
eXtensible Multi Security:
Infrastruktura bezpieczeństwa dla

platformy .NET

Wiktor Zychla
Praca doktorska

Promotor: Prof. Leszek Pacholski

Instytut Informatyki
Uniwersytet Wrocławski

ul. Joliot-Curie 15
50-383 Wrocław

Wrocław 2008

eXtensible Multi Security:
Security Framework for .NET

Wiktor Zychla
PhD Thesis

Supervisor: Prof. Leszek Pacholski

Institute of Computer Science
University of Wroclaw

ul. Joliot-Curie 15
50-383 Wroclaw

Wroclaw 2008

Abstract

Modern computer systems depend on many pieces of software gathered together to perform
certain activities. That is why various forms of distributed systems are being developed where
individual software components come from different developers.

Such distributed systems bring a lot of freedom and convenience but when misused they
can do a lot of damage. Thus, there is a deep need for various kinds ofsafetyandsecurityat
different levels of a software life-cycle.

In this work we investigate some notions of safety taking thesafety based on contracts into
special consideration. We build eXtensible Multi Security- a framework based on the notion of
Proof Carrying Code which is a powerful and coherent platform able to unify various notions
of safety. We also show how XMS forms a certification framework for Microsoft Intermediate
Language and other programming languages of the .NET Platform.

Declaration

This dissertation is the result of my own research.

Acknowledgement

This work was partially supported by Polish Ministry of Science and Higher Education grant 3
T11C 042 30

iii

iv

Contents

1 Introduction 1
1.1 Convenience of distributed systems 1
1.2 Safety and security of distributed systems 1
1.3 eXtensible Multi Security 2
1.4 Benefits of XMS . 2
1.5 Other Security Frameworks 3
1.6 Overview of the dissertation 5

2 Safety and security 7
2.1 Enforcing safety policies 7
2.2 Classification of safety properties 7
2.3 Static and dynamic security 8
2.4 Modularization and compositionality 9

3 Core Paradigms 11
3.1 Design By Contract .11

3.1.1 Overview of the Paradigm . 11
3.1.2 Contracts in Practice .12

3.2 Proof-Carrying Code .. 12
3.2.1 Overview . 12

4 The Intermediate Language 17
4.1 The Runtime Environment .. 18

4.1.1 Managed Modules . 18
4.1.2 Execution Process . 19

4.2 Safety and Security of IL .. . 19
4.2.1 Safety . 20
4.2.2 Security . 22

4.3 The Language . 23
4.3.1 Naming Conventions . 24
4.3.2 Types (classes) . 24
4.3.3 Inheritance . 25
4.3.4 Method bodies . 25

4.4 The Semantics . 30
4.4.1 Values . 30
4.4.2 Memory . 31
4.4.3 Instructions . 33

v

vi CONTENTS

5 The Infrastructure 39
5.1 The Safety Policy .39

5.1.1 Specification language .42
5.2 Dynamic Verification Engine 44

5.2.1 Test-Driven Development .44
5.2.2 Instrumentation of .NET Code .. 45
5.2.3 Using the Engine . 52

5.3 Static Verification Engine 53
5.3.1 Symbolic Evaluation . 53
5.3.2 Symbolic Evaluation Cases .. 55
5.3.3 The Safety Theorem . 61

6 Towards High-Level Languages 67
6.1 From MSIL to High-Level Languages 67
6.2 Common Certificate Specification 69
6.3 High-Level Compiler Translation Schemes 70

6.3.1 Variable Ordering . 70
6.3.2 Assignments, Expressions .. 73
6.3.3 Loops . 73

6.4 Other High-Level language features 74
6.4.1 Class Invariants . 74
6.4.2 Properties, Indexers .. 76
6.4.3 Delegates . 77

7 Practical Issues 81
7.1 The Implementation .. 81

7.1.1 Code-Producer Components .81
7.1.2 Certification Components .83

7.2 Private Computation .. 83

8 Conclusion and Future Work 85
8.1 Contribution .85
8.2 Future Work . 85

A MSIL Instruction Set 97

B The Soundness Theorem 103

C Examples 107
C.1 Dynamic Verification Engine 107
C.2 Static Verification Engine 111

Chapter 1

Introduction

1.1 Convenience of distributed systems

Distributed systems play a major role in today’s computer systems.
Although we usually think of distributed systems as of huge commercial frameworks like

banking systems, we use such systems every day often being unaware of it. Modern distributed
systems integrate well even with common web browsers and areable to perform bothserver-
sideandclient-sideactivity.

For example, when I visit my favourite online bookshop and I order some books, I perform
some activity locally: I enter my personal data and I choose the books I like to buy. Then I click
a button and there is some activity performed remotely: my data and my order are sent to the
remote server which stores the order in a database.

In fact however, even these applications which we buy or evendownload for free can be seen
as distributed systems. Indeed, when I install a new piece ofsoftware in my operating system, it
can itself perform some local or remote activity and interacts with other software components.
It can for example gather some data from my computer and use anexternal library to send the
data somewhere with or without my knowledge.

The convenience and freedom offered by the distributed systems is sometimes misused. The
software and the hardware is a potential victim to a malicious virus, the data is a potential
victim to a trojan horse or a spy-software. There is a lot of carefreeness when dealing with dis-
tributed systems. There are still critical bugs found even in vital parts of operating systems and
commonly used applications. From the developer’s perspective it is still too easy to introduce
unintentional bugs into the software or even more - to trick the trusting user and make him run a
malicious code on his/her system. From the user’s perspective it is often impossible to examine
every aspect of the software.

1.2 Safety and security of distributed systems

Of course, every action has a reaction. That is why there is a lot of work at the area of safety
and security of distributed systems.

Alas, over forty years after the Internet has been born, the majority of users still have to
believe that the software they buy or download is safe in a sense that it will not do any harm to
their hardware and data.

1

2 CHAPTER 1. INTRODUCTION

Widely spread antivirus software can detect several thousands of computer viruses. That’s
good. Alas, it is able to detect only these viruses that are known. That’s bad. If the new virus is
released, my machine is as vulnerable like a little baby.

Runtime environments can dynamically supervise the code execution and for example dis-
allow the execution of some activities. That’s good. They cannot however make sure that the
code runs correctly. That’s bad. Even the advanced managed code is not a bit helpful when the
banking software altered by hackers steals money from my bank account.

1.3 eXtensible Multi Security

The goal of eXtensible Multi Security (XMS, [46]) is to unifyvarious notions in one coherent
and extensible platform. The idea is built around two component paradigms which together form
a powerful certification framework - these two paradigms areDesign By Contract (DBC, [26])
and Proof Carrying Code (PCC, [33]) unified around the Microsoft .NET Runtime Environment.

The original PCC approach focuses on type-safety. Alas, thetype-safety does not guarantee
that other important features of safety are preserved. In fact, various aspects of safety are rather
independent. The code can be type-safe but not correct or type-unsafe but perfectly safe from
’control flow’ point of view.

This is where the XMS starts. The infrastructure can encode the Design By Contract specifi-
cations for software components written for the .NET Runtime Environment. The specification
is then verified using the dynamic verification engine or the static verification engine. In case of
the former the specification stored in the binary meta-data is used at the run time to check if it
is satisfied. In case of the latter digital certificates take the form of formal logic proofs and are
stored in the meta-data so that they do not play any role in thecode execution but instead they
are used in the verification process.

Although the core of XMS is built at the low level of MicrosoftIntermediate Language
(MSIL), the intermediate language of the .NET Platform, we show how the certificates can be
adopted to high-level .NET languages like C# or VB.NET.

It is interesting to recall that although these two terms, safety and security are closely related
there is a subtle difference. A software issafewhen it will not do any harm to the user. A
software issecurewhen some additional activity was taken to prevent the user from getting any
harm from it. That is why we will say that on the one hand XMS helps us to build safe software
and on the other hand it builds a security framework that is able to detect unsafe software.

1.4 Benefits of XMS

Here is the short summary of XMS benefits:

• XMS is designed to certify the MSIL language, one of the most widely used enterprise
intermediate languages

• XMS certificates can be seamlessly adopted to high-level .NET languages

• XMS is primarily designed to certify the Design By Contract but other formal policies
could also be expressed

1.5. OTHER SECURITY FRAMEWORKS 3

• The certification framework makes it much easier for developers to find bugs in the soft-
ware

• XMS certificates are built around the notion of PCC thus inheriting all desirable properties
of PCC:

– formal theorems guarantee that certificates cannot be compromised

– the certificates are sufficient to guarantee that the code is valid, the authority of a
code producer is completely insignificant

• XMS certificates are stored in meta-data so the proofs are bound with the code

• To support XMS the .NET Runtime Environment does not need to be changed in any way.

1.5 Other Security Frameworks

The PCC is not the only formal approach to notions of safety and security. There are dozens of
interesting formalisms such as Model Checking and theµ-Calculus [24], Propositional Dy-
namic Logic (PDL, [8]), Model-Carrying Code [37], SymbolicTrajectory Evaluation (STE
[17]), Communicating Sequential Processes [39] and Security Process Algebra [14],π-Calculus
[29] and other Value-Passing Process Algebras ([19]) and many, many others which are beyond
the scope of this work.

Both core components of XMS are subjects of extensive study.The Design By Contract
evolved from earlier works of Hoare ([18]) and the research continues in many areas. In recent
years the challenge of adopting the Hoare-style specifications into object-oriented languages
has been taken by researchers and several approaches have been successful ([35], [45]). We
believe that XMS is more general since it scales from the intermediate language to high-level
languages and thus is not bound to a single programming language or a family of languages.
Many other interesting works focus on selected aspects of the paradigm, for example on auto-
matic discovering of loop invariants ([12]).

As for PCC, the original idea ([33]) focuses on type safety and is often compared to the
Typed Assembly Language ([30]), a low-level infrastructure where type information is pre-
served during the compilation and is used to certify the type-safety of low-level code.

For many reasons the type safety is strongly desirable for untyped assembly-level languages.
The language presented in the original PCC paper, SAL, is a good example - in [33] it is shown
how the type-safety of SAL binaries can be enforced by using carefully designed logic that
detect illegal memory I/O operations.

In such approach the primary goal of PCC is to validate the language compiler by detect-
ing compile-time bugs. This idea was further adopted to certify the type safety of Java binaries
at machine-level (SpecialJ compiler described in [7], [6]). Type safety policy has some ma-
jor advantages - PCC signatures can be built automatically according to original signatures of
methods and the proofs are rather straightforward. Thus theinfrastructure can be automated to
certify even large programs.

A more general approach to PCC was developed ([1] and [13]). In this approach the semantic
properties of the language do not have to be known by the algorithm performing the analysis
but are rather a part of the Safety Policy.

4 CHAPTER 1. INTRODUCTION

Other security properties can be enforced by PCC and some results that allow temporal
specifications for a restricted low-level language were also shown ([5]).

From the distant perspective there are two aspects of PCC that must be addressed in each
particular implementation:

• which language shall be certified?

• which Safety Policy shall be enforced?

Both these issues laid the base of XMS. XMS was designed to certify Microsoft Intermediate
Language, widely recognized language targeted by a broad range of enterprise programming
languages. But in contrast to for example the SpecialJ, XMS certifies the code at the MSIL
level, not at the machine-level. We believe that the translation between MSIL and the actual
machine-level language shall preserve all encoded safety properties.

Working at the level of intermediate language gives anotherbenefit to the XMS - certificates
can be used for any .NET high-level language (like C#). To make use of XMS a developer does
not necessarily need to know MSIL but rather be aware of some compiler translation schemes.

On the yet another hand, the IL languageis type-safe because that is the way it has been
designed ([16]). What is more - the .NET Runtime Environmenttype-checksall binaries just
before they are actually executed (binaries that pass the test are calledverifiable). This static
type-checking operation rejects binaries that do not follow strict type-safety rules. We will dis-
cuss this and other safety mechanisms of the .NET Runtime Environment in chapter 4.

Although the existing static algorithm for MSIL type-safety is potentiallyweakerthan the
PCC type-checking (for example, it does not aim at detectinginvalid array indexing operations),
the PCC style type-checking is beyond scope of XMS. Figure 1.1 shows precisely the level at
which XMS operates and the level at which original PCC operates. While PCC focuses on
type-safety of low level language, XMS focuses on safety of higher-level languages.

Initially XMS started as a PCC variant for a toy-like object language. After migration to
.NET platform, XMS marks out its own way:

• XMS does not certify type-safety of the low level language but instead it allows to certify
other safety policies of the MSIL language.

• Since the certificates can be applied to any high-level language, XMS is more general
than solutions bound to a single low-level ([33]) or high-level ([36]) language.

• XMS will ultimately adopt other security policies, such as Non-Interference, to its verifi-
cation engine

Currently, as a contract verification framework, XMS competes with specialized contract
frameworks for .NET Platform like the Spec# ([28]). Below welist major differences between
these two:

• Unlike XMS, Spec# is bound to a single language - it is a superset of C#.

• Unlike XMS, Spec# is bound to a single safety policy (contracts). XMS is an extensible
framework with pluggable verification engines

• In Spec# contracts are declared using the language extensions and turned into inlined
code during the compilation. In XMS, contracts are externalto the language (attributes)
and code instrumentation techniques are used for dynamic analysis

1.6. OVERVIEW OF THE DISSERTATION 5

HIGH-LEVEL
LANGUAGES

INTERMEDIATE
LANGUAGES

PLATFORM-NATIVE
LANGUAGES

XMS PCC

C# VB.NET

Nemerle

MSIL JAVA BYTECODE

C, JAVA

PLATFORM
NATIVE

PLATFORM
NATIVE

safe

safe

Figure 1.1: XMS safety versus PCC type-safety

• Spec# uses its own intermediate representation of the code,BoogiePL, which is inter-
preted and transformed before it is provided to the theorem prover. XMS uses symbolic
evaluation to build verification traces directly from the .NET Intermediate Language code.

1.6 Overview of the dissertation

We start our dissertation with a brief introduction to the notion of XMS and motivate our work
by comparing XMS to other security frameworks.

In the second chapter we present and classify various aspects of safety and security.
In the third chapter we describe two core XMS paradigms: the Design By Contract and

Proof-Carrying Code. In the fourth chapter we present the core of XMS environment - the
Microsoft Intermediate Language. Because the MSIL language was chosen as the target XMS
language, we build the operational semantics of a significant subset of it. This subset captures
the majority of important aspects of the IL including arithmetics, control flow, objects, arrays
and exceptions.

Fifth chapter is a core of the dissertation. It is here where we present safety formalisms for
the XMS, define a safety policy and show two XMS engines.

In the sixth chapter we show how MSIL level certificates can beseamlessly adopted to
high-level .NET languages.

In the seventh chapter we discuss some internal details of XMS and discuss its practical
applications.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Safety and security

2.1 Enforcing safety policies

In this chapter we discuss several different notions of safety. It turns out that the short and
seemingly precise termsafetycan have several different meanings. All of them are heavily
studied and new solutions are constantly developed.

Talking about safety we will often use the termsafety policy. The safety policy is a formal
set of rules and restrictions that somehow tells us which programs are valid and which are
invalid and should be considered illegal, unsafe.

An example of a naive safety policy would be

Any code that is given to me by system administrator is secure.
Any other code is insecure.

Of course such safety policy could bring a lot of harm and thusshould not be probably
considered seriously. Even in its much more complicated form known asAuthentication by
Personal Authority, such policy in fact does not state any security. These two terms, security
and authentication, should not be mistaken. Even the strongest cryptographic signature does
not guarantee that the code is secure, it can only authenticate the code producer. When one
accepts a software component signed digitally by a well known and reliable software developer,
does it mean that this new component is automatically safe? What if the software component
is unintentionally insecure or worse, someone used the digital signature of this well known
developer to sign an intentionally malicious software component?

The true security can be only forced by so calledLanguage Based Security. It means
that the safety policy must somehow exploit the semantics ofthe programming language, an
operating system or the runtime environment.

The true security must then be objective; we must notbelieve, we have tobe sure.

2.2 Classification of safety properties

What kind of reasonable security policies should be considered? Well, from a really distant
perspective we can name following main categories of security properties:

memory safety where the code should not access the memory that was not assigned to it in an
explicit way. This is one of primary security properties andbecause of its importance it is

7

8 CHAPTER 2. SAFETY AND SECURITY

built into all mature operating systems. The times where it was easy to write a malicious
code that steals or modifies the memory of another process are, hopefully, gone forever.

type safety where thetypesplay the main role. It appears that the strict typing discipline can
eliminate many common errors like accessing resources thatshould be hidden or calling
methods with wrong number of parameters or parameters of wrong type. These common
errors are not only exploited by a malicious software but also are serious worries to code
producers.

As a benefit, strict typing can make it easier to perform common code analysis, transfor-
mations and optimizations. An example of such system can be found in [30].

code correctnesswhere thesecuremeansproducing correct results. Such notion of security
should be desirable for example in financial or computational applications where a small
mistake in a calculation could lead to unpredictable results.

An example of such approach is described in [2].

control flow safety where there should be no jumps outside the current block of code and any
jump should target the beginning of valid code instruction.Also, it should not be possible
to exploit the so calledbuffer underruntechnique, where due to the corruption of runtime
stack, the data supplied by the attacker is executed in the context of running application.

An example of such policy is implemented as the algorithm that statically verifies the
integrity of .NET assemblies.

information flow safety aims at controlling the way the information flows among different
entities. Such properties were primarily proposed to formally describe the notion ofcon-
fidentialitybut turned out to be usable in other situations as well for example to detect
deadlocks or unwanted covert channels.

But how can these policies be verified? Which mechanisms can be used to distinguish be-
tween secure and insecure code? Well, in general there are two main approaches: static and
dynamic. The distinction between these two is crucial because both have their own pros and
cons.

2.3 Static and dynamic security

In dynamicchecking, the safety policy is constantly checked to be valid at the run time. This
of course requires the existence of a virtual machine or a runtime environment that would be
powerful enough, in the sense that it can detect any activitythat breaks the safety policy. An
example of such an infrastructure is the Java Virtual Machine or the Microsoft .NET Frame-
work. Both ”supervise” the code execution and enforce precise checks before any potentially
dangerous instruction is executed.

For example, if the safety policy forbids any I/O activity, the runtime environment puts
proper checks before each I/O call. If the safety policy forbids to make connections to some
specific servers, again, proper checks are put into the code and the exception is thrown when
an illegal connection is detected. What’s more, illegal memory operations are immediately de-
tected.

2.4. MODULARIZATION AND COMPOSITIONALITY 9

The dynamic approach has undeniable advantages. It allows to define quite precise security
policies and checks them very strictly. It also has drawbacks because it is not general. The
existence of a runtime environment with rich standard library is a non-trivial condition and
there is still a lot of code that runs natively on a target hardware. The dynamic approach suffers
from something we could call aboomeffect. Let’s imagine that dynamically checked code runs
for a long period of time and performs a lot of activity duringall that time. Then, suddenly
the safety policy becomes broken and the execution is terminated. But what will happen to the
effects of all actions that were executed to that time? Should they be cancelled? Is it possible to
do it at all? These questions do not have any satisfying answer.

On the other hand in the process ofstaticchecking the code is verified without being actu-
ally run. The answer of a static check is always positive or negative and the code is accepted
or rejected. It is impossible to break the execution in the middle, as in the dynamic approach.
A static checking does not necessarily need any support froma runtime environment. In this
sense it is more general than the other. However, the static security policies are usually less
precise because all nontrivial security policies are of course undecidable. The user must then
accept the fact that some programs would be misjudged which means that some perfectly legal
programs are sometimes rejected. The opposite situation, where an illegal code was accepted
would be a true disaster and should never happen. In practicewe then aim at buildingconser-
vativealgorithms which accept only valid programs and reject all invalid and as few valid ones
as possible.

All these observations lead to an obvious conclusion: thereis no perfect way to enforce a
safety policy. The best what we could probably do would be to put the advantages of dynamic
and static checking together in a framework which unifies allbest features of these two.

Pros Cons
Dynamic - precise security policies - non-trivial

- exact verification - boomeffect
Static - does not require the VM - in/toosensitive

- noboom effect

Figure 2.1: Comparison of static and dynamic techniques

This is exactly what XMS is. On one side modern runtime environments such as the Mi-
crosoft .NET offer quite sophisticated dynamic policies. Formal aspects ofunderlying inter-
mediate language also impose some static policies (like type-safety). At top of that the XMS
dynamic verification engine uses code instrumentation to verify the safety policy at the run time.

