnegative integer. We divide the triples into
two groups which we call suffix and subword triples. Let Iwl be the length of the
word w. A triple (A, B, i) is a suffix triple i f f i + IWBI _> IWAI and it is a subword
triple iff i + Iw/31 < IWAI and i > 1. The basic relation in our considerations
is SUFSUB(G). Intuitively, a triple (A, B, i) is in SUFSUB(G) iff starting at
position i + 1 in word WA consecutive symbols of wA are the same as in wB
starting from the beginning. More precisely:

(A, B, i) ~ SUFSUB(G) iff
(A, B, i) is a suffix triple and w.,t[i + 1 . . . IwAI] = wB[1. . . IWAI- i] or
(A, B, i) is a subword triple and WA[i-]- 1.. . i+ IWBI] = wB

Now, The Problem can be refomulated as follows:
Given a grammar G defining a set of words and a set S of pairs of nonterminals
from G. For each pair (A,B) from S check if IWAI = IWB[and (A,B,O) E
SUFSUB(G).

Let r e / b e a set of triples. We define an operation Split(A, tel) which elim-
inates occurrences of a nonterminM A from .triples of rel and does not lose the
information from tel. Assume, A ---* EF is a production of G. For one triple the
operation Split(A, (B, C, i)) is defined as follows:

- C a s e A h s 1 6 3

Split(A, (B, C, i)) = (B, C, i)

- C a s e A = B a n d A h s

Split(A, (A, C, i)) =

(E, C, i) U (C, F, IwEI - i)
if IWEI > i and Iwcl + i > IwEh

(E, C, i)
if IwEI > i and]wcl +i <_ IwE],

(c, F, 0)
if]wEI = i and Iwcl < IwF],

(F,C,0)
if [wE[= i and [wc[> [WE[,

(F, C, i - I)
if IwEI < i.

467

- C a s e A r

(B,E,i)
if Iw~l + i >__ IwBI,

Split(A, (B, A, i)) = (B, E, i) tO (B, F, Iw~l + i)
if Iw~l + i < IwBI.

- C a s e A = B a n d A = C

Split(A, (A, A, i)) =

0
i f i = O

(E , E , i) U (E , F, IwEI - i)
if IwEI > i > i and i >_ Iwrl,

(E, E, i) to (F, F, i) U (E, F, Iw~l - i)
if Iw~l > i > 1 and i < IwFI,

(E,F,O)
if IWEI = i and IwEI > IwFl,

(F,E,O)U(F,F,i)
if Iw.I = i and Iw/~l < I~FI,

(F, E, i - Iw~l)
if Iw~l < i and i >_ IwFI,

(F, E, i - Iw~l) to (F, F, i)
if Iw~l < i and i < IWFI.

For a set of triples tel we define Split(A, tel) = U(n,e,i ereZ Split(A, (B, C, i))) . "

The definition of Split looks very complicated, but the idea is to ehminate nonter-
minal A from triples of ret without losing the information about the dependences
between words in tel. Our next lemma states in formal way that the relation
Split(A, tel) is equivalent to tel.

L e m m a 7. rel C SUFSUB(G) iff Split(A, tel) C SUFSUB(G) for any non-
lerminal A

Proof. The proof from left to right is a consequence of the fact that on the basis
of the relation rel we define Split and we do not add dependences which are not
derivable from tel. The proof from right to left is a consequence of the fact that
having Split we can restore tel since all the information from tel were moved to
Split. The formal proof of the above is simple but tedious. It consists of several
cases corresponding to the cases in the definition of Split.

Let #suffix(rel) and #subword(rel) be the number of suffix and subword
triples in rel, respectively. Let #su f sub(rel) = #suf f ix(te l) + #subword(rel).
Clearly, (r is the number of triples in tel. The following lemma will
be useful later.

L e m m a 8 . Let rel be a set of triples such that for every (B,C,i) �9 rel IWA[>
max{lwBI, Iwcl}. Then

#suffix(Split(A, rel)) <_ 3•sufsub(rel)
#subword(Split(A, rel)) < #subword(rel) + 3#suf fix(reO

468

Proof. The first equality is clear since one triple from rel corresponds to at most
three triples in Split(A, re/). The second one is a consequence of the fact that
every triple from tel corresponds to at most one subword triple in Split. Look
at the definition of Split. In most cases triples correspond to one triple. Since
(H, H, i) for any H is always a suffix triple it remains to consider the case A = B
and A r C for [wE[> i and [we[+ i > [wE[and the case A r B and A = C
for i + [wE[< [WB[. In the first case (E, C, i) is a suffix triple, in the second one
since [WA[> [WB[(B, F, [WE[+ i) is a suffix triple.