On the other side, the pros of dynamic security built into these environments can be extended
with static policies which would allow the user to be even more confident that the code is
perfectly safe in variety of ways. In its current form XMS canstatically validate the Design By
Contract safety policy, however because it is built on top ofthe Proof Carrying Code paradigm,
it is imaginable that it could validate any safety policy expressible in a formal way.

2.4 Modularization and compositionality

There are other important aspects of safety that have an influence on the way security policies
are enforced.

10 CHAPTER 2. SAFETY AND SECURITY

First aspect ismodularization. Ideally it would be desirable to prove that a big module
consisting of many smaller ones is safe by breaking up the safety requirement to these smaller
parts of it. We would just like the following property to hold:

SAFE(M)⇐⇒
∧

F∈M

SAFE(F)

That is exactly how the Design By Contract safety policy behaves. We do not validate the
whole execution graph of the application. Instead, we analyze every single method separately
and then conclude that the application is safe regardless ofthe specific execution trace.

Second important aspect of safety iscompositionality. In concurrent environment it would
be desirable to prove that a concurrent system is safe only and only if all its parallel components
are. We would like to have:

SAFE(M1 | . . . | Mn)⇐⇒ SAFE(M1) ∧ . . . ∧ SAFE(Mn)

Although the Design By Contract policy is not compositional”out-of-the-box”, it is known
that the analysis of the concurrent execution can be performed ([2]) and in the future XMS
could probably adopt these techniques.

Nevertheless, these two properties, modularity and compositionality, are not general. They
hold for some safety properties but do not hold for others. What is more unfortunate, they are
completely independent of each other. For example, anotherimportant safety policy, the Non-
Interference ([14]) is compositional but not modular. Thiswould bring interesting issues if such
policy would be adopted to XMS.

Chapter 3

Core Paradigms

3.1 Design By Contract

3.1.1 Overview of the Paradigm

TheDesign By Contract([26]) paradigm lays the base for systematic object-oriented develop-
ment. It defines a precise framework where software components can be seen as communicating
entities whose interaction is based on mutual obligations and benefits.

These obligations take the form of predicates which precisely define what requirements
must be met for a code to be run and what is the result of the execution. Assuming that there is
a code supplier module and code client module, there are several important predicates that must
be provided for the DBC:

precondition of a method is a predicate which forms an obligation for the client (the client side
has to make the precondition satisfiable upon the invocationof the method) and a benefit
for the supplier (it assures the supplier that cases that do not satisfy the precondition have
not to be handled)

postcondition of a method is a predicate which forms an obligation for the supplier (the sup-
plier side has to make the postcondition satisfiable upon themethod’s exit) and a benefit
for the client (it precisely defines the state of supplier’s computation)

class invariant is a predicate which obligates the supplier to make it satisfiable for all the time
the client has an access to an object instance

invariants are predicates used internally by the supplier to describe the state maintained upon
each entry into a loop body

Contracts can be seen as a strong mechanism for enforcing asafety of computation. For
any method to be predictable, if precondition is met when themethod is run then we should
expect that the execution will end in a state in which the postcondition is also met. Contracts
are also a form offormal documentation since they provide a detailed description of code
semantics.

The Design By Contract paradigm introducesmulti-level testing. According to this idea
Contracts should not be verified only in a production environment but rather during the testing
process. There areunit testswhere modules are tested in isolation and assuming that client obli-
gations are met, tests verify that supplier’s obligations are correct. There are thenintegration

11

12 CHAPTER 3. CORE PARADIGMS

testswhere modules are tested together and then the primary focusis on verifying the client’s
obligations.

3.1.2 Contracts in Practice

Contracts are gradually introduced in new programming languages. In some programming lan-
guages they are even a first-class constructs (Eiffel [25], Nemerle, D).

For other languages there are usually many DBC implementations to choose from, just to
mention a few:

• DBC for C1 and GNU Nana2 are DBC implementations for the C/C++ programming
languages

• eXtensible C#3 is a postcompiler that transforms declarative contracts inC# applications
into a code that verifies pre- and postconditions of methods and properties

• ContractForJ4, JContractor5 andSpringContracts6 are Design By Contract implementa-
tions for the Java and they use various code instrumentationand bytecode augmentation
techniques to verify contracts in the run time

Yet another level where Contracts play an important role is the world of software modelling.
As models expressed in theUnified Modelling Languageusually are not precise, their seman-
tics is often expressed using theObject Constraint Language, a formal language maintained
by theObject Modelling Group which is ”used to describe expressions [...] which typically
specify invariant conditions that must hold for the system being modeled or queries over objects
described in a model”. 7 As such, the OCL can be seen as the Design By Contract shifted from
the programming language level to the software modelling level and existing OCL frameworks
should be also mentioned in DBC context ([3], [9]).

3.2 Proof-Carrying Code

The Proof Carrying Code paradigm was proposed in 1998 ([33])and is based on earlier works
on digital certificates.

3.2.1 Overview

The main idea is a notion ofVerification Condition, a logic predicate that contains the informa-
tion about the program execution. The Verification Condition is not just any predicate but rather
a special one - if the predicate is provable then the program execution is valid. It turns out that
the formal proof of such a predicate can be used as a digital certificate which guarantees that
the code is safe according to the safety policy.

1http://dbc.rubyforge.org
2http://savannah.gnu.org/projects/nana
3http://www.resolvecorp.com/
4http://www.contract4j.org/contract4j
5http://jcontractor.sourceforge.net/
6http://springcontracts.sourceforge.net/
7OMG Specifications,http://www.omg.org/technology/documents/modeling spec catalog.htm

3.2. PROOF-CARRYING CODE 13

The overview of the PCC infrastructure is shown in figure 3.1.The figure depicts the PCC
in its simplest form. As we can see there is a kind of a protocolbetween the Code Producer and
Code Consumer. This protocol is sometimes referred to asPCC protocol.

CODE
PRODUCER

CODE
CONSUMER

CODE
SOURCE

CODE +
INVARIANTS

LOGIC

SAFETY POLICY

VC
GENERATOR

THEOREM
PROOVER

PROOF
CHECKER

Figure 3.1: Overview of basic PCC protocol

The PCC protocol consists of the following steps:

1. The Safety Policy is defined by the Code Consumer.

2. The Code Producer prepares the source code.

3. The Code Consumer uses the Verification Condition Generator to scan the source code
and build a predicate (Verification Condition) that is sent back to the Code Producer.

4. The Code Producer is responsible for finding a formal proofof the Verification Condition.
The proof of the Verification Condition acts as the certificate of safety.

5. The proof is again sent back to the Code Consumer and validated with a Proof Checker.

6. If the Verification Condition is valid then the code is actually run on a client machine.

Earlier we have discussed several notions of safety/security. No matter what kind of pol-
icy we turn into account, it must be somehow expressible formally using some kind of logic

14 CHAPTER 3. CORE PARADIGMS

with a precise proof system. This requirement is fundamental for PCC because the Verification
Condition built upon the code together with its proof acts asthe certificate of the code safety.

Two really difficult issues arise here. These are:

• building a Verification Condition from the code

• concluding that the code is safe if the Verification Condition is provable

In fact forany Safety Policy these two issues require a uniquetheorem. In the most general
form it can be stated as ameta-theorem:

Theorem 3.1(Meta-theorem of PCC). For a given Safety Policy S and a code F, if the Verifica-
tion Condition for the S built from F is valid, i.e.

S |= VCS(F)

then the code F is safe according to S.

This is where the difficulty of PCC lies - for any Safety Policy we need an algorithm for
building Verification Conditions (the algorithm is calledVerification Condition Generator or
VCGen) and an ”instantiated” version of theorem 3.1 which would formally validate that the
VCGen is correct in a sense that safe programs correspond to valid (provable) predicates.

The PCC Protocol presented above is general but not quite practical. It is too complicated
to be used efficiently. The main problem is the need for the communication between the Code
Producer and Code Consumer. That is why the original protocol was simplified ([33]). The
simplification is built upon an observation that the Safety Policy can be shared between Code
Producer and Code Consumer. In fact some common policies canbe developed, presented to
the public and used by all interested parties.

XMS extends this modified protocol with one important detail: all certificates are embedded
into the binary’s metadata so the validation engine can verify all certificates at once with no
additional resources required. This modified protocol is shown in figure 3.2.

The Code Producer and Code Consumer use the same public and verified safety policy
which defines logic and algorithms to build Verification Conditions.

The Code Producer:

1. adds method specifications to the source code,

2. uses VCGen to build and encode Verification Conditions,

3. constructs proofs for VCs,

4. encodes VCs and proofs and binds them into the code

The Code Consumer:

1. uses VCGen to build Verification Conditions,

2. checks if the same VCs have been supplied with the code by the Code Producer,

3. validates the correctness of proofs (certificates).

3.2. PROOF-CARRYING CODE 15

CODE
PRODUCER

CODE
CONSUMER

CODE
SOURCE

LOGIC

SAFETY POLICY

VC
GENERATOR

PROOF
CHECKER

VC GENERATOR +
THEOREM PROOVER

Figure 3.2: A modification of PCC protocol for the XMS

16 CHAPTER 3. CORE PARADIGMS

The steps above are required to accept the code as safe. Note that this protocol can fail at
several points. Specifically:

1. the code can have no extra information that is required to rebuild the Verification Condi-
tions,

2. the predicates rebuilt at Code Consumer side can differ from these supplied with the code,

3. proofs supplied with the code can be invalid in a sense thatthey prove something but
actual predicates

If the protocolfails for any of these reasons the code isrejected as unsafe.

Chapter 4

The Intermediate Language

The Microsoft Intermediate Language (MSIL or just IL) is an object-oriented intermediate lan-
guage. It is executed by the Common Language Runtime (CLR), aruntime environment that
itself is a part of Common Language Infrastructure (CLI).

The IL makes it possible to unify software components written in many different program-
ming languages. It supports several high-level language features and that is why it can be easily
targeted by most of them. In fact, any language that follows some special rules known as Com-
mon Language Specification (CLS) can use MSIL as a back-end, though some languages had to
be redesigned. The IL offers class-based objects, inheritance and the type safety, the CLR offers
the garbage collection and a rich set of library classes known as the Base Class Library (BCL).

Today a wide set of compilers for a variety of languages is available for the .NET Frame-
work. One of the most widely adopted languages is undoubtedly the C# language designed
exclusively for the .NET Platform. As an descendant to C++ and Java, the language is used to
develop console-based and window-based application as well as web-based services. The .NET
Framework is also a target for a new dialect of Visual Basic, C++ and J# compilers. Compilers
are also developed outside Microsoft for Ada, COBOL, Python, Eiffel, Haskell, OCaml, SML
and many other languages. Because each higher level compiler targets the same intermediate
language, the .NET components written in different languages can cooperate very closely by
not only calling each other’s methods but also on the level ofclass inheritance.

In contrast to Java’s paradigm:

Java=
One language, any platform.

this new .NET paradigm was concisely summarized by Bruce Eckel ([10]):

.NET=
Any language, one platform.

The full specification of the .NET Runtime Environment as well as the IL and C# languages
was published under ECMA standard ([27]). Consequently, the .NET Runtime Environment
was also implemented outside Microsoft and released to the Open Source community1.

1Mono and DotGNU projects

17

18 CHAPTER 4. THE INTERMEDIATE LANGUAGE

4.1 The Runtime Environment

4.1.1 Managed Modules

A moduleis a primary physical building unit of a .NET application. One or several modules
can form anassembly- a primary logical building unit of an application. Since inmajority of
practical cases assemblies consist of one module, these twoterms - module and assembly - can
be used exchangeably.

From the OS perspective there are two types of modules - executables and shared libraries.
From the .NET perspective there is almost no difference - the only difference between an exe-
cutable and a library is theentry point- a special marker in the code so the OS recognizes it as
the entry point of the application. It is then obvious that a .NET application can consists of a
single executable module and an arbitrary number of shared libraries.

PE/COFF HEADER

CLR HEADER

IL CODE IL METADATA

NATIVE CODE + DATA
(OPTIONAL)

Figure 4.1: Structure of a managed assembly

Figure 4.1 shows a structure of a managed assembly. The first file header is a standard
Windows Portable Executable or Common Object File Format (PE/COFF) header. It is followed
by the CLR header that describes the structure of the assembly.

The most interesting part of the managed assembly follows. It is called themetadata. The
module’s metadata precisely defines all objects - types, their fields and methods - declared or
referenced in the module. It is a complete logical description of the module, data that describes
data. Since the metadata is publicly accessible, it is possible to analyze the structure of the
module from anywhere in the code. As the metadata is crucial to any interaction between the
module and other modules, the integrity of the metadata is precisely checked by the runtime
environment before the module is executed.

4.2. SAFETY AND SECURITY OF IL 19

4.1.2 Execution Process

When MSIL code is executed in the Operating System, it is converted to platform native code by
the so called just-in-time (JIT) compiler which is built into the runtime environment. The term
”just-in-time” reflects the fact that rather than compilingall MSIL at once, the JIT compiler
converts the code as needed and stores the result for any subsequent calls. Thus, the JIT com-
pilation takes no longer than necessary since when only the part of the code is used in current
context, the unused methods will never be JITted. Also the executed code could be, theoreti-
cally, even faster then the native code produced by ”static”compilers since the JIT compiler can
make use of the information on system architecture to optimize the produced code in current
context.

The most important aspect of such execution scheme, however, is the MSIL portability - as
the same MSIL can be JITted on almost any architecture (Figure 4.2). For example, if run on a
64-bit platform, JIT compiler can make use of 64-bit registers to perform 64-bit arithmetic as
fast as possible. The same code run on 32-bit platform must produce more complex native code
to handle 64-bit arithmetic.

PROGRAMMING LANGUAGES

PLATFORMS

MSIL

LANGUAGE
COMPILERS

JIT COMPILERS

Figure 4.2: High-level compilers versus JIT compilers

4.2 Safety and Security of IL

The Common Language Infrastructure Draft ([27]) defines a strong safety conditions for the
Intermediate Language. In fact, the safety is one of the mainchallenges for the CLI designers.
There are also several security mechanisms which can be usedby the end-user or by the de-
veloper. Before we consider the safety offered by XMS, we have to analyze mechanisms that
already have been built into the CLR to see how XMS fits betweenthem.

20 CHAPTER 4. THE INTERMEDIATE LANGUAGE

4.2.1 Safety

Validity and Verifiability

There are several independent levels of safety and securitymechanisms in the CLR. As the
assemblies are loaded by the runtime environment, a static check is performed to see if the
assembly is valid and/or verifiable. If the assembly is not rejected, any other security checks are
performed dynamically in the runtime.

There are four types of .NET assemblies: syntactically correct, valid, type-safe and verifiable
(Figure 4.3).

An assembly is calledvalid if the file format, the metadata and the IL stored in the assem-
bly are self-consistent. An invalid (inconsistent) IL sequence could be syntactically correct but
would for example contain invalid metadata or an opcode thatdoes not belong to the set of valid
IL opcodes or a jump to an operand rather than to an instruction.

At the next level of security we havetype-safeassemblies. Here the ”type-safety” means
for example that private methods are not called from outsideof a class, i.e. class interaction is
based on public information only.

Finally, at the last level of safety there are verifiable assemblies. An assembly is called
verifiable if it passes a much stronger type-safety check than type-safe assemblies. This test
tries to detect any unsafe memory operations that could leadto unauthorized memory access.
An unverifiable assembly would for example contain a native code, use pointer arithmetic or
convert pointer to values and vice-versa. The verification algorithm isconservative- code that
is memory safe, can be rejected as unsafe.

Syntactically correct

Valid

Typesafe

Verifiable

Figure 4.3: Valid and verifiable IL

Below we briefly summarize the type-checking algorithm. Thedetailed description can be
found in part III, section 1.8 of the CLI Draft ([27]).

1. Consecutive IL opcodes are checked for syntactic validity (correct number of parameters).

2. Jump are checked to not to fall out of the method bodies.

4.2. SAFETY AND SECURITY OF IL 21

3. The one-pass scanner analyzes consecutive opcodes and tries to simulate an execution of
the method body. The scanner verifies the stack is properly preserved by emulating the
stack state at each opcode. The scanner also verifies that arithmetic and pointer instruc-
tions are type-safe:

• if the opcode pushes the data onto the stack, the type of the data is remembered in
the emulated stack

• if the opcode pops the data from the stack it will succeed onlyif remembered types
are valid in the context of the current opcode

• the stack depth is remembered at each point so in the case of a backward branch
the remembered stack depth at the destination location is compared to actual stack
depth (this check is to eliminate the code that could cause stack overflows or stack
underflow by continually pushing or popping the data in a loop)

• if a method is returning a value the stack depth is checked to be 1, if a method is not
returning any value the stack depth is checked to be 0 (this isto eliminate a common
buffer underrunattacks where additional data is pushed onto the stack before the
method returns)

• in case of a method call the returned type is remembered on theemulated stack

• in case of a type-sensitive arithmetic instruction verifierchecks if types of consecu-
tive parameters match the instruction requirements

Because of such a strict algorithm the code is type-safe at MSIL level to quite reasonable ex-
tent. Several serious problems faced by some loosely-typedlow-level languages are not present
in MSIL ([16]). It has also been noticed that the MSIL RuntimeEnvironment had been able to
avoid some security issues of Java Runtime Environment ([31]).

This is up to the Runtime Environment to preserve this type-safety at the machine-level
when the code is run in the Operating System. In fact, no evidence was found that the existing
Runtime Environments break this property in any way (although no formal proof of translation
adequacy was given). It means that type-safe code at MSIL level produces type-safe machine
code after MSIL is JITted.

The .NET Framework provides an offline verification tool,PeVerify.exe. The tool val-
idates and verifies selected assemblies and provides a detailed information about all detected
incompatibilities.

Runtime safety

A valid or verifiable assembly executed by the runtime environment is still prone to security
issues that can not be detected by a static check. These issues are reported to the application as
exceptionsand can be gracefully handled by the application according to the exception type.

There are several types of security exceptions reported to the application by the CLR, i.a.:

• any reference to an uninitialized object is raised asNullReferenceException

• arithmetical MSIL instructions can raiseArithmeticOverflowException orDivideByZe-
roException

• array operations can raiseIndexOutOfRangeException

22 CHAPTER 4. THE INTERMEDIATE LANGUAGE

• any OS security exception is caught and rethrown by CLR, for example an I/O operation
on a file to which the current user have no access rights could raiseSecurityException.

4.2.2 Security

Beside strong safety mechanisms which include static verification of assemblies and runtime
detection of unsafe operations, the CLR also gives securitymechanisms to both developers
and/or end-users.

Assemblies can be executed under three differenthosting environments:

OS shell - the shell can run assemblies from the command line

ASP.NET - a web application can be hosted inside a web server

Internet Explorer - a web browser can run assemblies referenced by web pages

When an assembly is loaded by the runtime environment, the host environment provides an
evidencefor that assembly. Among any other assembly attributes, theevidence tells the runtime
environment where the code comes from. Based on this information, the runtime environment
assigns various permissions to the assembly. For example, by default assemblies that are loaded
from the local machine are given ”full trust” and have unlimited access to the local file system
controlled only by user OS privileges. In contrast, assemblies that are loaded from the Internet
zone have no access to the local file system and any file system operation raises a security
exception.

Since from the developer’s point of view it is not possible todetermine in advance what
evidence will be given to an assembly, the same code can run ornot according to the context it
is executed in. To reduce the possibility of data loss because of unexpected security restrictions,
developers can ”secure” the code in two ways, either declaratively, by putting special attributes
on methods:

[PrincipalPermissionAttribute(SecurityAction.Demand, Role=@"Role1")]

public static void Method() {

...

}

or imperatively, by calling proper method of a permission object:

public static void Method() {

PrincipalPermission p = new PrincipalPermission(null, "Role1");

p.Demand();

...

}

There are the cases where one of the ways should be used over the other, although in both
cases a security exception is thrown either at the method invocation in declarative style or at
permission demand in imperative style. The exception can beof course gracefully caught by the
application.

4.3. THE LANGUAGE 23

From the end-user perspective thecode-accessmechanisms can be used to define custom
sets of permissions and custom rules for granting evidencesto assemblies, thus creating custom
”sandboxes” for untrusted assemblies. If for example a local assembly can not be fully trusted,
a custom sets of permissions can be defined that disallows anyinteraction between the local file
system and the networking subsystem. Then a custom rule can be defined that assigns assem-
blies from a fixed location, for example the folderC:\MySandbox, to be assigned previously
defined permission set. If run from local machine, when such ”sandboxed” untrusted applica-
tion tries to interact with the file system or use the networking system, the security policy would
disallow it and a security exception would be thrown.

There are several possible permission types that refer to machine or operating system ob-
jects: a file system, the system’s registry, networking system, etc.Role-basedsecurity attributes
can refer to users and their roles in operating system and explicit evidence requests, so that an
assembly can be for example run only when it comes from local machine.

The Microsoft .NET Framework contains theMicrosoft .NET Framework Configuration
snap-in (mscorcfg.msc), a tool that allows easy and visual manipulation of severalcode-based
security policies. Other CLR implementations can contain similar tools.

Figure 4.4: .NET Framework Code-based policy configurationtool

Yet another level of security is maintained by the cryptographic signatures which can be
used tosign assemblies. Any reference to a signed assembly maintain itspublic key and the
integrity of the referenced module can be checked at the runtime. This makes it impossible to
replace the signed assembly with an untrusted one.

4.3 The Language

As pointed out in the previous sections, the MSIL together with the Runtime Environment form
the core of the .NET Platform.

24 CHAPTER 4. THE INTERMEDIATE LANGUAGE

However, to be able to formally define the semantics of XMS verification engines we have
to build the semantics for the language. In subsequent sections we present the IL language and
adopt existing description and conventions ([27, 16, 43]) to build the semantics.

Table A contains the full set of IL instructions and commentson their support in XMS.

4.3.1 Naming Conventions

An IL assembly can be seen as a set of types (types are also called ”classes”). A type signature
contains fields, methods (including constructors). A signature of a field consists of a name and
a type. A signature of a method consists of a name, a type of a returned value and a list of
arguments with their types. Methods bodies are sequences of(optionally labelled) instructions.
This is summarized in following figure.

M = (C,D, . . .) modules
C,D,T = (f , g, h, . . . , F,G,H) types
f , g fields
F,G methods
Fi,G j instructions
l labels

Figure 4.5: Naming conventions

Note thatT :: f andT :: F will be used to denote that a particular fieldf or methodF belong
to specific classT.

4.3.2 Types (classes)

The IL types fall into two categories: reference types and value types. Reference types represent
objects that are stored on the heap and are referenced from the stack or the heap during the
computation. Value types are much like C structures, they represent objects that are stored on
the stack.

This distinction however is introduced mainly for performance reasons. From the type sys-
tem point of view, the class hierarchy is single-rooted and theSystem.Object (or justobject)
is a root of the object hierarchy. Even simple value types inherit from theobject class and can
be uniformly treated like regular objects with little performance penalty - boxing and unboxing
of value types is handled at the MSIL level.

Type system contains several built-in value types (booleans, integers, etc.) and can be ex-
tended with custom value or reference types (figure 4.6).

Types contain fields and methods with specific signatures (figure 4.7). A field signature
contains name and type of a field. A method signature containsthe name, type of returned
value, names and types of arguments and one of 4calling conventions: static, vararg, instance
and instance vararg(static methods do not refer to any specific instance of a class and are
opposite ofinstancemethods which operate on class instances).

Note that types which are part of the Common Type System have afull name of the form
System.Object, System.Int32, System.Boolean etc. indicating that they come from the
System namespace. Programming languages are free to providename aliasesfor common types

4.3. THE LANGUAGE 25

void no bits
object root of the class hierarchy
bool boolean value
int32 signed 32-bit integer
. . . other value types
class C custom reference type

Figure 4.6: Types

so that the name alias can be used aside of the type’s full name. For example, the MSIL language
provides name aliases for common types of the formobject, int32, bool etc.

f ::= C name field signature
F ::= conv C name (C1 n1, . . . ,Ck nk) method signature

Figure 4.7: Field and method signatures

4.3.3 Inheritance

The inheritance relation between IL types is presented below using thesubtype relation. An
inherited type contains al least all fields and all methods from its ancestor.

In particular, any type can be used in the context whereSystem.Object is expected. We
will write D <: C to denote that typeD is a subtype (inherits from) typeC.

The<: obeys some rules. Two most important are: the class hierarchy is single-rooted and
each type inherits from exactly one type. (even value types inherit from the base typeobject
however they cannot be inherited).

These rules are summarized in figure 4.8

A <: System.Object Hi Root
A <: B∧ B <: C⇒ A <: C Hi Trans
A <: F ∧ A <: G⇒ F <: G ∨ G <: F Hi Single
A <: F ∧ F is a value type⇒ A = F Hi Val

Figure 4.8: Basic inheritance rules

4.3.4 Method bodies

IL method bodies are sequences of instructions. It is interesting to notice that many instructions
have several forms, most often ashort and long form. Forms differ only in parameter size, a
short form requires a 1-byte parameter and a long form requires a 4-byte parameter.

Although the semantics will be presented in following sections, we should notice that the
IL is a stack-based language. Every instruction takes its parameters from the top of the stack
and puts its result onto the top of the stack. In particular, there is no direct addressing of local

26 CHAPTER 4. THE INTERMEDIATE LANGUAGE

variables or method’s parameters exceptloadandstoreinstructions which move values between
the stack and variables/ parameters.

The depth of the stack is measured withslotsnot with bytes. For example, when there are
two 32-bit integer values and a string value on the stack, thedepth is 3. Since the language
is strongly-typed, all values contain the information about their type and the incompatibility
between actual and expected types are detected during the initial verification phase.

IL instructions fall into 6 categories and in following subsection we present selected instruc-
tions.

Control Flow Instructions

Each IL instruction can be labelled by a label. Labels are used to mark the destination points of
jumps. For example:

br jump_1

...

jump1:

...

Selected IL control flow instructions are presented in table4.9.

br label unconditional branch
brtrue label conditional branch
brfalse label conditional branch
bge label conditional branch
bgt label conditional branch
ret return

Figure 4.9: Selected IL Control Flow Instructions

Thebr label instruction unconditionally jumps to an instruction labelled by label.
In contrast, thebrtrue label [brfalse label] instruction pops the value from the stack and

jumps to an instruction labelled bylabel only if the popped value is nonzero [zero].
The bge label andbgt label instructions pop two values from the stack and jump to an

instruction labelled bylabelwhen the first value is greater-or-equal or greater, respectively.
Theret instruction pops the stack frame and ends a method’s execution. If a method that

have been called should return a value then exactly one valueof proper type must be on the
stack at the moment theret instruction is invoked. The value is then removed from the stack
of the method and is put onto the stack of calling method whereit can be then popped and
processed.

Arithmetical Instructions

IL supports several arithmetical instructions which are presented in Figure 4.10.
Arithmetical instruction set contains parameterless, unary and binary instructions. Any in-

struction that needs parameters take them from the stack. The result of an arithmetical instruc-
tion is always stored on the stack after the instruction is executed.

4.3. THE LANGUAGE 27

ldc.i4 i load integer valuei onto the stack
dup duplicate the stack value
pop remove the value from the stack
add addition
sub subtraction
mul multiplication
div, rem division, remainder
neg negation
and, or, xor bitwise AND, OR, XOR
not bitwise unary inversion
shl bitwise shift left
shr bitwise shift right
ceq, cgt, clt check if first equal to/ greater/ less than the second

Figure 4.10: IL Arithmetical Instruction Set

Instructions for Addressing Fields, Arguments and Local Variables

Instruction for addressing fields, arguments and local variables are presented in Figure 4.11.

ldarg v load from argument
ldarg.i load fromi-th argument
starg v store into argument
ldloc n load from local variable
ldloc.i load fromi-th local variable
stloc n store into local variable
stloc.i store intoi-th local variable
ldfld C T :: f load from instance field
ldflda C T :: f load manager pointer from instance field
stfld C T :: f store into instance field
ldsfld C T :: f load from static field
stsfld C T :: f store into static field

Figure 4.11: Selected IL instructions for fields, argumentsand local variables

Theldarg v instruction loads the value of anv method argument on the stack. Thestarg
v instruction takes the value from the stack and stores it in the argument slotv.

Theldloc n instruction loads the value of ann-th method’s local argument on the stack.
Thestloc n instruction takes the value from the stack and stores it in the local variable number
n.

The ldfld C T :: f instruction pops an object referencer from the stack and loads the
value of the object’s fieldT :: f of typeC on the stack. Thestfld C T :: f instruction pops the
value from the stack, pops an object reference from the stackand stores the value to the object’s
field T :: f of typeC. Theldflda instruction behaves just likeldlfld but instead of loading
the value of the field on the stack, it loads a reference to the field on the stack.

In contrast, theldsfld C T :: f instruction loads the value of the static fieldT :: f of type

28 CHAPTER 4. THE INTERMEDIATE LANGUAGE

C on the stack. Thestsfld C T :: f instruction pops the value from the stack and stores the
value to the static fieldT :: f of typeC.

The distinction between these two pairs of instructions (ldfld, stfld vsldsfld, stsfld)
is then obvious: they apply to instance and static fields respectively.

Instructions for Calling Methods

IL instructions for calling methods are presented in Figure4.12

call conv C T:: F call a method
callvirt conv C T:: F call a virtual method

Figure 4.12: IL Instructions for Calling Methods

Thecall instruction pops arguments from the stack and call the method with given argu-
ments. For example:

ldc.i4 1

call int32 TheClass::StaticMethod(int32)

first loads an integer value 1 onto the stack and then calls a static method which expects single
integer parameter and returns an integer value.

Note that thecall instruction expects a full signature of the method (including the type of
a return value) as a parameter. This is to avoid any confusionin case of multiple overloaded
methods sharing the same name.

Thecallvirt instruction does almost the same but the call is conducted byan instance’s
vtable (table of virtual methods) which means that the call is polymorphic.

The distinction between virtual and non-virtual calls is simple: thecall instruction does
not use the vtable which means that it isneverpolymorphic. It is then suited to static functions
and non virtual calls. In contrast, thecallvirt instruction always uses the instance’s vtable. If
an instance of a class is cast to the parent type and a method iscalled bycall then the parent’s
method will be called but when a method is called bycallvirt a child method will be called
as a result of the vtable entry.

Is interesting is that a non-virtual method can be always safely called withcallvirt as it
will have the same effect ascall.

Parameters to methods should be pushed on the stack in order of their appearance in the sig-
nature (first parameter pushed first, last parameter pushed last). If an instance method is called,
the first parameter must always be a reference to the instanceof an object (thisparameter).

Instructions for Addressing Classes and Value Types

As an object-oriented language the IL includes instructions dedicated to classes (table 4.13).
Theldnull instruction loads a null object reference on the stack. Thenewobj instruction

allocates memory for a new instance of specified class. It pops arguments from the stack, calls
appropriate constructor (which must be called.ctor) and pushes the reference to a newly created
object on the stack.

Example 4.1 Following sequence of code:

4.3. THE LANGUAGE 29

ldnull load null reference
newobj T :: .ctor create a new instance

Figure 4.13: Selected IL Instructions for Class Manipulation

ldc.i4 4

newobj instance void TheClass::.ctor(int32)

initializes a new instance ofTheClass by calling a one-parameter constructor and passing the
value 4 to the constructor.

Vector Instructions

The IL also includes few instructions dedicated to vector operations (table 4.14).

newarr token create a vector
ldlen get the element count
ldelem.x 11 instructions to load vector element
stelem.x 8 instructions to store vector element

Figure 4.14: IL Instructions for Vector Operations

The newarr instruction pops the element count from the stack and creates the vector of
elements specified by thetoken. Theldelem andstelem groups contain strongly-typed in-
structions to load and store vector elements. For example, among 11 instructions to load a vector
elements we haveldelem.i4 to load an element of typeint32, ldelem.i1 to load en element
of typeint8, ldelem.u1 to load unsigned element of typeint8 andldelem.ref to load an
element of reference type.

Example 4.2 Following sequence of code:

ldc.i4 13

newarr System.Int32

creates a vector of 13 integer values.

Theldlen instruction takes the vector reference from the stack and puts the element count
onto the stack.

Each ofldelem instructions take the element index and the vector reference from the stack
and put the value of the element on the stack. Each ofstelem instructions take the value to be
stored, element index and the vector reference from the stack and put the value of the element
into the appropriate slot of the vector. In case of any illegal ldelem or stelem operation (index
of bounds of the vector, null reference for vector, type incompatibility) a runtime exception is
thrown.

30 CHAPTER 4. THE INTERMEDIATE LANGUAGE

4.4 The Semantics

The semantics of the IL language is documented in [27], however, it takes a semi-formal form.
Because a precise semantics is a core of XMS infrastructure (it has a decisive role in construc-
tions of verification conditions and proofs of their correctness) below we present it in a concise,
formal manner inspired by [16] and [43].

4.4.1 Values

The IL language runs under the control of a stack-based machine. Stack size is measured in
slots, not in bytes. A stack slot can accept one item of any type.

For example, after following sequence of instructions:

ldc.i4 0 // put 0 onto the stack

ldc.i4 1 // put 1 onto the stack

ldc.r8 3.14 // put 3.14 onto the stack

ldc.r8 2.71 // put 2.71 onto the stack

four stack slots are occupied.
Most instructions take arguments from the stack and place the results back onto the stack.

For example following sequence:

ldc.i4 1 // put 1 onto the stack

ldc.i4 2 // put 2 onto the stack

ldc.i4 3 // put 3 onto the stack

add // take top two values from the stack,

// add then and put result onto the stack

add

lefts a single result value 6 on the stack. The result value could be then used as a parameter
for another instruction. Aresult value of an instruction can be empty, can be a value type or a
reference (Figure 4.15).

u, v ::= result value
0 void, no result
i1, i2, i4, i8 1,2,4 and 8-byte integer
r4, r8 4 and 8 byte floating-point
p reference
null null reference

Figure 4.15: Result values

4.4. THE SEMANTICS 31

4.4.2 Memory

The Runtime Environment executes the IL code by running a method signed as theentry point
of the code. Many high-level languages enforce the naming convention on the entry point, for
example, in case of the C# language the entry point must be a static, parameterless method
called Main, optionally accepting a vector of strings as an argument. New stack frames are
initialized on the stack as consecutive methods are called.

During the execution of consecutive instructions of a method, the stack frame contains either
values or references. For value types, stack contains valueof an object and the slot size depends
on the size of the value. For reference types, stack containsa reference to the object data, the
slot size has the size of a reference and the object data is stored on the heap.

Our semantic model must then contain the stack and the heap. Because classes contain static
fields, we need a shared storage where static values from all classes are stored. To complete the
description of the method’s local memory context we will also need method’s local arguments
and local variables.

Table 4.16 summarizes the definition of a method’s localmemory context. Since methods
call other methods, we will use the notationρF, ρG to denote local contexts of different methods.
If this is clear from the context or not important to the context, the reference to method’s caller
will be omited.

ρF ::= (lA, lV, h,H, s, ρG) local memory context ofF

lA ::= [a0 7→ a0, . . . , an 7→ an] local arguments
lV ::= [v0 7→ v0, . . . , vn 7→ vn] local variables
h ::= pi 7→ o i∈1...n

i heap
o ::= T[fi 7→ u i∈1...n

i] object
H ::= T i∈1...k

j [fi 7→ u i∈1...n
i] shared storage

s ::= u0, . . . , un stack
ρG local memory context ofF’s caller

Figure 4.16: Local memory context

Note that the entry point method’s local context must point to a fixed memory context which
is handled by the runtime environment so that the entry pointmethod could return values to the
operating system.

Local argumentscan be seen as a vectorlA = (a0, . . . , an) of values andlocal variablesas
a vectorlV = (v0, . . . , vn) of values.

Both vectors can be also seen as partial functions from variables to their values. What we
should point is that the IL method arguments arenamedarguments, so we can reference them
by nameor by numberbut local variables arenumberedarguments (their name is not present in
the binary image) so we can reference them onlyby number.

We will adopt this duality and we will writelA(v) to denote the value of method argument
namedv andlV(n) will denote the value of local variable numbern. We will also writelA[v 7→ u]
(lV[n 7→ u] respectively) to denote the local arguments (local variables) vector, in which the
valuev (n) is updated to a new valueu. Formally:

32 CHAPTER 4. THE INTERMEDIATE LANGUAGE

(lA[v 7→ u])(v′) =

{

lA(v′) v , v′

u v= v′

(lV[n 7→ u])(n′) =

{

lV(n′) n , n′

u n= n′

Theheap is a finite set of the object data, each taking the formT[fi 7→ u i∈1...n
i] whereT is

the type and the mappingfi 7→ u i∈1...n
i maps instance fields to result values (for example, a field

value can be another reference). The object data can bereferencedand we will writep 7→ o to
indicate that the referencep references the object datao from the heap.

We will write pT(f) to denote the value of instance fieldf from an object of typeT refer-
enced byp. We will write pT [f 7→ u] to denote an object in which the value of the instance field
f has been changed tou. Formally:

(pT [f 7→ u])(f ′) =

{

pT(f ′) f , f ′

u f = f ′

Vectors (arrays) are special kind of objects. They map 0-based indexes to actual values and
take the formT[i 7→ u i∈0...n

i] to denote a vector of values of typeT indexed from 0 ton where
n+ 1 is the length of the vector. A vector is stored in a single slot on a stack.

We will write aT(i) to denote the value indexed byi from a vector of typeT referenced by
a. We will write aT [i 7→ u] to denote a vector in which the value at the indexi has been changed
to u. Formally:

(aT [i 7→ u])(i′) =

{

aT(i′) i , i′

u i = i′

We will write |a| to denote the length of vectora. Note that since the length of a vector is set
during the initialization, it is fixed and cannot be changed during the lifetime of the vector.

References are result values and they are usually stored in variables. When the value of a
variable that holds a reference changes, the object data that is referenced by this reference is
lost. The Runtime Environment introduces the Garbage Collector (GC), a mechanism that is
independent of the code execution and which sweeps the heap and removes object data that are
no longer referenced using generational mark-sweep algorithm. Note that although extremely
practical, the Garbage Collector purpose is purely technical - it would be unnecessary if the
heap was infinite and new object data could be allocated at demand. Thus, the existence of the
Garbage Collector does not affect the language semantics.

Theshared storageis a finite map from class names to their memory representations, each
one takes the formT[fi 7→ u i∈1...n

i], whereT is a class name and the mappingfi 7→ u i∈1...n
i is a

mapping from static field names to result values.
We will write T(f) to denote the value of static fieldf from classT. We will write T[f 7→ u]

to denote a class in which the value of the static fieldf has been changed tou. Formally:

(T[f 7→ u])(f ′) =

{

T(f ′) f , f ′

u f = f ′

Thestack is a vector of result values (u, . . . , v). We assume that stack grows from right to
left, so the (v, s) (or v · s) will denote a stacks with v put at the top. We will write|s| to denote
the length of the stacks.

4.4. THE SEMANTICS 33

Example 4.3 Consider a memory contextρ where

ρ ⊢ lA = [x 7→ 0, y 7→ 1]

and let a predicateP

P
de f
= x ≥ 0 ∧ y− x > x

We then have
ρ(P) = 0 ≥ 0 ∧ 1 > 0 = false

which can be read as ”the predicateP does not hold in memory contextρ”.

4.4.3 Instructions

The body of any methodF is a vector of instructions. We assume that these instructions are
numbered, starting from 0. We writeDom(F) for the set of numbers of all instructions fromF.
We also writeFi to address thei-th instruction of the method.

We model the execution state as a tupleΣ = (i, ρ) that contains a program counteri ∈
Dom(F) and a local memory contextρ. In a fixed context, we will sometimes write (i, (lA, lV, h,H, s))
instead of (i, ρ)

The operational semantics is defined as a formal judgement ofa form F ⊢ (i, ρ) 7→ (j, ρ′).
The judgement says that the execution ofF takes one step from state (i, ρ) to state (j, ρ′).

We assume that 0∈ Dom(F) and that the execution ofF starts in a stateΣ0 = (0, lA, lV, h,H, ǫ))
(it means that 0∈ Dom(F) for anyF) wherelV(u) = 0 for any local variableu of value type and
lV(u) = null for any local variableu of reference type.

The semantics of selected instructions from all groups are presented below.