The second operation we define for a set of triples tel is the operation
Compact(tel). It reduces the number of suffix triples in relation tel.

L e m m a 9. (periodicity lemma, see [8])
I f x, y are periods of a word w and x T y < Iwl then gcd(x,y) is also a period of
w where gcd stands for the greatest common divisor.

Computing the greatest common divisor of two n bit numbers takes polynomial
time, see [1].

Define the operation SimpleCompact(rel) in the following way. If there are
three suffix triples (A, B, i), (A, B, j) , (A, B, k) in rel such that (j - i) + (k - i) <
IWAI -- i and i < j < k then the operation replaces them by two triples (A, B, i),
(A, B, i+gcd(j - i , k - i)) . If there are no such three triples it fails. A Compact(tel)
becomes from tel by applying SimpleCompact to tel until it fails.

L e m m a 10. tel C S U F S U B (G) iff Compact(tel) C S U F S U B (G)

Proof. It is enough to prove that tel C_ S U F S U B (G) iff SimpleCompact(rel) C
S U F S U B (G) . If tel C_ S U F S U B (G) and SimpleCompact does not fail then
both j - i and k - i are periods of the word w = wB[1...[WA[-- i] and by
periodicity lemma gcd(j - i, k - i) is also a period of it. Hence, (A, B, i + gcd(j -
i, k - i)) is in S U F S U B (G) . On the other hand if (A, B, i) and (A, B, i + g e d (j -
i, k - i)) are in S U F S U B (G) then ged(j - i, k - i) is a period of w. Then j - i,
k - i as multiplies of g c d (j - i, k - i) are periods of w and therefore both (A, B, j) ,
(A, B, k) are in S U F S U B (G) .

L e m m a 11. I frel is a set of triples then #su f f i x (Compact (re l)) < (2n+ 1)n 2.

Proof. Let (A, B, il), (A, B, i2),. �9 (A, B, ik) be a sequence of all suffix triples of
form (A, B, i) from Compact(rel) sorted on i. Since the operation SimpleCompact
fails we have it+2 - ir + ir+l -- ir > [WA[- - it. Hence, 2ir+2 -- ir > [Wa[and
therefore �89 it) > (IwAI- it+2). Since IwAI- il < 2", the sequence of
numbers I w a [- - f i , . . . , Iwal - ik has at most 2n + 1 elements. Therefore the
number of all suffix triples in Compact(rel) does not exceed (2n + 1) �9 n 2.

A l g o r i t h m Test;
{ input:

grammar G which defines a set of words
set S of pairs of nonterminals from G

469

output:
test if for each (A, B) E S WA = wB}

begin
compute [WA[for each nonterminal A;
i f there is (A, B) E S such that [WA[7 s [wB[t h e n r e t u r n false;
(A1 , . . . , An):=sort nonterminals in descending order according to [WA[;
rel:-:U(A,B)es(A, B, 0);
fo r i := l t o n do
b e g i n rel:=Split(Ai,rel); rel:=Compact(rel) end ;
{there are no nonterminals in triples of tel}
i f 3(a, b, 0) E suffix and a r b t h e n r e t u r n false e lse r e t u r n true

end.

Theorem 12. The worst-case performance of the algorithm Test is polynomial
with respect to the size of input.

Proof. Let reli be the value of the variable rel before the i-th iteration of the
algorithm. The correctness of the algorithm is a consequence of Lemma 7 and
Lemma 10. To prove the polynomial worst-case performance of the algorithm
it is enough to prove that the #sufsub(reli) can be polynomially bounded.
Initially, ~r = 0 and #suf f ix(re lo) =]SI ~ n 2. By L e m m a 8
we have #su f f i x (re l i) <_ (2n -t- 1)n 2 for i > 1. Since the operation Compress
do not touch subword triples we have #subword(reli) ~ #subword(reli_~) +
3~suf f ix(re l i -1) for i > 1. Solving this recurrence we obtain #subword(reli) ~_
3i(2n -t- 1)n ~ ~ 3n(2n -t- 1)n 2 and finally #sufsub(reli) <_ (3n + 1)(2n -t- 1)n 2.

T h e o r e m 13. Testing of a set of equivalences between words from a set of words
defined by a grammar G can be done in polynomial time.