34 CHAPTER 4. THE INTERMEDIATE LANGUAGE

Fi = br l
F ⊢ (i, ρ) 7→ (LF(l), ρ)

Evalbr

Fi = brtrue l
F ⊢ (i, . . . , 0 · s) 7→ (i + 1, . . . , s)

Evalbrtrue0

Fi = brtrue l ∧ n , 0
F ⊢ (i, . . . , n · s) 7→ (LF(l), . . . , s)

Evalbrtrue

Fi = brfalse l
F ⊢ (i, . . . , 0 · s) 7→ (LF(l), . . . , s)

Evalbrfalse0

Fi = brfalse l ∧ n , 0
F ⊢ (i, . . . , n · s) 7→ (i + 1, . . . , s)

Evalbrfalse

Fi = bge l ∧ u < v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , s)

Evalbge0

Fi = bge l ∧ u ≥ v
F ⊢ (i, . . . , u · v · s) 7→ (LF(l), . . . , s)

Evalbge

Fi = bgt l ∧ u ≤ v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , s)

Evalbgt0

Fi = bgt l ∧ u > v
F ⊢ (i, . . . , u · v · s) 7→ (LF(l), . . . , s)

Evalbgt

Fi = ret

F ⊢ (i, . . . , v · sF, ρG) 7→ ρG[sG/v · sG]
Evalret

Figure 4.17: Semantics of selected Control Flow Instructions

4.4. THE SEMANTICS 35

Fi = ldc.i4 i
F ⊢ (i, . . . , s) 7→ (i + 1, . . . , i · s)

Evalldc

Fi = dup

F ⊢ (i, . . . , v · s) 7→ (i + 1, . . . , v · v · s)
Evaldup

Fi = pop

F ⊢ (i, . . . , v · s) 7→ (i + 1, . . . , s)
Evalpop

Fi = add

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u+ v · s)
Evaladd

Fi = sub

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u− v · s)
Evalsub

Fi = mul

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u ∗ v · s)
Evalmul

Fi = div

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u/v · s)
Evaldiv

Fi = rem

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u MOD v· s)
Evalrem

Fi = neg

F ⊢ (i, . . . , v · s) 7→ (i + 1, . . . ,−v · s)
Evalneg

Fi = and

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u AND v· s)
Evaland

Fi = or

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u OR v· s)
Evalor

Fi = xor

F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , u XOR v· s)
Evalxor

Figure 4.18: Semantics of Arithmetical Instructions

36 CHAPTER 4. THE INTERMEDIATE LANGUAGE

Fi = ceq l ∧ u = v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 1 · s)

Evalceq1

Fi = ceq l ∧ u , v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 0 · s)

Evalceq0

Fi = cgt l ∧ u < v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 1 · s)

Evalcgt1

Fi = cgt l ∧ u ≥ v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 0 · s)

Evalcgt0

Fi = clt l ∧ u > v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 1 · s)

Evalclt1

Fi = clt l ∧ u ≤ v
F ⊢ (i, . . . , u · v · s) 7→ (i + 1, . . . , 0 · s)

Evalclt0

Figure 4.19: Semantics of Arithmetical Instructions, cont.

4.4. THE SEMANTICS 37

Fi = ldarg v
F ⊢ (i, . . . , s) 7→ (i + 1, . . . , lA(v) · s)

Evalldarg

Fi = starg v
F ⊢ (i, lA, . . . , u · s) 7→ (i + 1, lA[v 7→ u], . . . , s)

Evalstarg

Fi = ldloc n
F ⊢ (i, . . . , s) 7→ (i + 1, . . . , lV(n) · s)

Evalldloc

Fi = stloc n
F ⊢ (i, . . . , lV, . . . , u · s) 7→ (i + 1, . . . , lV[n 7→ u], . . . , s)

Evalstloc

Fi = ldfld C T :: f
F ⊢ (i, . . . , p · s) 7→ (i + 1, . . . , pT(f) · s)

Evalldfld

Fi = stfld C T :: f
F ⊢ (i, . . . , v · p · s) 7→ (i + 1, . . . , p[f 7→ v], . . . , s)

Evalstfld

Fi = ldsfld C T :: f
F ⊢ (i, . . . , s) 7→ (i + 1, . . . ,T(f) · s)

Evalldsfld

Fi = stsfld C T :: f
F ⊢ (i, . . . ,T, u · s) 7→ (i + 1, . . . ,T[f 7→ u], s)

Evalstsfld

Figure 4.20: Semantics of Instructions for Addressing Fields, Arguments and Local Variables

Fi = call C T :: G

F ⊢ (i, . . . , un · . . . · u0 · s) 7→ ρG whereρG is a new context
ρG = (0, lA[a0 7→ u0, . . . , an 7→ un], . . . , ǫ, ρF)

Evalcall static

Fi = call instance C T :: G

F ⊢ (i, . . . , un · . . . · u0 · p) 7→ ρG whereρG is a new context
ρG = (0, lA[athis 7→ p, a0 7→ u0, . . . , an 7→ un], . . . , ǫ, ρF)

Evalcall instance

Figure 4.21: Semantics of Instructions for Calling Methods

38 CHAPTER 4. THE INTERMEDIATE LANGUAGE

Fi = ldnull

F ⊢ (i, . . . , s) 7→ (i + 1, . . . , null · s)
Evalldnull

Fi = newobj T :: .ctor(u0, . . .un)
F ⊢ (i, . . . , un · . . . · u0 · s) 7→ (i + 1, . . . , p · s)

wherep 7→ T[fi 7→ ui] Eval newobj

Figure 4.22: Semantics of Instructions for Addressing Objects

Fi = newarr T

F ⊢ (i, . . . , l · s) 7→ (i + 1, . . . , a · s)
wherea 7→ T[i i∈1...l 7→ 0/null] Eval newarr

Fi = ldlen

F ⊢ (i, . . . , a · s) 7→ (i + 1, . . . , l · s)
wherel = |a| Evalldlen

Fi = ldelem

F ⊢ (i, . . . , i · a · s) 7→ (i + 1, . . . , a(i) · s)
Evalldelem

Fi = stelem

F ⊢ (i, . . . , v · i · a · s) 7→ (i + 1, . . . , a[i 7→ v] · s)
Evalstelem

Figure 4.23: Semantics of Instructions for Vector Operations

Chapter 5

The Infrastructure

5.1 The Safety Policy

In previous sections we have presented two core paradigms ofXMS, the Design By Contract and
the Proof-Carrying Code. To formally define PCC for XMS Safety Policy we have to provide:

• formal definition of a Safety Policy

• an algorithm for the Verification Condition Generator accompanied by the Theorem of
Soundness, an ”instantiation” of the Theorem 3.1.

This is where the two paradigms are unified within the XMS: thesafety policy is expressed
on top of DBC. To achieve this, the code producer has to provide a complete specification of
each method of the code - method signatures have to be extended with preconditions, postcon-
ditionsandloop invariants.

In contrast to the classic DBC we also require one additionalpart of the extended specifi-
cation - the list of arguments (or their internal properties) which are modified by the method’s
body such that the modification affects the caller side. This is purely technical and could be
avoided with the additional scan of the callee method’s bodybut in the current implementa-
tion it speeds up the analysis. In addition - the analogous list must be provided for each loop
invariant for same technical reasons.

The intuition behind this requirement is that when a method is called and the call returns,
some variables (or their internal properties) passed as arguments to the callee can be modified.
For example, when a value type variable is passed by reference (ref in C#) it can be potentially
modified in the method’s body and the modification affects the caller side. From the other side,
any modification to a value type variable which is not passed by reference does not affect the
caller. As for loop invariants - a loop body can modify some variables and although the list of
modified variables could be also determined by the additional scan of the loop body, knowing
it in advance speeds up the analysis.

The reader probably notice that the requirement to provide in an explicit way the list which
could be determined otherwise could be a potential securityhole in the infrastructure. Neverthe-
less, this is not the case in XMS - in fact both list are rebuiltbut not in advance but rather during
the analysis and the analysis fails if rebuilt list differs from the one provided in the specifica-
tion. This explicit requirement is not a security hole but rather it makes it possible to perform a
one-pass analysis.

39

40 CHAPTER 5. THE INFRASTRUCTURE

Eventually, the specification of each method is of the form:

SpecF = (SigF,PreF,PostF, InvF,ModifF)

whereSigF is a method’s signature,PreF is a precondition predicate,PostF is a postcondition
predicate,InvF is a partial function that maps instruction numbers to invariants andModifF is
the list of parameters that are modified by the method’s body.

How the specification is physically provided is a technical detail but in our case the specifi-
cation is stored in the metadata thus being inseparable fromthe actual code.

Another important feature would be theclass invariants, predicates which are valid any
time the client has an access to the object instance. Note however that the class invariants can
be modelled by conjunctions with all preconditions and all postconditions of class methods’
specifications.

Example 5.1 For the following method:

.method public static int32 Foo(int32 a, int32 b, int32 c) {

ldarg 1

dup

mul // b*b

ldarg 0

ldarg 2

ldc.i4 4

mul // 4*c

mul // ...*a

sub // b*b - 4*a*c

ret

}

we could write down following specification:

SigFoo := int32 Delta(int32 a, int32 b, int32 c)
PreFoo := true

PosFoo := VALUE= b ∗ b− 4 ∗ a ∗ c
InvFoo := ∅

ModifFoo := ∅

Following definition formally states the notion of securitywith regard to Static Contracts
Safety Policy.

Definition 5.1 (XMS Safety Policy). An MSIL method F having the precondition PreF and
postcondition PostF is safe with regard to Design By Contract safety policy if forany initial
state of the local storeΣ0 = (0, ρ0) such thatρ0 |= PreF and any stateΣ = (i, ρ) reachable from
the initial state we have that if Fi = ret thenρ |= PostF. We will denote this fact as SafeSC(F).

5.1. THE SAFETY POLICY 41

SafeSC(F)⇐⇒ ∀Σ0=(0,ρ0),Σ=(i,ρ) ρ0 |= PreF ∧ Σ0 7→
∗ Σ ∧ Fi = ret⇒ ρ |= PostF

A moduleM is safe with if all methods from the module are safe. We will denote this fact as
SafeSC(M).

SafeSC(M)⇐⇒ ∀F∈M SafeSC(F)

Note that precondition and postcondition play a crucial role in the above definition. A
method is safe only if whenever its precondition is valid upon invocation then the postcon-
dition is valid when the method is about to return. Because ofthe way the policy is defined, it
is modular (page 10) and even large applications can be successfully verified.

The above definition has two interesting consequences.
First, a method is safe if the precondition is invalid upon the invocation (even though the

postcondition can be invalid when the method terminates). In theory, such situation should
never happen because, as we will see, a method invocation is guarded in a sense that the its
precondition is verified at the invocation time.

Second, if a method does not terminate at all, it is also safe (because there is no chance to
falsify the postcondition). It means that the Design By Contract policy does not aim at verifying
the total correctness.

Example 5.2 Let us look at the methodF which takes positive integer parameter, increments it
and returns this new value as the result. MethodF could have following specification:

SigF = int F(int x)
PreF = x > 0
PostF = VALUE> x
InvF = ∅

.method public hidebysig static int32 F(int32 x) cil managed

{

.locals init (int32 v_0)

ldarg x

ldc.i4 1

add

stloc 0 // v_0 = x+1

ldloc 0

ret // return v_0

}

Let us trace a particular execution ofF:

ldc.i4 1

call int32 F(int32) // F(1)

42 CHAPTER 5. THE INFRASTRUCTURE

Upon the invocation ofF we haveρ0(PreF) = 1 > 0 so the precondition ofF is satisfied.
There is only one exit point from the method, it is the state (5, ρ) and we have thatF5 = ret

andρ(PostF) = 2 > 1.
According to the definition 5.1 this particular execution ofF is then safe. As long as we do

not consider arithmetic overflows, we could even informallyargue that any execution ofF is
safe.

5.1.1 Specification language

Specification language must be expressive enough to encode as wide range of interesting safety
properties as possible. In case of XMS Design By Contract policy, specifications are encoded
in standard first-order logic extended with arithmetic operators and relations as well as some
object-oriented additions like field/vector access operations.

Base ::= c | v | a | a ORIGINAL | VALUE | THIS
Exp ::= Base| Exp.f | Exp[i] | Exp.M | F(Exp1, . . . ,Expn)

Pred ::= Exp | ¬P | G(P1, . . . ,Pm) | ∃ z. Pred(z) | ∀ z. Pred(z)

where

• c is a constant value

• v is a local variable name

• a is a local argument name

• a ORIGINALrefers to the original value of an argument (used only in postconditions)

• VALUE refers to the value returned from the method (used only in postconditions)

• THIS is resolved as the reference to current instance in an instance method

• Exp.f is a value of fieldf of object denoted byExp

• Exp[i] is a value from vectorExpat the indexi

• Exp.M is a value returned from methodM of object denoted byExp

• F, G are any arithmetic or logic operators/ functions recognized and handled by the
theorem proving infrastructure

Note also that this definition in fact makes the specificationlanguage close to OCL (page 12).
Indeed, except these few OCL predicates which are beyond thereach of a static analysis (for ex-
ampleoclIsTypeOf, oclIsNew, allInstances), the significant subset of OCL specification
language features is directly expressible in our specification language.

Example 5.3 Following OCL specification:

Post :

if x > 0

result = x

else

result = -x

5.1. THE SAFETY POLICY 43

in XMS is expressed as

(

(x > 0) =⇒ VALUE= x
)

∧
(

(x ≤ 0) =⇒ VALUE= −x
)

Invariants

Invariants are predicates that guard computation of loops.In a sense they set a binding of certain
variables which are ”fixed” during the loop executions.

However, from the safety point of view it is not enough to ”bind” variables for the loop
body. It is because values of some variables can be changed ina loop body while keeping the
invariant valid. Because from the static analysis’ point ofview a loop can be executed arbitrary
number of times, some variables can then have an unknown value when a loop terminates (or at
least values of such variables cannot be determined statically).

Because the IL is the stack-based language, the loop body canalso change stack values and
in extreme cases it can refill the stack with completely new values.

Because of these two observations, XMS has a special form of invariants:

InvF(i) = (P,Var, k), for any i ∈ Dom(F)

whereP is a invariant predicate,Var is a set of variables that are modified inside the body
of a loop (between the invariant is seen for a first and second time) andk is a depth the stack is
modified up to in the loop.

Postconditions

Postcondition describe the state of a computation when a method is about to return to the caller.
Because the method may return some value to the caller, the first obvious requirement of the
postcondition is then to be able to somehow ”use” the returned value in the postcondition.

In our specification language this returned value can be referred asVALUE. An example
postcondition,

VALUE> 0

refers to a method in which the returned value of value type isalways positive. Another example
of a postcondition,

VALUE.age> 0∧ VALUE.age< person.age

refers to a method in which the value ofagefield of returned object should be always between
0 andperson.age, whereperson.agewould probably be the value ofagefield of method’s pa-
rameterperson.

From the caller perspective is it then irrelevant if there are several possible return points in
the callee because the callee postcondition refers toany return point.

0-values

Another requirement of a Design by Contract framework is to be able to specify the original
values of method’s arguments in postconditions. For example, in the following C# method

44 CHAPTER 5. THE INFRASTRUCTURE

public void Swap(ref int x, ref int y)

{

int z = x;

x = y;

y = z;

}

it is crucial to be able to refer to original values ofx andy in postcondition - as the execution
ends the actual value ofx is equal to original value ofy and vice versa. In our specification
language original values of arguments are referred usingORIGINAL postfix so that in the above
example the postcondition would be stated asx == y ORIGINAL && y == x ORIGINAL.

5.2 Dynamic Verification Engine

5.2.1 Test-Driven Development

Dynamic verification is a process in which the safety policy is verified in the run time of the
application. Although dynamic testing is a fundamental principle of the Design By Contract
paradigm, much more general development technique has beenproposed and is getting more
and more interest.

This technique is called theTest-Driven Development(TDD, [4], [20]) and is strictly con-
nected with theAgile software development methodology ([41], [44]).

The Test-Driven Development requires that so calledTest Suiteis prepared along with the
initial version of the code. The Test Suite containsTest Caseswhich call actual methods from
the tested code and use explicit assertions which can be usedto verify that the implementation
of methods being tested is compatible with the provided specification. These test cases can be
then conducted automatically and, in case tests fail, the code is refactored until all test pass.

More formally, TDD consists of 3 major steps ([4]):

1. Create testsAs long as signatures of actual methods are written down, test cases are
also created. Since the code being tested is not implementedyet, all newly created tests
should fail. It is not obvious how the test cases should be formulated since it requires an
understanding of the code requirements. Often then, tests are added later even when the
implementation satisfies tests created earlier.

2. Write code that passes the testsAs long as tests are prepared, the actual code has to be
implemented. The implementation should be conceptually correct but since the main goal
is to satisfy the tests, it can be inefficient or inelegant.

3. Refactor At this stage the code is refactored until it satisfies some requirements. Many
important aspects of semi-automatic refactoring and usingthe design patterns in refac-
toring are described in [15]. This phase can be repeated arbitrary number of times until
the result is efficient or elegant enough. Often, some advanced design concepts (Design
Patterns) are stated as a goal of refactoring ([11], [21]).

The TDD methodology can ease the software development and make the software more
reliable. By focusing on the specification the developer sees the system with the eyes of its
potential client.

5.2. DYNAMIC VERIFICATION ENGINE 45

This benefit is also a biggest limitation of the TDD. When tests are incorrect or not represen-
tative, not only the incorrect code can be written but also many important features can remain
unimplemented. Another limitation is the difficulty to use the TDD in complex scenarios where
several components must be tested in the same time (for example, the user interface, a remote
web service, a database management system) - in such cases itis sometimes impossible to write
test cases at all.

And probably the biggest limitation - even the large number of passed tests does not prove
that the code is correct. The test case data could be simply not representative enough.

5.2.2 Instrumentation of .NET Code

Although the Test-Driven Development methodology appearsto be very useful, it assumes that
representative test cases are written and automated tests are performed at the supplier side.

Why shall we do not just put the specificationinto the code so that the preconditions, in-
variants and postconditions are alwaysverified during the code execution?

Well, some implementations of the Design By Contract principle behave exactly this way.
At the beginning of method’s execution the precondition is explicitly verified and before every
exit point the postcondition is explicitly verified. An example could be the C’sassert macro:

int Square(int x)

{

// explicit precondition verification

assert(x > 0);

int ret = x * x;

// explicit postcondition verification

assert(ret = x*x);

return ret;

}

Such approach has one major disadvantage - the specificationis too tightly bound to the
code. In fact, it is a part of the actual code. When the code changes and the specification does not
change (which is quite common), all the places where the specification is explicitly verified also
have to be reviewed. This could be extremely painful when theimplementation is complicated
and there are many different places in the code where suchasserts appear.

Another approach would be then to use one of so calledCode Instrumentation techniques.
Code Instrumentation assumes that the execution of the codecan be somehow altered or su-
pervised in a transparent way and some additional functionality can be ”injected” during this
modified execution.

From the Design By Contract’s point of view we are interestedin intercepting methods’
invocations and exits. This can be seen as one of so calledconcernsof theAspect Oriented
Programming paradigm ([22]) and use one of the existing .NET AOP Frameworks ([40]) or
adopt one of two possibilities:

.NET Profiler API ([3]) an external API for providing a profiler functionalityon the .NET
platform. The profiler makes it possible to put custom code into the execution pipeline,

46 CHAPTER 5. THE INFRASTRUCTURE

however it works at the IL stream level (sequence of bytes which have to be decompiled)
and the API is not well documented.

Context-Bound Objects this route is taken by the XMS

The documentation defines Context-Bound Objects as1 ”Objects that reside in a context and
are bound to the context rules are called context-bound objects. A context is a set of properties
or usage rules that define an environment where a collection of objects resides. The rules are
enforced when the objects are entering or leaving a context.Objects that are not context-bound
are called agile objects.”

The definition is rather obscure, however the idea is perfectly suited for code instrumenta-
tion. Inheriting from theContextBoundObject class makes it possible to define rules used by
the CLR for objects for which the execution context must be traced. In case of the XMS we
have to put the custom code into the invocation and exit pipeline.

Following steps are necessary to inject custom code into theexecution pipeline:

1. a context attribute must be declared on intercepted class. Context attributes are just
attributes but they define a new execution contexts for context bound objects. In our case
this new context is defined inside theInterceptProperty class

[AttributeUsage(AttributeTargets.Class)]

public class XMSInterceptAttribute : ContextAttribute

{

...

public override void

GetPropertiesForNewContext(IConstructionCallMessage ctorMsg)

{

ctorMsg.ContextProperties.Add(new InterceptProperty());

}

...

}

The context attribute is then used like any attribute to provide runtime-available metadata
for a class:

[XMSInterceptAttribute()]

public class ClassWithInterceptedMethods

{

...

}

2. So calledmessage sinksprovide a built-in2 mechanism for providing custom logic into
the invocation pipeline of context bound objects. TheInterceptProperty context prop-
erty inserts a new message sink into the invocation chain:

1http://msdn2.microsoft.com/en-us/library/system.contextboundobject(VS.71).aspx
2http://msdn2.microsoft.com/en-us/library/c2k19cxd(VS.71).aspx

5.2. DYNAMIC VERIFICATION ENGINE 47

public class InterceptProperty :

IContextProperty,

IContributeServerContextSink

{

...

#region IContributeServerContextSink Members

public IMessageSink

GetServerContextSink(IMessageSink nextSink)

{

return new InterceptSink(nextSink);

}

#endregion

...

}

3. the XMS’s message sink,InterceptSink, is responsible for preprocessing - where pre-
conditions are verified - and postprocessing - where postconditions are verified. Since
original values of method’s parameters can be used in postconditions, these original val-
ues must be stored during the preprocessing phase so that they are available during the
postprocessing.

public class InterceptSink : IMessageSink

{

private IMessageSink nextSink;

public InterceptSink(IMessageSink nextSink)

{

this.nextSink = nextSink;

}

#region IMessageSink Members

public IMessage SyncProcessMessage(IMessage msg)

{

// preprocess

IMethodCallMessage mcm = msg as IMethodCallMessage;

InterceptContext preContext = new InterceptContext(mcm);

bool pre =

this.PreProcess(

preContext /* use actual values during postprocessing */

);

// actual call

IMessage retm = nextSink.SyncProcessMessage(msg);

IMethodReturnMessage mrm = (retm as IMethodReturnMessage);

InterceptContext postContext =

new InterceptContext(msg as IMethodCallMessage);

// postprocess

bool post =

48 CHAPTER 5. THE INFRASTRUCTURE

this.PostProcess(

preContext, /* use original values during postprocessing */

postContext, /* use actual values during postprocessing */

mrm.ReturnValue);

if (!pre || !post)

{

Trace.WriteLine(

string.Format(

"Testing failed for {0}.",

mcm.MethodName));

}

return mrm;

}

private bool PreProcess(InterceptContext preContext)

{

ProcessAttribute[] attrs =

(ProcessAttribute[])preContext.MethodBase

.GetCustomAttributes(typeof(ProcessAttribute), true);

bool pre = true;

for(int i=0;i<attrs.Length;i++)

pre &= attrs[i].Processor.PreProcess(preContext);

return pre;

}

private bool PostProcess(

InterceptContext preContext,

InterceptContext postContext,

object retValue)

{

ProcessAttribute[] attrs =

(ProcessAttribute[])postContext.MethodBase

.GetCustomAttributes(typeof(ProcessAttribute),true);

bool pre = true;

for(int i=0;i<attrs.Length;i++)

pre &=

attrs[i].Processor.PostProcess(

preContext,

postContext,

retValue);

return pre;

}

5.2. DYNAMIC VERIFICATION ENGINE 49

...

}

In the above code bothPreProcess andPostProcess methods first search for specific
processorsand then use them for pre- and postprocessing. Because of that, several inde-
pendent processors can be defined for a single method. One processor can just trace the
invocation and write some information to a log, another can be used to authenticate the
user who is running the application and yet another can be used to verify preconditions
and postconditions:

public interface IProcessor

{

// preprocess message

// varValues: contains method call parameters

bool PreProcess(InterceptContext varValues);

// preprocess message

// varValuesOrg : contains method call parameters

// varValues : contains exit parameter values

// retValue : contains method’s return value

bool PostProcess(

InterceptContext varValuesOrg,

InterceptContext varValues,

object retValue);

}

4. Provide specific functionality of message processors. Anexample processor which just
logs the invocation would be:

public class TraceProcessor : IProcessor

{

public TraceProcessor() {}

public bool PreProcess(InterceptContext varValues)

{

Trace.Write(varValues.MethodName);

Trace.Write("(");

foreach (DictionaryEntry de in varValues.Values)

Trace.Write(string.Format("{0} {1}, ",

de.Value.GetType().Name,

de.Key));

Trace.Write(")");

Trace.Write(" [");

foreach (DictionaryEntry de in varValues.Values)

Trace.Write(string.Format("{0}={1}, ",

de.Key,

de.Value));

50 CHAPTER 5. THE INFRASTRUCTURE

Trace.Write("]");

Trace.WriteLine(string.Empty);

return true;

}

public bool PostProcess(

InterceptContext varValuesOrg,

InterceptContext varValues,

object retValue)

{

Trace.WriteLine(

string.Format(

"retval [{0}]: {1}",

retValue.GetType(),

retValue));

return true;

}

}

The most interesting would be of course the XMS processor which is responsible for vali-
dating method’s pre- and postconditions. In current implementation, XMS processor uses
dynamic code generation techniques to build methods that validate substituted predicates
by executing them as the C# code. This technique has some minor shortcomings since
few logical operators are not directly interpreted by the C#compiler and an additional
phase is required where all such operators are converted to corresponding C# constructs.

For example, following specification predicate:

(

(x > 0) =⇒ VALUE= x
)

∧
(

(x ≤ 0) =⇒ VALUE= −x
)

would be converted to a C# code:

if (x > 0)

VALUE == x;

else

VALUE == -x;

and executed withx andVALUEsubstituted by actual values.

public class XMSProcessor : IProcessor

{

public XMSProcessor() {}

#region IProcessor Members

public bool PreProcess(

5.2. DYNAMIC VERIFICATION ENGINE 51

InterceptContext varValues)

{

// find the XMS specification

XMS_Spec[] specs =

(XMS_Spec[])varValues.MethodBase

.GetCustomAttributes(typeof(XMS_Spec), true);

if (specs != null)

foreach (XMS_Spec spec in specs)

{

SymbExpr exp = SymbExpr.Parse(spec.Precondition);

return EvaluateExpression(exp, varValues, varValues, null);

}

return true;

}

public bool PostProcess(

InterceptContext varValuesOrg,

InterceptContext varValues,

object retValue)

{

XMS_Spec[] specs =

(XMS_Spec[])varValues.MethodBase

.GetCustomAttributes(typeof(XMS_Spec), true);

if (specs != null)

foreach (XMS_Spec spec in specs)

{

SymbExpr exp = SymbExpr.Parse(spec.Postcondition);

return EvaluateExpression(exp, varValuesOrg, varValues, retValue);

}

}

return true;

}

#endregion

private bool EvaluateExpression(

SymbExpr Predicate,

InterceptContext varValuesOrg,

InterceptContext varValues,

object retValue)

{

// use dynamic code generation technique

// to validate the predicate

...

}

}

52 CHAPTER 5. THE INFRASTRUCTURE

5.2.3 Using the Engine

To use the XMS Dynamic Verification Engine for methods from classC, following requirements
must be fulfilled:

• determine the classB from the class hierarchy that inherits directly from theSystem.Object
class andC inherits fromB

• move theB class in the class hierarchy so that it inherits fromContextBoundObject
instead ofSystem.Object

• put the XMS context attribute in the definition ofC

The integration is not perfectly transparent as one could expect but still the specification is
external to the code.

Our experiments reveal that the execution of ContextBoundObject for which the XMS spec-
ification is verified in the run time is about 500-1000 times slower than the normal execution.
The dynamic predicate evaluator which uses code generationis the main bottleneck here. The
Dynamic Verification Engine is then not quite usable at the client side since the runtime penalty
seems huge but it is perfectly suited for the producer-side testing.

Note, that the engine is not optimized since speed was not a major issue. A highly efficient
implementation of dynamic verification engine should probably be built using low-level .NET
Profiler API and more efficient predicate evaluator.

Example 5.4 Consider following simple C# code:

[XMSIntercept]

public class Test : ContextBoundObject

{

[Process(typeof(XMSProcessor))]

[XMS_Spec("true", "x == y_ORIGINAL && y == x_ORIGINAL")]

public void Swap(ref int x, ref int y)

{

int z = x;

x = y;

y = z;

}

The specification would be:

PreF = true PostF = x == y0 ∧ y == x0

Note how theXMSIntercept andProcess attributes are placed on the class and method
respectively.

Actual client code:

int u = 0, v = 1;

t.Swap(ref u, ref v);

The XMS Dynamic Verification Engine outputs:

5.3. STATIC VERIFICATION ENGINE 53

Preprocessing Test.Swap.

Specification found:

Pre=[true]

Post=[x == y_0 && y == x_0]

Precondition : true

Substituted expression : true

Evaluated expression : True

Postcondition : x == y_0 && y == x_0

Substituted expression : 1 == 1 && 0 == 0

Evaluated expression : True

5.3 Static Verification Engine

5.3.1 Symbolic Evaluation

According to the Meta-Theorem (3.1) the Verification Condition Generator (VCGen) is the
main component of the PCC infrastructure. The original paper ([33]) proposes a pattern called
theSymbolic Evaluator. The Symbolic Evaluator is a recursive state transformation function
that scans the code and produces the Verification Condition (or a significant part of it). We will
refer to the Symbolic Evaluator asSEand to Verification Condition asVC.

Symbolic Evaluation is the process in which a ”virtual” execution is performed but instead
of actual values their symbolic representations are used. Whenever the evaluation cannot deter-
mine the symbolic result of a computation, a new fresh symbolic value is used.

Symbolic Evaluation of the IL language arise several issuesbecause IL is an object-oriented
language. Below we briefly examine these issues:

arithmetics an arithmetic instruction causes VCGen to update its symbolic store to new state.

conditionals a conditional jump causes VCGen to split the symbolic evaluation into recursive
paths for all branches. Conditions become assumptions inside the verification predicate.

backward jumps backward jumps could lead to infinite recursion. VCGen requires then that
each backward jump targets an instruction for which aninvariant is provided. Invariants
are validated when they are seen for the first time and then validated again when a back-
ward jump is encountered.

method calls a method call puts the method’s precondition as an assumption into the predicate
and initializes a new state with all variables which could bemodified inside the called
method (out parameters) set to new, fresh values.

objects objects are evaluated symbolically in a similar way as in loosely-typed object-oriented
languages - by maintaining an internal dictionary which maps field names to their actual
symbolic values.

vectors a vector is stored as a index-value dictionary where both indexes and values are sym-
bolic.

polymorphism is it not known until the run-time which exact method is called from a class
hierarchy. VCGen relies here on asubcontractingprinciple ([25]) according to which
contracts of inherited methods must depend on contracts of base-class methods

54 CHAPTER 5. THE INFRASTRUCTURE

0-values contracts must allow to use original values in postconditions.

exceptions inside a ”try-catch-finally” block any checked arithmetic instruction, vector ref-
erence instructions and method calls could cause an exception to be thrown. All such
instructions must be then treated as potential branching instructions.

The Evaluator assumes that the code is verifiable (page 20) which means that there’s no
possibility of reaching states which are not type-safe. Because of this assumption, there’s no
need to constantly check whether symoblic states are valid.The evaluation would of course fail
on unverifiable code. The Evaluator is presented in Figure 5.1.

The Evaluator (SE) is defined as a recursive function that takes four parameters, written as

SEF(i, σ,L, b)

where

• F is a method whose body is evaluated

• i is an address of evaluator’s current instruction

• σ is asymbolic store

• L is a loop stack

• b is a boolean variable which controls the way the invariants are handled

A symbolic local store,σ is of the form (lA, lV, h,H, s) defined just like its semantic coun-
terpart but values are represented in a symbolic way. Because of the way the invariants are
associated with instructions (they do not form separate instructions but rather point to actual in-
structions),b determines whether an invariant should be taken into account when the instruction
is scanned. Ifb is omitted at all, the default value istrue. A loop stackL captures changes to
stack and variables during execution of a loop and is described in next subsection.

The symbolic evaluator is run against all methods in a moduleM and the global verification
condition is build using the resulting predicates. The definition of the Verification Condition is
presented in Figure 5.1.

Few notes here. The verification condition for the module is aconjunction of verification
conditions for all methods from the module. The verificationcondition for a method is a con-
junction of two predicates,VCI andVCE named fromVerificationCondition for Inheritance
andVerificationCondition for SymbolicEvaluation.

The VCI part of the verification condition is responsible for handling virtual methods and
checks if the so calledsubcontracting holds for the methodF. If F is virtual then its contract
must be compatible with the contract of the same method but from the base class (denoted here
asBase(F). Details are presented on page 60.

TheVCEpart of the verification condition is responsible for handling the symbolic evalu-
ation and indeed it starts in first state which assumes that the precondition holds and evaluates
the method symbolically starting from the initial state.

Note that the local variables are zeroed in the initial state(vi 7→ 0)and the local arguments are
initialized with the symbolic representations of themselves (ai 7→ ai). This initial assignment
is correct with respect to the IL semantics, where the local variables are always zeroed and

5.3. STATIC VERIFICATION ENGINE 55

VC(M) =
∧

F∈M VC(F)
VC(F) = VCI(F) ∧ VCE(F)

where:

VCI(F) = IsVirtual(F) =⇒ ((PreBase(F) =⇒ PreF) ∧ (PostF =⇒ PostBase(F)))
VCE(F) = ∀a0, . . . , an. σ

F
0 |= PreF ⇒ SE(0, σF

0 , ∅, true)
σF

0 = (lA[ai 7→ ai], lA[ai ORIGINAL 7→ ai, lV[vi 7→ 0], ǫ)

Figure 5.1: Definition of Verification Condition for Design By Contract

arguments can take arbitrary values upon the method’s invocation (these values are set by the
caller).

Additionally, a set auxiliary variables referring to original values of arguments is initialized
with symbolic representations of these arguments (ai ORIGINAL 7→ ai). This is to ensure that
during the symbolic evaluation of the postcondition (evaluation of theret opcode), original
values are available to the evaluator.

5.3.2 Symbolic Evaluation Cases

During the scan, the Symbolic Evaluator simulates the method’s execution by updating the
symbolic store with respect to current instruction. SE alsoperforms some checks. If any of
the checks fail, the code is automatically rejected. In addition, some maintenance actions are
performed for some actions.

The essential part of the Evaluator is presented in Table 5.1on page 62.
From the Evaluator’s perspective there are two types of instructions. For some instructions

SE does not produce anything, it just changes the state of thesymbolic store. For other in-
structions SE not only changes the state of the symbolic store but also produces a part of the
Verification Condition.

When a Symbolic Evaluator scans the method’s body, it scans consecutive instructions start-
ing from the first one. If a conditional branch is scanned, theSymbolic Evaluator splits into two
copies that scan both branches independently. This of course could lead to infinite recursion
in case of backward jumps. That is where invariants play their roles. Invariants help Symbolic
Evaluators to avoid the infinite recursion byguardinginstructions that are targets for backward
branches. In fact, no instruction can be a target of a backward jump if it does not have its own
invariant. If this is the case - the evaluation fails.

The Symbolic Evaluator will use the information provided ininvariants to properly univer-
sally quantify variables for loops. For example if variablev0 is on the list of variables modified
during a loop then the VCGen will put∀ v0 in appropriate position inside the Verification Condi-
tion to indicate thatv0 can have arbitrary value during the loop execution. The samerule applies
to stack - arbitrary values can be pushed onto and popped fromthe stack in a loop body. VCGen
will handle this possibility by putting universal quantifiers for all stack values that are modified
in a loop body.

A non-empty invariant changes the way the instruction is evaluated. At first the evaluator
checks if the invariant is seen for the first time.

When the invariant is seen for the first time, the SE checks if the invariant is valid with

56 CHAPTER 5. THE INFRASTRUCTURE

respect to the current state of symbolic store by appending it to the Verification Condition.
This corresponds to the fact that the invariant should be valid when a loop is entered. Then
the symbolic store is filled with new, fresh values for all variables and stack values that are
modified during the loop, the loop invariant is used as the premise in the Verification Condition
and the execution continues. This corresponds to the fact that although actual values of variables
modified in a loop body are not known in any other but first execution, the invariant still holds.
Additionally, a new invariant slot is initialized on top of loop stackL. This new slot, referred as
LTOP, is a vector (i, σ,V, s), wherei is a number of invariant instruction,σ is a symbolic state
in this instruction,V is an initially empty set that accumulates changes to variables,s is a value
responsible for tracking the depth up to which the stack is modified inside a loop.

When the invariant is seen for the second time, the SE checks if the invariant is valid after the
loop is executed once. The symbolic evaluation of the loop ends here, because if the invariant
is valid when the loop is entered and after the loop is executed once then SE concludes by
induction that the invariant is valid after the loop is executed an arbitrary number of times.
Additionally, an invariant slot that corresponds to the invariant instruction number together
with all other slots that were allocated later (nested loops), gives precise information on which
variables have been changed in a loop body and what depth the stack has been changed up to.
This is where the list of variables which were declared in themodification list of the invariant
is compared to the actual list of modified variables. Also thestack is controlled to be within
declared limit of modified slots. If any of these checks fail,the evaluation fails.

Formally, we will allow two operations on invariant slots inL during the execution of SE to
track modifications of variables and altering the depth of the stack.

We can add a variableu to the set of modified variables in slots of L. We will denote this
operation asL(V ← {u}). We can also trace the stack depth and we will writeL(s ← k) to
indicate that evaluation stack depth increased byk slots. We can also get a set of all variables
that were modified in an invariant slot (denoted byL(i)) or get a depth the stack was modified
up to in an invariant slot (denoted by|L(i)|).

Control Flow Instructions

Having argued about backward jumps and invariants we can nowassume that branching instruc-
tions are forward jumps only.

In case of thebr instruction SE continues the evaluation at the jump destination. The case
of thebrtrue, bge andbgt instructions is similar but now both branches must be considered
in the resulting evaluation. If any of these jump instructions results in a backward jump, SE
also checks if the invariant function is defined for the destination instruction. Note that both
branches correspond to branching conditions which are put as assumptions in the Verification
Condition.

Branching requires that the symbolic evaluator splits intotwo independent contexts. Tech-
nically, the current context iscloned and it must be done with proper caution. On one hand,
both contexts are independent and changes of values made in one of them must not be visible to
the other. On the other hand, during the symbolic evaluationthe same reference can be stored in
several places (for example a reference can be created on thestack and then stored in two local
variables) and the cloning must detect these duplicated references and make only a single copy
of it but still duplicated in all places where the reference exists.

The symbolic evaluation of theret instruction depends on the method’s signature. If the

5.3. STATIC VERIFICATION ENGINE 57

evaluated method should not return any value, the VC checks if the method’s postcondition is
valid with respect to current symbolic store. If the evaluated method should return a value, the
VC checks if the method’s postcondition is valid with respect to the current symbolic store and
the stack value that represent the method’s result.

Arithmetical Instructions

In case ofldc instruction SE puts the integer parameter at the top of the symbolic stack. In
case ofdup instruction SE duplicates the value at the top of the symbolic stack. In case ofpop
instruction SE removes the value from the top of the stack.

In case of all arithmetic instructions (add, sub, mul, . . .) SE performs the symbolic evalua-
tion and puts the result back to the symbolic stack.

Instructions for addressing fields, arguments and local variables

Theldarg, ldloc andldsfld instructions put the value from local argument, local storeor
the shared store (respectively) at the top of the stack.

Thestarg, stloc andstsfld update the local argument, local store or the shared store
(respectively) with the value from the top of the symbolic stack.

Instructions For Calling Methods

In case ofcall andcallvirt instruction VC first checks if the invariant of the callee is valid in
current state and then, assuming that the return value is unknown it is set to fresh symbolic value
and the postcondition of the callee is valid, SE continues the evaluation at the next instruction.
Of course the callee function may not terminate at all but this would be safe according to the
definition of this Safety Policy (5.1).

Instructions for Addressing Classes and Value Types

Thenewobj a bit complicated because of the way it is handled by the CLR. The newly created
object instance is put onto the stack but is not yet stored into any local variable or method’s
argument. Symbolic evaluator creates asymbolic object, a symbolic representation of a value
of reference type and stores it in an auxiliary collection ofreferences. The symbolic object
maintains the internal dictionary where field instances arestored. In case ofstlfd instruction
the value from the stack is put into the internal dictionary.In case of theldfld instruction the
value from the dictionary is put on the stackor there is no value stored in the dictionary yet and
the new, fresh value is created and put in the dictionary and onto the stack.