As a consequence of the above theorem we have

T h e o r e m 14. Testing mophism equivalence on a context-free language can be
done in polynomial time

Proof. To compare words f(w), g(w) defined by grammars G] , Gg consider the
grammar Gy U Gg and the one element set of pairs of nonterminals {(A], Ag)}
where A], Ag are starting symbols of grammars G], Gg, respectively.

Because of shortage of space two other applications of algorithm Test are pre-
sented in examples.

Example 3. Using algorithm Test we can compare first n elements of two se-
quences of words which are defined by recurrence formulae of form:
f~+s+l = F(f~ , . . . , f~+s) where F is a composition of concatenations and s is a
constant. For example to compare first n elements of sequences f l = a, f2 = b,
fk+2 = fk+lfk for 1 _< k _< n - 2 and f~ = a, f~ = b, f~+2' = f~f~+l' ' for
1 < k < n - 2 we consider a grammar
F1 --* a, F~ --* b, Fk+2 --* Fk+lFk for 1 < k < n - 2
F~ a,F~---~b, ' ---* F~+ 2 --* F~F~:+I' ' for 1 < k < n - 2
and a set of pairs {(Fk, F~): 1 < k < n}.

470

Example4. A D0L sequence (w , f , S) is a sequence of words w, f (w) , f2(w),
. . .where w is a start ing word, f : Z* --+ E* is a morphism and Z is an n letter
alphabet . A well known 2n conjecture for D0L sequences states that if two D0L
sequences coincide on first 2n elements then they are the same. Up to now it is not
known whether or not the conjecture holds true. If it is true however then our al-
gor i thm can test in polynomial t ime whether or not two D0L sequences are iden-
tical. Consider for example two D0L sequences (w, f , {a, b}), (w, g, {a, b}) where
w = aba, f (a) = ab, f (b) = ba and h(a) = aab, h(b) = baa. In the construc-
tion of a g r am m ar to our algorithm we use the identities fk+l (a) = fk (a) fk (b),
fk+l (b) _-- f k (b) f k (a) , hk+l(a) = hk(a)hk(a)hk(b), h n+l = hk(b)hk(a)h~(a).
The g r a m m a r looks as follows
e~ +1 ---, Fkar k, F:+I ---~ F:Fka, ~kab a ""+ FkaF~rka f o r 0 < k < 2 n - 1 = 3 ,
Hk+l __, D'kg$-kMk H~+I T3"kT-[k~Tk k g~'kM'kr-Tk for 0 < k < 3,

a ~'~a~*a~'~b , --'r ~ b ~'~a'L~a ' g a b a ""+ *'~a~b "'~a
F ~ ~ b , H ~ 2 ~b,
and a set of pairs to test is k k Haba) : -- = { (F~ba, 0 < k < 2 n l 3}.

A c k n o w l e d g e m e n t s
The author would like to thank Prof. Wojciech Rytter from Instytut Informatyki
UW for useful comments to the paper.

R e f e r e n c e s

1. J. Aho, J. Hopcroft, J. Ullman, "The design and analysis of computer algorithms",
Addison-Wesley, 1974.

2. J. Albert, K. Culik II, J. Karhumgki, Test sets for context-free languages and al-
gebraic systems of equations, Inform. Control 52(1982), 172-186.

3. J. Jaffar, Minimal and complete word unification, JACM 37(1), 47-85.
4. S. Jarominek, J. Karhum~ki, W. Rytter, Efficient construction of test sets for reg-

ular and context-free languages, Theoret. Cornp. Science (to appear).
5. J. Karhum~ki, W. Plandowski, W. Rytter, Polynomial size test sets for context-

free languages, JCSS (to appear).
6. J. Karhum~ki, W. Plandowski, W. Rytter, Polynomial size test sets for context-

free languages, in Proceedings of ICALP'92, Lect. Notes in Comp. Science 623
(1992), 53-64.

7. A. Koscielski, L. Pacholski, Complexity of unification in free groups and free semi-
groups, in Proc. 3st Annual IEEE Symposium on Foundations of Computer Sci-
ence, Los Alamitos 1990, 824-829.

8. M. Lothaire, "Combinatorics on words", Addison-Wesley Publishing Company,
Massachussets, 1983.

9. G.S. Makanin, The problem of solvability of equations in a free semigroup, Math.
USSR Sbornik 32, 2(1977), 129-198.

10. J.P. Pecuchet, Equations avec constantes et algorithme de Makanin, These de doc-
torat, Laboratoire d'informatique, Rouen, 1981.

11. K.U. Schultz, Makanin's algorithm for word equations - two improvements and
a generalization, CS Report 91-39, Centrum ffir Informations und Sprachverar-
beitung, University of Munique, 1991.