Vector Instructions

The newarr instruction raises similar issues as thenewobj instruction - the newly created
vector reference must be stored in yet another auxiliary collection. In this casesymbolic vector
is created and it is responsible for storing the informationabout symbolic content of the vector.

There are three possible cases for theldelem instruction.
The easiest case is when there exists a value stored in the symbolic vector at the symbolic

index which is symbolically equal to the index expression oftheldelem instruction. In such
case the symbolic value from the symbolic vector is put onto the stack.

58 CHAPTER 5. THE INFRASTRUCTURE

It is however possible that the indexing expression is not directly equal to any symbolic
indexes stored in the symbolic vector. In such case, a sequence of branching instructions is
generated, each one taking the equality of symbolic indexesas the premise.

The last case is when the symbolic index is not equal to any symbolic indexes previously
stored in the symbolic vector. In such case a symbolic representation of the symbolic value is
put onto the stack.

Example 5.5 Consider following C# code:

int Foo(int[] TheArray)

{

...

TheArray[k] = 1;

TheArray[n] = 2;

...

int v = TheArray[n];

...

}

What is the symbolic value ofv? According to the description above, the simplest case
would be to find the symbolic expression stored in the vector under the same symbolic index,
in this casen. In the above example there is a value stored at this index andit is 2.

Consider however following code:

int Foo(int[] TheArray)

{

...

TheArray[k] = 1;

TheArray[l] = 2;

...

int v = TheArray[n];

...

}

What is now the symbolic value ofv? In this case, there is no value stored in the vector under
the symbolic indexn and a sequence of branches for each symbolic index stored previously is
produced. Informally

(

n == k =⇒ SE(i + 1, . . . , σ[v/1])
)

∧
(

n == l =⇒ SE(i + 1, . . . , σ[v/2])
)

whereS E(i+1, . . . , σ[v/1]) means the recursive call symbolic evaluator for the nextinstruction
where the symbolic value ofv is 1.

The last branch corresponds to the fact that the indexing expression can refer to an index
not equal toany indexes previously stored in the vector:

(n , k ∧ n , l) =⇒ SE(i + 1, . . . , σ[v/TheArray[n]])

which means that the evaluation continues in a state wherev has the symbolic value from the
array but with unknown exact value, denoted asTheArray[n].

Note, that symbolic indexing expression can be arbitrarilycomplicated, for example:

5.3. STATIC VERIFICATION ENGINE 59

int Foo(int[] TheArray, int k, int l)

{

...

TheArray[l] = 2;

...

n = k * k + l;

int v = TheArray[n];

...

}

In this case, the indexing expression isk ∗ k+ l.

Thestelem instruction follows the same pattern. It stores the value inthe symbolic vector
if the vector is empty or a value of the same index has been stored before.

If however the indexing expression is not syntactically equal to any symbolic indexes stored
in the symbolic vector, a sequence of branching instructions is generated, each one taking the
equality of symbolic indexes as the premise. What is interesting is that in such case there are
two updates to the array - the value to be stored is saved underthe actual index and the value of
the existing index is removed from the array.

And, similariliy to theldelem case it’s possible that the symbolic index is not equal to any
symbolic indexes previously stored in the symbolic vector.In such case the value is stored in a
new slot in the symbolic vector but the premise has to explicitely capture the fact that the index
is not equal to indexes of previously stored values (please refer to the example on Page 114).

Consider the following example:

int Foo(int[] TheArray)

{

...

TheArray[k] = 1; /* 1 */

TheArray[n] = 2; /* 2 */

...

int v = TheArray[k]; /* 3 */

...

}

The first value, 1, is stored under the symbolic indexk. The second value, 2, generates two
branches.

The first branch assumes thatk = n so the value is stored under the symbolic indexn and
the value from the indexk is removed from the array. When the value is then read from the
array usingk as the index, theldelem semantics generates yet another two subbranches. The
first subbranch has the compatible premise,k = n, and the value 2 will be returned. The second
subbranch has a contradictory premise,k , n, so the remaining part of the predicate will always
hold (as a result of two contradictory premises which correspond to impossible control flow
sequence).

The second branch assumes thatk , n and the vector stores two different values under two
different indexes.

60 CHAPTER 5. THE INFRASTRUCTURE

Virtual Calls

Any time a virtual method is called (callvirt) the object’s vtable is used to determine the
actual method to be called.

class Base {

public virtual void Foo() { };

}

class Derived : Base {

public override void Foo() { };

}

...

void Bar(Base instance)

{

instance.Foo();

}

In the above example the actual method called inside theBarmethod cannot be determined
statically since it depends on the caller. And since bothBase::Foo andDerived::Foo can
havedifferent specifications, XMS must address this issue in a special way.

The solution is proposed by the Design By Contract so calledSubcontracting Rule. Sub-
contracting means that the signature of overridden method must strictly depend on signature of
the virtual one.

To formally define the subcontracting we need some terminology. We will say that the pred-
icateP is stronger than the predicateQ if P =⇒ Q.

For example, predicateP := x > 5 is stronger thanQ := x > 0. Note that the strongest
predicate isfalse and the weakest istrue. The intuition is that the more strong a predicate is,
the harder to satisfy it becomes.

From the supplier point of view, the stronger precondition,the better - there are simpler
cases to handle. For example, it helps the supplier to be surethat the method has been invoked
with Person.age > 0 ∧ Person.age < 20 than the solePerson.age > 0. The stronger the
precondition the easier it is to satisfy the postcondition.

And again, from the supplier point of view, the weaker postcondition, the better - the
implementation needs not to handle difficult cases. For example, it is much easier to satisfy
Person.age> 0 thanPerson.age> 0 ∧ Person.age< 20.

From the client point of view the situation is completely opposite. The weaker precondi-
tion, the easier it is to satisfy it. The stronger the postcondition, the more knowledge about the
computation is needed.

The object-oriented methodology defines so calledLiskov Substitution Principle :

Any object of the derived class must be usable in place of a base class object

This principle lays the base for a subcontracting rule:

• precondition of derived class must beweaker than the precondition of base class

• postcondition of derived class must bestronger than the postcondition of base class

5.3. STATIC VERIFICATION ENGINE 61

In any other case the Substitution Principle would not be satisfied. This situation is handled
by theVCI part of the Verification Condition (page 54).

Example 5.6 Consider the following example which breaks the Substitution Principle.

class Person {

Pre := Age > 20

virtual void Hire() { }

}

}

class Manager : Person {

Pre := Age > 20 && Education == Higher

override void Hire() { }

}

In this case, for any code which accepts thePerson object, the preconditionAge > 20
must be satisfied to call theHire method. However, theManager class cannot be substituted
for Person because the precondition of theHiremethod is stronger and it would not necessarily
be satisfied upon the invocation.

5.3.3 The Safety Theorem

The soundness of the verification condition algorithm is stated in a following theorem which is
an instantiation of themetatheorem 3.1.

Theorem 5.1(Soundness of XMS Safety Policy). If the verification condition for a given mod-
ule M is valid, i.e.|= VC(M) then all executions of any module methods are correct with respect
to the Design By Contract security policy 5.1, i.e. S a feSC(M).

The formal proof of this theorem is the only missing piece of XMS framework. Note that
although the above formulation is clear and concise, the proof presented in appendix B is rather
technical and must precisely consider all the details presented above.

6
2

C
H

A
P

T
E

R
5.

T
H

E
IN

F
R

A
S

T
R

U
C

T
U

R
E

Table 5.1: XMS Symbolic Evaluator for Design By Contract

Fi Condition/ action Symbolic state Verification condition L

Instructions with non-empty invariants
any, where i < Dom(L) ∧ b = true (i, . . . , u1 . . .uk · s) σ(InvF(i))∧
InvF(i) = ∀v′0, . . . , v

′
m.u
′
1 . . .u

′
k.σ
′(InvF(i))⇒

(Pred,Var, k) SE(i, σ′, (i, σ, ∅, 0) · L, false)
where :
σ′ = (. . . , lV(vi 7→ v′ vi∈Var

i), u′1 . . .u
′
k · s)

v′0, . . . , v
′
m, u

′
1 . . . , u

′
k are fresh variables

any, where i ∈ Dom(L) (i, σ) σ(Pred) L(i) 1 Var⇒ fail
InvF(i) = |L(i)| > |k| ⇒ fail
(Pred,Var, k)

Control Flow Instructions
br l l < i ∧ InvF(i) = ǫ ⇒ fail SE(l, σ,L)
brtrue l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , v · s) σ(v) = 0⇒ SE(i + 1, . . . , s,L)∧ L(s← −1)

σ(v) , 0⇒ SE(l, . . . , s,L)
brfalse l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , v · s) σ(v) , 0⇒ SE(i + 1, . . . , s,L)∧ L(s← −1)

σ(v) = 0⇒ SE(l, . . . , s,L)
bne l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , u · v · s) σ(u) = σ(v)⇒ SE(i + 1, . . . , s,L)∧ L(s← −2)

σ(u) , σ(v)⇒ SE(l, . . . , s,L)
bgt l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , u · v · s) σ(u) ≤ σ(v)⇒ SE(i + 1, . . . , s,L)∧ L(s← −2)

σ(u) > σ(v)⇒ SE(l, . . . , s,L)
blt l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , u · v · s) σ(u) ≥ σ(v)⇒ SE(i + 1, . . . , s,L)∧ L(s← −2)

σ(u) < σ(v)⇒ SE(l, . . . , s,L)
bge l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , u · v · s) σ(u) < σ(v)⇒ SE(i + 1, . . . , s,L)∧ L(s← −2)

σ(u) ≥ σ(v)⇒ SE(l, . . . , s,L)
ble l l < i ∧ InvF(i) = ǫ ⇒ fail (i, . . . , u · v · s) σ(u) > σ(v)⇒ SE(i + 1, . . . , s,L)∧ L(s← −2)

σ(u) ≤ σ(v)⇒ SE(l, . . . , s,L)
ceq (i, . . . , u · v · s) σ(u) = σ(v)⇒ SE(i + 1, . . . , 1 · s,L)∧ L(s← −1)

5.3.
S

TAT
IC

V
E

R
IF

IC
AT

IO
N

E
N

G
IN

E
6

3
Fi Condition/ check Symbolic state Verification condition Action

σ(u) , σ(v)⇒ SE(i + 1, . . . , 0 · s,L)
cgt (i, . . . , u · v · s) σ(u) > σ(v)⇒ SE(i + 1, . . . , 1 · s,L)∧ L(s← −1)

σ(u) ≤ σ(v)⇒ SE(i + 1, . . . , 0 · s,L)
clt (i, . . . , u · v · s) σ(u) < σ(v)⇒ SE(i + 1, . . . , 1 · s,L)∧ L(s← −1)

σ(u) ≥ σ(v)⇒ SE(i + 1, . . . , 0 · s,L)
ret S igF = C F(. . .) (i, . . . , u · s) σ(PostF [u/VALUE])
ret S igF = void F(. . .) (i, . . . , s) σ(PostF)

Arithmetical instructions
ldc.i4 u (i, . . . , s) SE(i + 1, . . . , u · s,L) L(s← 1)
ldc.r8 u (i, . . . , s) SE(i + 1, . . . , u · s,L) L(s← 1)
dup (i, . . . , v · s) SE(i + 1, . . . , v · v · s,L) L(s← 1)
pop (i, . . . , v · s) SE(i + 1, . . . , s,L) L(s← −1)
add (i, . . . , u · v · s) SE(i + 1, . . . , (u+ v) · s,L) L(s← −1)
sub (i, . . . , u · v · s) SE(i + 1, . . . , (u− v) · s,L) L(s← −1)
mul (i, . . . , u · v · s) SE(i + 1, . . . , (u ∗ v) · s,L) L(s← −1)
div (i, . . . , u · v · s) SE(i + 1, . . . , (u/v) · s,L) L(s← −1)
rem (i, . . . , u · v · s) SE(i + 1, . . . , (u%v) · s,L) L(s← −1)
and (i, . . . , u · v · s) SE(i + 1, . . . , (u∧ v) · s,L) L(s← −1)
add (i, . . . , u · v · s) SE(i + 1, . . . , (u∨ v) · s,L) L(s← −1)
xor (i, . . . , u · v · s) SE(i + 1, . . . , (u⊕ v) · s,L) L(s← −1)
neg (i, . . . , v · s) SE(i + 1, . . . ,−v · s,L)
not (i, . . . , v · s) SE(i + 1, . . . ,¬v · s,L)

Addressing Fields, Arguments and Local Variables
ldarg v (i, . . . , s) SE(i + 1, . . . , lA(v) · s,L) L(s← 1)
starg v (i, lA, . . . , u · s) SE(i + 1, lA[v 7→ u], . . . , s,L) L(s← −1)

L(V ← {v})
ldloc n (i, . . . , s) SE(i + 1, . . . , lV(n) · s,L) L(s← 1)
stloc n (i, . . . , lV, u · s) SE(i + 1, . . . , lV[n 7→ u], s,L) L(s← −1)

L(V ← {vn})

6
4

C
H

A
P

T
E

R
5.

T
H

E
IN

F
R

A
S

T
R

U
C

T
U

R
E

Fi Condition/ check Symbolic state Verification condition Action

ldfld T :: f (i, . . . , p · s) SE(i + 1, . . . , p(f) · s,L) L(s← 1)
stfld T :: f (i, . . . , u · p · s) SE(i + 1, p[f 7→ u], . . . , s,L) L(s← −1)

L(V ← {p :: f })
ldsfld T :: f (i, . . . , s) SE(i + 1, . . . ,T(f) · s,L) L(s← 1)
stsfld T :: f (i, . . . , u · s) SE(i + 1,T[f 7→ u], . . . , s,L) L(s← −1)

L(V ← {T :: f })

Calling methods
call G S igG = C G(a0, . . . , an) (i, . . . , un . . .u0 · s) σG(PreG)∧ L(s← −(n+ 1))
callvirt G G is static ∀u.σG(PostG[u/VALUE]) ⇒

SE(i + 1, σ′,L)
where :
σG = (lGA(ai 7→ ui), lGV(vi 7→ 0), ǫ)
u is a fresh variable
σ′ = (. . . , u · s)

call G S igG = void G(a0, . . . , an) (i, . . . , un . . .u0 · s) σG(PreG)∧ L(s← −(n+ 2))
callvirt G G is static ∀u.σG(PostG)⇒

SE(i + 1, σ,L)
where :
σG = (lGA(ai 7→ ui), lGV(vi 7→ 0), ǫ)

call G S igG = C G(a0, . . . , an) (i, . . . , un . . .u0 · p · s) σG(PreG)∧ L(s← −(n+ 2))
callvirt G G is instance ∀u.σG(PostG[u/VALUE, p/THIS]) ⇒

SE(i + 1, σ′,L)
where :
σG = (lGA(p, ai 7→ ui), lGV(vi 7→ 0), ǫ)
u is a fresh variable
σ′ = (. . . , u · s)

call G S igG = void G(a0, . . . , an) (i, . . . , un . . .u0 · p · s) σG(PreG)∧ L(s← −(n+ 3))
callvirt G G is instance ∀u.σG(PostG[p/THIS]) ⇒

SE(i + 1, σ,L)
where :

5.3.
S

TAT
IC

V
E

R
IF

IC
AT

IO
N

E
N

G
IN

E
6

5
Fi Condition/ check Symbolic state Verification condition Action

σG = (lGA(p, ai 7→ ui), lGV(vi 7→ 0), ǫ)

Classes and value types
ldnull (i, . . . , s) SE(i + 1, . . . , null · s,L) L(s← 1)
ldstr str (i, . . . , s) SE(i + 1, . . . , str · s,L) L(s← 1)
newobj C SigC = .ctor(u0, . . . , un) (i, . . . , un . . .u0 · s) σC(PreC)∧ L(s← −(n+ 1))

PreC = .ctor precond. σC(PostC[p/THIS]) ⇒
PostC = .ctor postcond. SE(i + 1, . . . , p · σ′,L)

where :
σC = (lCA(ai 7→ ui), lCV(vi 7→ 0), ǫ)
p is a fresh symbolic object

Vectors
newarr T (i, . . . , k · s) SE(i + 1, . . . , aT[Length 7→ k] · s,L) L(s← 0)

where :
a is a fresh symbolic vector of type T

ldlen (i, . . . , a · s) SE(i + 1, . . . , a(Length) · s,L) L(s← 0)
ldelem Dom(a) = ∅ (i, . . . , e · a · s) SE(i + 1, . . . , a[e] · s,L) L(s← −1)

where :
a[e] denotes an unknown element of the vector

ldelem Dom(a) , ∅ ∧ e ∈ Dom(a) (i, . . . , e · a · s) SE(i + 1, . . . , a(e) · s,L) L(s← −1)
ldelem Dom(a) , ∅ ∧ e < Dom(a) (i, . . . , e · a · s) e= u0 =⇒ SE(i + 1, . . . , a(u0) · s,L)∧ L(s← −1)

e= u1 =⇒ SE(i + 1, . . . , a(u1) · s,L)∧
. . .

e= un =⇒ SE(i + 1, . . . , a(un) · s,L)∧
(e, u1 ∧ . . . ∧ e, un) =⇒
SE(i + 1, . . . , a(e) · s,L)

where :
Dom(a) = (u0, . . . , un)

stelem Dom(a) = ∅ ∨ e ∈ Dom(a) (i, . . . , e · u · a · s) SE(i + 1, . . .a[u 7→ e] . . . s,L) L(s← −3)
stelem Dom(a) , ∅ ∧ e < Dom(a) (i, . . . , e · u · a · s) e= u0 =⇒

6
6

C
H

A
P

T
E

R
5.

T
H

E
IN

F
R

A
S

T
R

U
C

T
U

R
E

Fi Condition/ check Symbolic state Verification condition Action

SE(i + 1, . . . , a[u 7→ e, u0 7→ ǫ] · s,L)∧ L(s← −1)
e= u1 =⇒

SE(i + 1, . . . , a[u 7→ e, u1 7→ ǫ] · s,L)∧
. . .

e= un =⇒

SE(i + 1, . . . , a[u 7→ e, un 7→ ǫ] · s,L)∧
(e, u1 ∧ . . . ∧ e, un) =⇒
SE(i + 1, . . . , a[u 7→ e] · s,L)

where :
Dom(a) = (u0, . . . , un)

Chapter 6

Towards High-Level Languages

6.1 From MSIL to High-Level Languages

The .NET paradigm unifies many programming languages at MSILlevel. Whether you use C#,
VB.NET, Managed C++ or any other .NET language, your code can closely cooperate with any
other .NET code.

Since the Verification Condition Generator works at MSIL level, it cannot determine which
language was used to produce MSIL binary. And no matter if a binary was produced by IL
compiler, C# compiler or any other language compiler, it should be certifiable in the uniform
way.

The goal of ”lifting” the certification framework from MSIL to a high-level language is then
executed under two assumptions:

• A high-level language developer should not be forced to learn MSIL language. In par-
ticular, a solution where a high-level code is first compiledto MSIL and then manually
certified is unacceptable. Certificates should be then easily applicable to a high-level lan-
guage code.

• A high-level compiler should not require any major changes to support the certification.
In fact, it would be perfect, if the high-level compiler did not requireany changes. In par-
ticular, existing high-level language compilers should not damage certificates that were
applied to high-level code.

At first look these assumptions do not seem troublesome - specifications are provided in
attributes and attributes should not be damaged during the translation from high-level language
to MSIL.

Unfortunately, it seems that comparing to other security policies, Design By Contract is
non-trivial to be applied to high-level languages. There are two important difficulties that have
to be addressed:

• XMS invariants have the formInvF(i) = (P, . . .) wherei is the MSIL instruction number
andP is the invariant predicate. It could be however extremely difficult to determine the
MSIL instruction number for given high-level instruction,since it would require a deep
knowledge of compiler transformation routines.

67

68 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

• During the compilation to MSIL, names of local variables areomitted. Whenever such
local variable plays any role in one of the predicates (in a loop invariant for example) it
cannot be referred with its name since the name is lost duringthe compilation.

The first difficulty can be addressed with a clever technical trick. We would like to avoid
attributing invariant predicates with MSIL instruction numbers. We would rather like to have an
ordered set of invariants:

InvsF = (P0, . . . ,Pn)

and somehow inferInvF from it by mapping consecutive invariants to instructions that need
invariants.

This goal can be achieved with additional scan of the binary code which could discover
instructionsI = (i0, . . . , ik) that are targets for backward jumps.

We could then take:

InvF(i) =

{

P j if i = i j for somej and j ≤ n
ǫ in other case

Note that although this trick seems to be restrictive at firstlook (these andonly these instruc-
tions which are targets for backward jumps will have invariants mapped) in practice it works
perfectly since invariants are used by the Symbolic Evaluator only for such kind of instructions.

The second difficulty can be addressed by ”virtually” renaming consecutivelocal variables
to any set of fixed names (v0, . . . , vn in case of XMS) and using these ”virtual” names in speci-
fications by a high-level language developer.

Example 6.1 Consider following C# method used for calculating the sum ofvalues from 0 to
n.

[XMS_Spec(/* XMS attribute in metadata, including */

"n >= 0", /* precondition, */

"VALUE=sum(0, n)", /* postcondition, */

"V_0=sum(0, V_1) & n >= V_1"] /* and invariant */

public int Foo(int n)

{

int retval = 0;

for (int k=0; k<=n; k++)

{

retval += k;

}

return retval;

}

Note that there is one loop in above code which requires an invariant and there are two local
variables,retvalandk, which have to be ”virtually” renamed tov0 andv1.

Note also that both the postcondition and the invariant usesum(Σ) function whichmust
be defined in the logic and handled by the theorem prooving layer of the infrastructure. In the
above examplesum(0, n) denotesΣn

i=0i.

6.2. COMMON CERTIFICATE SPECIFICATION 69

Fortunately, the high-level language compiler translatesconsecutive high-level local vari-
ables to consecutive MSIL local variables. In above example, the retval variable is defined as
first local variable and it will become the first local variable in MSIL output and so on.

This is why theV 0 andV 1 names are used in the invariant specified in the method’s at-
tribute. TheV 0 refers toretval andV 1 refers tok.

The Verification Condition for this method is as follows1:

forall n. (n >= 0 => 0=sum(0, 0) & n >= 0 &

forall V_0_. forall V_1_.

V_0_=sum(0, V_1_) &

n >= V_1_=>

((V_1_<n => (V_0_+(V_1_+1))=

sum(0, (V_1_+1)) & n >= (V_1_+1)) &

(V_1_>=n => V_0_=V_0_ &

V_0_=sum(0, n))))

Note that the invariant was first checked using the actual state of the symbolic evaluation
[the 0= sum(0, 0)∧ n >= 0 part] and then variables which are modified inside the loop body
were replaced with new, fresh, universally quantified values (V0′ andV1′) and the invariant was
first used as a premise [∀V0′ .∀V1′ .V0′ = sum(0,V1′) ∧ n >= V1′ => . . .] and then verified after
the loop iteration [(V0′ + (V1′ + 1)) = sum(0, (V1′ + 1))∧ n >= (V1′ + 1)].

6.2 Common Certificate Specification

Both above technical tricks require that the high-level language satisfies two important con-
ditions. These conditions areessentialfor the ”lifting” process to work, so we will formulate
them as theCommon Certificate Specification(by analogy to Common Language Specifica-
tion and Common Type System, two fundamental .NET paradigms). The Common Certificate
Specification is as follows:

Variable Ordering Consecutive high-level language local variables become consecutive MSIL
local variables.

Structure of Loops High level language loops become MSIL loops with corresponding struc-
ture.

While the above specification does not look formal enough, weare not going to make it
formal. It is because some important existing compilers (like the C# compiler) fulfill both these
requirements and the CCS formulation should be treated as a set of guidelines for new compil-
ers.

Both requirements are crucial for proper translation of loop invariants between a high-level
language and MSIL. In the example above the loop invariant refers to variablessum andk but in
MSIL they becomeV0 andV1. Since there is only one loop in C# code, only one loop invariant
should be supplied. VCGen will automatically detect the instruction which correspond to the

1Actual predicate can differ from this one since compiler translation routines dependon compiler version and
compiling options

70 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

invariant. Note that the actual number of instructions could depend on the optimization level
used by the C# compiler.

In fact, the main reason that makes the ”lifting” possible isthat .NET high-level language
compilers follow few simple and obvious patterns while producing MSIL from high-level code.
This is not a coincidence and chances are that future compilers will also behave in similar way
because MSIL is not a platform-native language – it is the Just-In-Time compiler which does
most of fancy optimizations while translating the MSIL to platform-native language.

Of course this ”simple translation” rule applies mainly to major enterprise languages for the
.NET platform - C# and VB.NET. Other languages with different translation schemes must find
their own way to integrate with XMS. There are three possibleintegration strategies:

no integration or limited integration Developers are forced to consult the compiler output to
find exact MSIL structure and then put appropriate attributes either at language level or
at MSIL level.

attribute integration The language recognizes XMS attributes and knowing its own transla-
tion schemes puts the attributes in appropriate places inside MSIL.

language integration The language syntax is augmented with first-class contract expressions
which are compiled either as direct expressions used duringthe dynamic testing or as
static XMS attributes used during static verification.

6.3 High-Level Compiler Translation Schemes

In this section we would like to present few specific C# translation schemes to informally argue
that this is possible to adopt XMS at the level of C# with no major difficulties.

6.3.1 Variable Ordering

Local variables declared in a C# method’s body usually become consecutive variables in MSIL
body. Look at following example:

C# MSIL
public static void F() .method public static void F()

{ {

int i, j, k; .locals init

(int32 V 0, int32 V 1, int32 V 2)

i=0; ldc.i4.0

stloc.0

j=1; ldc.i4.1

stloc.1

k=2; ldc.i4.2

stloc.2

ret

} }

6.3. HIGH-LEVEL COMPILER TRANSLATION SCHEMES 71

There are three local variables in the C# code which become three consecutive variables in
the MSIL code and writing a predicate referring to any of these variables at the C# level would
bring no difficulties.

Things became slightly more complicated when the .NET 2.0 has been released. It seems
that the internal compiler routines works differently when optimization is enabled/disabled. In
case of disabled optimizations the code is bloated with auxiliary variables which store results
of logical expressions or the result value of the method.

Consider following C# method:

public int Abs(int x)

{

if (x > 0)

return x;

else

return -x;

}

which would have the preconditiontrue and obvious postconditionVALUE≥ 0
When optimizations are enabled it produces following MSIL code:

.method public hidebysig

instance int32 Abs(int32 x) cil managed

{

.maxstack 8

L_0000: ldarg.1 // x onto the stack

L_0001: ldc.i4.0 // 0 onto the stack

L_0002: ble.s L_0006 // x <=0 ? jump to 0006

L_0004: ldarg.1 // x onto the stack

L_0005: ret // return x

L_0006: ldarg.1 // x onto the stack

L_0007: neg // -x on the stack

L_0008: ret // return -x

}

which gives following Verification Condition:

∀x.true =⇒ (((x ≥ 0) => (x ≥ 0))∧ ((x < 0) =⇒ (−x ≥ 0)))

Note that in the above example it is theldarg.1 which loads the first formal method pa-
rameter onto the stack and not theldarg.0.

It is because theldarg.0 would load thethis reference onto the stack since it is always
passed as first, hidden parameter to instance methods.

With optimizations disabled the C# code is translated as:

.method public hidebysig

instance int32 Abs(int32 x) cil managed

{

.maxstack 2

.locals init (

72 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

[0] int32 num,

[1] bool flag)

L_0000: nop // do nothing

L_0001: ldarg.1 // x onto the stack

L_0002: ldc.i4.0 // 0 onto the stack

L_0003: cgt // x > 0 on the stack

L_0005: ldc.i4.0 // 0 onto the stack

L_0006: ceq // x <= 0 on the stack

L_0008: stloc.1 // store the bool expression

L_0009: ldloc.1

L_000a: brtrue.s L_0010 // x <= 0 ? jump 0010

L_000c: ldarg.1 // x onto the stack

L_000d: stloc.0 // store it in local variable

L_000e: br.s L_0015 // jump 0015

L_0010: ldarg.1 // x onto the stack

L_0011: neg // -x onto the stack

L_0012: stloc.0 // store it in local variable

L_0013: br.s L_0015 // jump 0015

L_0015: ldloc.0 // local variable onto the stack

L_0016: ret // return

}

which gives different Verification Condition:

∀x.true =⇒
(((x < 0) =⇒

(((true = 0) =⇒ (x ≥ 0)) ∧
((true , 0) =⇒ (−x ≥ 0)))) ∧

((x ≥ 0) =⇒
(((false = 0) =⇒ (x ≥ 0)) ∧
((false , 0) =⇒ (−x ≥ 0)))))

The first observation is that two different translation schemes lead to different MSIL code
and two different Verification Conditions. However, both should hold ornot in the same time
since they correspond to the same high-level source code. This is probably one of the most
interesting properties of the XMS static verification.

In our case, both predicates are true and they exactly reflectthe structure of two different
translation schemes - note how the bloated structure of the unoptimized code produces the hier-
archy of assumptions which lead to branches which always hold because of false assumptions.

The second observation is that these two translation schemes are based on different rules.
There are tworet instructions in the optimized version while the unoptimized scheme accumu-
lates the returning value in an auxiliary variable. The unoptimized scheme uses also completely
different pattern for the conditional expression with an auxiliary variable to store the result of
the logical expression. As a result - there are two auxiliaryvariables in the unoptimized scheme
and no auxiliary variables in the optimized one.

Concluding this example - while the high-level language developer must be aware of such
issues and while it looks cumbersome at first sight, it shouldbring no major problems when
using the XMS at a high-level language level, at least when the language is compatible with the
Common Certificate Specification set of obligations.

6.3. HIGH-LEVEL COMPILER TRANSLATION SCHEMES 73

6.3.2 Assignments, Expressions

Expressions in the high-level language code expand to sequences of MSIL instructions. Assign-
ments translate to one ofstloc, starg, stelem, stfld or stsfld instructions. For example:

public int Foo(int a, int b, int c)

{

return b * b - 4 * a * c;

}

with following postcondition:VALUE= b ∗ b− 4 ∗ a ∗ c, produces following MSIL sequence:

.method public hidebysig

instance int32 Foo(int32 a, int32 b, int32 c) cil managed

{

.maxstack 8

L_0000: ldarg.2 // b onto the stack

L_0001: ldarg.2

L_0002: mul // b*b on the stack

L_0003: ldc.i4.4 // 4 onto the stack

L_0004: ldarg.1 // a onto the stack

L_0005: mul // 4*a on the stack

L_0006: ldarg.3 // c onto the stack

L_0007: mul // 4*a*c onto the stack

L_0008: sub // b*b-4*a*c on the stack

L_0009: ret

}

and following Verification Condition:

∀a.∀b.∀c.true=> (((b ∗ b) − ((4 ∗ a) ∗ c)) = ((b ∗ b) − ((4 ∗ a) ∗ c)))

6.3.3 Loops

The C# language has inherited three loop constructions fromits ancestor, the C language:

• while (bool_expression)

{

..loop body..

};

• do

{

..loop body..

} while (bool_expression);

• for (init_expression; bool_expression; loop_expression)

{

..loop body..

}

74 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

C# MSIL
int i; .locals init (int32 V 0)

... ...

for (i=0; i<1; i++) ldc.i4.0

{ stloc.0 // i=0

...body... br loop end

}

loop body:

...body...

ldloc.0

ldc.i4.1

add

stloc.0 // i=i+1

loop end:

ldloc.0

ldc.i4.1

blt loop body // jump if i<1

Figure 6.1: Translation scheme forfor instruction

Example translation scheme for thefor loop is presented in Figure 6.1. At first the loop ini-
tialization takes place, then execution code jumps to the loop condition checking and depending
on the test the loop is executed or ends. The similarity between the C# and MSIL loop structures
makes it possible to formulate loop invariants at C# level which still makes sense after the code
is translated to MSIL by the C# compiler.

6.4 Other High-Level language features

6.4.1 Class Invariants

As we have already mentioned the class invariant is a predicate which obligates the supplier to
make it satisfiable whenever the client has an access to an object instance. It is a common belief
that class invariants are redundant since they can be encoded as parts of pre- and postconditions.

Example 6.2 Consider following C# class:

[ClassInvariant("this.deposit >= 0")]

class Account {

int deposit;

[Precondition("Money >= 0")]

[Postcondition("true")]

void Add(int Money) {

6.4. OTHER HIGH-LEVEL LANGUAGE FEATURES 75

deposit += Money;

}

[Precondition("Money >= 0")]

[Postcondition("true")]

void Withdraw(int Money) {

if (Money <= deposit)

deposit -= Money;

else

deposit = 0;

}

}

According to this common belief actual specifications couldbe augmented so that instead
PreAdd = Money≥ 0

PostAdd = true

we could have
PreAdd = Money≥ 0∧ this.deposit≥ 0

PostAdd = this.deposit≥ 0

It has been however pointed out that there are obvious cases where such ”shifting” of a class
invariant to pre- and postconditions of all instance methods is just incorrect - perhaps the most
obvious counter example considers an instance method whichperforms some initial activities
and then calls another instance method. Since the executionof the first method is not completed
the instance can be in a state where the class invariant does not hold (the class invariants is
obligated to hold when client has access to the instance, notnecessarily in the middle of an
execution sequence!). Because of that, the augmented precondition of the callee also does not
hold and the invocation fails.

XMS handles class invariants at two levels.

Class Invariants in Verification Conditions Since the Verification Condition corresponds to
the execution from the client’s point of view, itcanbe augmented with the Class Invariant.
The augmented Verification Condition would be:

VC(F) = VCI(F) ∧ VCE(F)

where:

VCE(F) = ∀a0, . . . , an. ClassInvF ∧ σF
0 |= PreF ⇒

(SE(0, σF
0 , ∅, true) ∧ σret(ClassInvF)

VCI(F) = same as before (section 5.3.1, page 54)
σF

0 = same as before
σret Symbolic Evaluator state at theret instruction

(reader can refer to Figure 5.1 to compare the original and the augmented version)

76 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

Class Invariants in case of method callsAnytime thecall orcalli is evaluated by the Sym-
bolic Evaluator a part of the Verification Condition is produced which takes the pre- and
postcondition of the callee into consideration. Whenever then a method fromthe same
class onthe sameobject instance is called the pre- and postconditions are not augmented
with the class invariant and when a method fromanother class or the same class but on
another object instance is called - its class invariant should hold and it is concatenated to
both the precondition and the postcondition.

6.4.2 Properties, Indexers

Properties and indexers are not MSIL language constructs. They are considered thesyntax-sugar
and are translated to one or two methods depending on the number of accessors provided.

Example 6.3 Consider following C# code:

class Foo {

int theProperty;

int TheProperty

{

get

{

return theProperty;

}

set

{

theProperty = value;

}

}

}

The C# compiler produces two methods at MSIL level:

.method private hidebysig specialname

instance int32 get_TheProperty() cil managed

{

.maxstack 8

L_0000: ldarg.0

L_0001: ldfld int32 Foo::theProperty

L_0006: ret

}

.method private hidebysig specialname

instance void set_TheProperty(int32 ’value’) cil managed

{

.maxstack 8

L_0000: ldarg.0

L_0001: ldarg.1

6.4. OTHER HIGH-LEVEL LANGUAGE FEATURES 77

L_0002: stfld int32 Foo::theProperty

L_0007: ret

}

Since separate attributes are allowed on both property accessors, specifications for both
accessors can be provided for XMS. The only important issue is the compiler generated name
for the parameter of theset accessor.

The similar pattern applies to indexers. In this case also one or two methods are generated
and their parameters depend of actual parameters of the indexer.

6.4.3 Delegates

Delegates are special kind of reference types designed to represent function pointers. They in-
herit fromSystem.MulticastDelegate class, cannot be inherited and must provide two or
four mandatory methods. In the former case these two methodsare the two-parameter construc-
tor and theInvoke method.

The main difference between delegates and function pointers is that delegates are type-
safe both at compile and run-time and produce verifiable codewhere function pointers are
considered type-unsafe (for example, converting functionpointers with incompatible signature
is possible in C with direct cast, however the actual call causes a serious run-time problem
which usually terminates the application because of the stack corruption. This mechanism can
be also exploited to take the control of the running application).

All member methods of a delegate class are implemented by theruntime so even at the
MSIL level their implementation must not be provided. The C#language introduces delegates
as first-class language constructs with simplified syntax for theInvoke method.

Example 6.4 Following C# code:

public class FooClass {

public delegate int FooDelegate(int x);

public int FooExample(int n) {

return n;

}

public int InvokeDelegate() {

FooDelegate foo = new FooDelegate(FooExample);

return foo(1);

}

}

produces the inner delegate class with four runtime-implemented methods, the constructor and
Invoke and two complementaryBeginInvoke and EndInvoke methods for asynchronous
calls.

.class auto ansi sealed nested public FooDelegate

extends [mscorlib]System.MulticastDelegate

{

78 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

.method public hidebysig specialname rtspecialname

instance void .ctor(object ’object’, native int ’method’)

runtime managed

{ }

.method public hidebysig newslot virtual

instance class [mscorlib]System.IAsyncResult

BeginInvoke(int32 x,

class [mscorlib]System.AsyncCallback callback,

object ’object’) runtime managed

{ }

.method public hidebysig newslot virtual

instance int32

EndInvoke(

class [mscorlib]System.IAsyncResult result)

runtime managed

{ }

.method public hidebysig newslot virtual

instance int32 Invoke(int32 x) runtime managed

{ }

}

There are two possibilities a delegate reference can be obtained - it can be created inside
a method or obtained from outside (passed as an argument, retrieved from instance field of
another object or a static field of some class). Let’s examineboth cases.

explicit delegate instantiation A delegate can be created in an explicit way using the automat-
ically generated constructor.

public int FooExample(int n) {

return n;

}

public void ExplicitDelegate() {

FooDelegate foo = new FooDelegate(FooExample);

int res = foo(1);

}

In this case following MSIL is produced for theExplicitDelegate method:

.method public hidebysig

instance void ExplicitDelegate() cil managed

{

.maxstack 3

.locals init (

[0] class DelegateTest/FooDelegate foo)

6.4. OTHER HIGH-LEVEL LANGUAGE FEATURES 79

L_0000: ldarg.0 // instance onto the stack

L_0001: ldftn instance int32 // instance function pointer

DelegateTest::FooExample(int32) // onto the stack

L_0007: newobj instance void // create delegate

DelegateTest/FooDelegate::.ctor(object, native int)

L_000c: stloc.0

L_000d: ldloc.0

L_000e: ldc.i4.1 // 1 onto the stack

L_000f: callvirt instance int32 // invoke the delegate

DelegateTest/FooDelegate::Invoke(int32)

L_0014: pop

L_0015: ret

}

Such case is handled by XMS by first storing the function pointer in asymbolic delegate
reference and then reducing the call to theInvoke method to the typicalcall case using
the specification from the stored symbolic delegate as a specification of the callee method.

implicit delegate reference The delegate can not only be created in an explicit way as shown
in previous case but also the reference can be obtained from elsewhere. For example:

public int FooExample(int n) {

return n;

}

public void DelegateReference(

FooDelegate F, int k) {

int res = F(k);

}

which translates as

.method public hidebysig instance void DelegateReference(

class DelegateTest/FooDelegate F, int32 k) cil managed

{

.maxstack 8

L_0000: ldarg.1

L_0001: ldarg.2

L_0002: callvirt instance int32

DelegateTest/FooDelegate::Invoke(int32)

L_0007: pop

L_0008: ret

}

The easiest trick in this case would be to restrict the possible invocations by forcing the
pre- and postcondition of the delegate to fulfill some requirements similar as in subcon-
tracting. Unfortunately, delegates often come from different classes and provide com-
pletely different functionality so their specifications are not relatedin any way.

80 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

Such case is then handled by XMS by reducing the call to theInvoke method to the typ-
ical call case but using unknown predicatesPre(k) andPost(k) to denote the unknown
precondition and the postcondition of the delegateF (k is supplied as the parameter to the
delegate and thePreandPostpredicates must be parametrized byk).

The Verification Condition for the methodDelegateTest would be then:

PreDelegateTest =⇒ . . .Pre(k) ∧ ∀u.Post(k)[u/VALUE] =⇒ . . .PostDelegateTest

Note that above predicate is a second-order predicate with two functionsPre andPost.
Whether or not such second-order predicate is still provable depends on actual case.

Although the predicate can be unprovable, anytime theDelegateReference method
is invoked from a place where thePre and Post predicates are known from the caller
context, an ”instantiation” of the Verification Condition for DelegateReference with
Pre andPostreplaced by actual predicates could be appended to the global Verification
Condition for the module. This would still leave theDelegateReference unsafe but
could validate any potential calls to it.

Nevertheless, if the reference to the delegate is obtained for example from a static field of
another class, the actual function pointer and its specification cannot be determined stat-
ically and the code would be probably rejected as unsafe (because no proof of a second-
order formula could be found).

Chapter 7

Practical Issues

7.1 The Implementation

A practical implementation of PCC-oriented certification framework requires three key com-
ponents: the VCGen which builds Verification Conditions forgiven code modules, an external
theorem prover for code producer to build formal proofs of Verification Conditions and an ex-
ternal proof checker for code consumer to verify proofs.

The VCGen was exclusively developed for XMS and runs on the .NET platform itself.
It reads .NET binaries, scans method bodies and builds Verification Conditions. Current im-
plementation supports a broad range of MSIL instructions, i.a. arithmetical and control flow
instructions, instructions for addressing fields and arguments and instructions for calling meth-
ods.

7.1.1 Code-Producer Components

The architecture of the Code-Producer framework is presented in the Figure 7.1.
The framework consists of three major components.

Framework Base consists of the Common Definitions component and Specification Language
Parser.

• Common Definitionscontains mainly the definition of specification attributes.Any
XMS .NET module uses these attributes to provide specification for method and
class invariants.

• Specification Language Parseris the component responsible for providing pars-
ing routines for the specification language. The parser is used by both the static and
dynamic verification engines. The parser component contains also the definitions
of symbolic objects, symbolic vectors and symbolic indirect expressions used dur-
ing by the static engine during the symbolic evaluation. Allparser-defined classes
inherit from theSymbolicExpression class which provide the common mainte-
nance such as evaluating the closure, substitution or cloning for symbolic expres-
sions.

Language parser is written in C# and uses external parser generator.

81

82 CHAPTER 7. PRACTICAL ISSUES

COMMON DEFINITIONS
SPECIFICATION-LANGUAGE

PARSER

FRAMEWORK BASE

DYNAMIC VERIFICATION
ENGINE

STATIC VERIFICATION
ENGINE

CONTEXT-BOUND OBJECTS
INFRASTRUCTURE

DYNAMIC EVALUATOR OF
EXPRESSIONS MSIL READER

VERIFICATION CONDITION
GENERATOR

THEOREM PROVER

Figure 7.1: XMS Framework at the Code-Producer side

Dynamic Verification Engine consists of the Context-Bound Objects infrastructure and the
Dynamic Evaluator of Expressions.

• Context-Bound Objects infrastructure contains complete toolbox for .NET code
instrumentation. The toolbox is described with details in the Section 5.2.

• Dynamic Evaluator of Expression is responsible for evaluating predicates during the
pre- and postprocess phase of the execution under the dynamic verification engine. It
uses the .NET dynamic code generation techniques to accept or reject specification
predicates by evaluating them. The result of the evaluationis always a boolean value
or an exception is thrown when the evaluation cannot be performed.
Both the Context-Bound Objects infrastructure and the Dynamic Evaluator are writ-
ten in C# and the code size is about 20kB.

Static Verification Engine consists of theMSIL Reader, Verification Condition Generator
and an externalTheorem Prover.

• MSIL Reader is written in C# and uses both the reflection and a clever trickinvolv-
ing theGetILAsByteArray of theMethodBody class - the result of the call is not
directly usable because its result is a byte array of MSIL data (including opcodes and
their arguments), however it has been shown in [42] how the existing opcode enu-
meration (System.Reflection.Emit.OpCode) can be used for extracting actual
opcodes and values of their arguments from the MSIL stream.
The reader is written in C# and the code size is about 20kB.

• Verification Condition Generator is responsible for the symbolic evaluation of
MSIL methods and producing Verification Conditions. The generator is described
in Section 5.3.

7.2. PRIVATE COMPUTATION 83

The generator is written in C# and the code size is about 90kB.

7.1.2 Certification Components

There are three possible approaches to theorem proving and proof checking. XMS does not
favour any but currently uses the first one.

1. A tactical theorem prover (Isabelle, Coq) can be used for proof construction and proof
validation. Proofs are concise and in many cases can be constructed automatically without
any manual guidance. However, the prover must be present at Code Consumer side. Such
requirement can be the major disadvantage of this approach since the theorem prover is
not easily verifiable and even a single inconsistency in the prover engine could lead to
incorrect judgements.

2. Proofs can be encoded in a metalogic LF ([38]). This results in long and detailed proofs
but the proof checking procedure is cheap at the Code Consumer side. Metalogic proof
checkers are short and thus reliable. Additional techniques can be used to shorten proofs
([34]).

3. A logical interpreter can be used as a proof checker ([32]). Such interpreter uses informa-
tion about the proof structure provided by the Code Producerbut instead of recreating the
proof it actually checks if the proof exists at all.

7.2 Private Computation

One of free benefits of conforming to static verification withpredicates/proofs as certificates is
the possibility of using XMS forPrivate Computation.

Suppose that a partyA needs expensive computation to be performed on some privatedata.
A is unable to perform the computation locally. Suppose that party B is able to perform the
computation forA.

However,A does not want its private data to be revealed toB andB does not want its private
algorithm to be revealed toA.

Using XMS as a certification framework and ASP.NET Web Services as remote computation
layer,A andB can rely on followingXMS Private Computation Protocol:

1. A andB ask a trusted party,C, to make a Web Service,W, available to both of them.

2. B publishes its service onW together with XMS specification and certificates.

3. A asksW for the specification ofB’s service, checks if the specification meets his/her re-
quirements and asksW to verify thatB’s service is correct with respect to its specification
using XMS Protocol.

4. W verifies theB’s service and sends the verification result toA.

5. A checks the verification status and if it is positive, sends its data toW and collects the
results of the computation.

84 CHAPTER 7. PRACTICAL ISSUES

Figure 7.2: XMS Secure Computation Scheme

Chapter 8

Conclusion and Future Work

8.1 Contribution

While XMS is not the first approach to the Design By Contract for an enterprise development
platform, it is probably the first one based on two strong paradigms, the Design By Contract and
the Proof-Carrying Code. The framework is built for the Microsoft .NET Framework platform
and it starts by defining the model and the semantics of the language and then shows how the
dynamic and static verification engines form a coherent and complete environment for security
policy validation.

Although the framework is built for the Microsoft Intermediate Language, the intermedi-
ate language of the .NET platform, we show that it is possibleto lift it to enterprise high-
level languages to a quite reasonable extent which makes it possible to certify significant parts
of software systems. We also provide the Private Computation Protocol which shows that the
framework can be used when both the data and an algorithm fromtwo parties should remain
private.

The XMS Framework has been implemented and will be released to the community together
with this dissertation.

8.2 Future Work

Formal certificates can rely on other certification paradigms like the Model Carrying Code
([37]) where the certificate takes the form of an abstract model of the code execution and model
checking techniques are involved to verify these models. The XMS could ultimately unify var-
ious approaches. The combination of PCC and MCC seems especially promising.

Three main directions of future XMS development are:

• support for more MSIL instructions and built-in predicates (Static Verification):
Currently the static verification does not support all MSIL instructions, for example it
does not handle generics. Whether or not these opcodes are liable to static analysis is
another research goal. Some built-in predicates could alsobe supported, such asISNULL.

• other code instrumentation techniques (Dynamic Verification): Although context-
bound objects are an easy way to perform code instrumentation, using .NET Profiler API
could make the dynamic verification faster and more transparent. The dynamic analysis
could be easily turned on/off at the client-side.

85

86 CHAPTER 8. CONCLUSION AND FUTURE WORK

• better integration with high-level languages: Current handling of loop invariants re-
quires high-level languages to cope with Standard Certificate Specification. Also the de-
veloper must be aware of some translation schemes and specific issues regarding the set
of active optimizations. This could be too restrictive for some high-level languages, for
example functional languages with compilation schemes which are much more indirect.
A long-term goal would be to integrate XMS with such languages using one integration
strategies we have proposed.

Yet another issue is the tendency to extend high-level languages with new and new syntactic-
sugar. For example, the C# 2.0 language introduces a non-trivial extension for writing
custom enumerations usingyield instruction. The short and concise enumerator:

public class Tree

{

public Tree left;

public Tree right;

public int value;

public Tree(Tree left, Tree right, int value)

{

this.left = left;

this.right = right;

this.value = value;

}

public IEnumerator<int> GetEnumerator()

{

if (left != null)

{

IEnumerator<int> e = left.GetEnumerator();

while (e.MoveNext())

yield return e.Current;

}

yield return value;

if (right != null)

{

IEnumerator<int> e = right.GetEnumerator();

while (e.MoveNext())

yield return e.Current;

}

}

}

translates to a private, internal class implementing theIEnumerable interface which han-
dles the enumeration by a compiler-implemented method involving states corresponding

8.2. FUTURE WORK 87

to eachyield used in the original enumeration definition. Unfortunately, each new lan-
guage construct brings separate issues to the ”lifting” of certificates.

• other Safety Policies: Contracts Safety Policy is not the only interesting SafetyPolicy
that can be verified in a XMS manner. Other formal policies such as Temporal Spec-
ifications ([5]) or Non-Interference ([14], [23]) could be adapted to XMS certification
scheme. The latter is especially promising since the proof system for symbolic version of
the calculi exists ([19]) and could be used in the certification framework.

88 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[1] Andrew W. Appel. Foundational Proof-Carrying Code.Logic in Computer Science, 2001.

[2] K. Apt and E. Olderog.Verification of Sequential and Concurrent Programs. Springer-
Verlag, 1997.

[3] Dave Arnold and Jean-Paul Corriveau. Using the .NET Profiler API to Collect Object
Instances for Constraint Evaluation..NET Technologies 2006, Full Paper Proceedings,
2006.

[4] Kent Beck.Test Driven Development: By Example. Addison-Wesly Longman, 2002.

[5] Andrew Bernard and Peter Lee. Temporal Logic for Proof-Carying Code. Technical
Report, CMU-CS-02-130, 2002.

[6] Christopher Colby, Peter Lee, and George C. Necula. A Proof-Carrying Code Architecture
for Java.Computer Aided Verification, pages 557–560, 2000.

[7] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth
Cline. A Certifying Compiler for Java.ACM SIGPLAN Notices, 35(5):95–107, 2000.

[8] D. Kozen D. Harel and J. Tiuryn.Dynamic Logic. MIT Press, 2000.

[9] Christian W. Damus. Implementing Model Integrity in EMFwith MDT OCL. IBM Ra-
tional Software Resources, 2007.

[10] Bruce Eckel and Larry O’Brien.Thinking in C#, Release Candidate. Prentice Hall, 2002.

[11] Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

[12] Michael D. Ernst.Dynamically Discovering Likely Program Invariants. PhD thesis, Uni-
versity of Washington, 2000.

[13] Amy Felty and Andrew W. Appel. Semantic Model of Types and Machine Instructions
for Proof-Carying Code.Symposium on Principles of Programming Languages, 2000.

[14] Riccardo Focardi and Roberto Gorrieri. Classificationof Security Properties.The Inter-
national School on Foundations of Security Analysis and Design (FOSAD), 2000.

[15] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

89

90 BIBLIOGRAPHY

[16] Andrew D. Gordon and Don Syme. Typing a multi-language intermediate code.ACM
SIGPLAN Notices, 36(3):248–260, 2001.

[17] Scott Hazelhurst and Carl-Johan H. Seger. Formal Verification by Symbolic Evaluation of
Partially-Ordered Trajectories.Formal Methods in Systems Design, 1995.

[18] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM, 1969.

[19] Anna Ingólfsdóttir and Huimin Lin. A Symbolic Approach to Value-Passing Processes.
2000.

[20] Newkirk JW. and Vorontsov AA.Test-Driven Development in Microsoft .NET. Microsoft
Press, 2004.

[21] Joshua Kerievsky.Refactoring To Patterns. Addison-Wesley, 2004.

[22] Gregor Kiczales et al. Aspect-Oriented Programming.Proceedings of the European Con-
ference on Object-Oriented Programming, 1997.

[23] H. Lin. Symbolic Bisimulations and Proof Systems for theπ-Calculus.Technical Report
1994:07, University of Sussex, 1994.

[24] Kenneth L. McMillan.Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[25] Bertrand Meyer. Applying ”Design by Contract” . Computer, IEEE, Volume 25, Issue 10,
1992.

[26] Bertrand Meyer.Object-Oriented Software Construction, Second Edition. Prentice Hall,
1997.

[27] Microsoft. Common Language Infrastructure Specification. ECMA-335 Specification,
2002.

[28] M. Leino Mike Barnett, K. Rustan and Wolfram Schulte. The Spec# Programming Sys-
tem: An Overview.CASSIS, 2004.

[29] Robin Milner.Communicating and Mobile Systems: theπ-Calculus. Cambridge Univerisy
Press, 1999.

[30] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assem-
bly language.ACM Transactions on Programming Languages and Systems, 21(3):527–
568, 1999.

[31] David Evans Nathanael Paul. Comparing Java and .NET Security: Lessons Learned and
Missed.Technical Report, University of Virginia, 2004.

[32] George C. Necula and S. P. Rahul. Oracle-Based Checkingof Untrusted Software.Sym-
posium on Principles of Programming Languages, 2001.

[33] George Ciprian Necula.Compiling with Proofs. PhD thesis, Carnegie Mellon University,
1998.

BIBLIOGRAPHY 91

[34] George Ciprian Necula and Peter Lee. Efficient Representation and Validation of Logical
Proofs.Technical Report, CMU-CS-97-172, 1997.

[35] Cees Pierik and Frank S. de Boer. A Syntax-Directed Hoare Logic for Object-Oriented
Programming Contepts.Technical Report UU-CS-2003-010, 2003.

[36] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java.European
Symosium un Programming (ESOP ’99), 1576:162–176, 1999.

[37] Samik Basu Sandeep Bhatkar Daniel C. DuVarney R. Sekar,V.N. Venkatakrishnan.
Model-Carrying Code: A Practical Approach for Safe Execution of Untrusted Applica-
tions. Technical Report Stony Brook University, 2003.

[38] Furio Honsell Robert Harper and Gordon Plotkin. A Framework for Defining Logics.
Logic in Computer Science, 1987.

[39] Peter Y. A. Ryan. Mathematical models of computer security. The International School
on Foundations of Security Analysis and Design (FOSAD), pages 1–62, 2000.

[40] Grigoryev D. Maslennikov A. Safonov V., Gratchev M. Aspect.NET, Aspect-Oriented
Toolkit for Microsoft .NET. Proceedings of the .NET Technologies 2006 Conference,
2006.

[41] Ken Schwaber.Agile Project Management with Scrum. Microsoft Press, 2004.

[42] Sorin Serban. Parsing the IL of a Method Body.http://www.codeproject.com, 2006.

[43] Raymie Stata and Martı́n Abadi. A type system for Java bytecode subroutines.Symposium
on Principles of Programming Languages, pages 149–160, 1998.

[44] Michael S. V. Turner.Microsoft Solutions Framework Essentials. Microsoft Press, 2006.

[45] David von Oheimb. Hoare Logic for Java in Isabelle/HOL. Concurrency - Practice and
Experience, 2001.

[46] Wiktor Zychla. eXtensible Multi Security, Contracts for .NET Platform.Journal of .NET
Technologies, 4, 2006.

92 BIBLIOGRAPHY

List of Figures

1.1 XMS safety versus PCC type-safety 5

2.1 Comparison of static and dynamic techniques 9

3.1 Overview of basic PCC protocol 13
3.2 A modification of PCC protocol for the XMS 15

4.1 Structure of a managed assembly 18
4.2 High-level compilers versus JIT compilers 19
4.3 Valid and verifiable IL .. 20
4.4 .NET Framework Code-based policy configuration tool 23
4.5 Naming conventions .24
4.6 Types . 25
4.7 Field and method signatures 25
4.8 Basic inheritance rules 25
4.9 Selected IL Control Flow Instructions 26
4.10 IL Arithmetical Instruction Set 27
4.11 Selected IL instructions for fields, arguments and local variables 27
4.12 IL Instructions for Calling Methods 28
4.13 Selected IL Instructions for Class Manipulation 29
4.14 IL Instructions for Vector Operations 29
4.15 Result values .30
4.16 Local memory context .. 31
4.17 Semantics of selected Control Flow Instructions 34
4.18 Semantics of Arithmetical Instructions 35
4.19 Semantics of Arithmetical Instructions, cont. 36
4.20 Semantics of Instructions for Addressing Fields, Arguments and Local Variables 37
4.21 Semantics of Instructions for Calling Methods 37
4.22 Semantics of Instructions for Addressing Objects 38
4.23 Semantics of Instructions for Vector Operations 38

5.1 Definition of Verification Condition for Design By Contract 55

6.1 Translation scheme forfor instruction . 74

7.1 XMS Framework at the Code-Producer side 82
7.2 XMS Secure Computation Scheme .. . 84

93

94 LIST OF FIGURES

List of Tables

5.1 XMS Symbolic Evaluator for Design By Contract 62

A.1 IL Instruction Set .. 97

95

96 LIST OF TABLES

Appendix A

MSIL Instruction Set

The table below contains full MSIL 1.0 instruction set. Eachinstruction is followed by a symbol
which shows its status from the VCGen point of view:

• � - the opcode is fully supported by the VCGen

• S - the opcode is skipped by the VCGen

• � - the opcode is not supported by the VCGen

Notice that the IL instruction set is optimized to produce assmall assemblies as possible.
This is why most frequent instructions have their own opcodes (for example theldc.i4.0 to
ldc.i4.8 load 32-bit integer values 0 to 8 onto the stack) and the most rare instructions have
two-byte opcodes (for example theldarg instruction with 32-bit parameter).

Table A.1: IL Instruction Set

Code Instruction Supported Comments

00 nop �

01 break S used for debugging purposes
02 ldarg.0 �

03 ldarg.1 �

04 ldarg.2 �

05 ldarg.3 �

06 ldloc.0 �

07 ldloc.1 �

08 ldloc.2 �

09 ldloc.3 �

0A stloc.0 �

0B stloc.1 �

0C stloc.2 �

0D stloc.3 �

0E ldarg.s �

0F ldarga.s �

10 starg.s �

11 ldloc.s �

12 ldloca.s �

97

98 APPENDIX A. MSIL INSTRUCTION SET

Code Instruction Supported Comments

13 stloc.s �

14 ldnull �

15 ldc.i4.M1 �

16 ldc.i4.0 �

17 ldc.i4.1 �

18 ldc.i4.2 �

19 ldc.i4.3 �

1A ldc.i4.4 �

1B ldc.i4.5 �

1C ldc.i4.6 �

1D ldc.i4.7 �

1E ldc.i4.8 �

1F ldc.i4.s �

20 ldc.i4 �

21 ldc.i8 �

22 ldc.r4 �

23 ldc.r8 �

25 dup �

26 pop �

27 jmp �

28 call �

29 calli � unverifiable instruction for indirect calls
2A ret �

2B br.s �

2C brfalse.s �

2D brtrue.s �

2E beq.s �

2F bge.s �

30 bgt.s �

31 ble.s �

32 blt.s �

33 bne.un.s �

34 bge.un.s �

35 bgt.un.s �

36 ble.un.s �

37 blt.un.s �

38 br �

39 brfalse �

3A brtrue �

3B beq �

3C bge �

3D bgt �

3E ble �

3F blt �

40 bne.un �

41 bge.un �

42 bgt.un �

43 ble.un �

99

Code Instruction Supported Comments

44 blt.un �

45 switch �

46 ldind.i1 �

47 ldind.u1 �

48 ldind.i2 �

49 ldind.u2 �

4A ldind.i4 �

4B ldind.u4 �

4C ldind.i8 �

4D ldind.i �

4E ldind.r4 �

4F ldind.r8 �

50 ldind.ref �

51 stind.ref �

52 stind.i1 �

53 stind.i2 �

54 stind.i4 �

55 stind.i8 �

56 stind.r4 �

57 stind.r8 �

58 add �

59 sub �

5A mul �

5B div �

5C div.un �

5D rem �

5E rem.un �

5F and �

60 or �

61 xor �

62 shl �

63 shr �

64 shr.un �

65 neg �

66 not �

67 conv.i1 S

68 conv.i2 S

69 conv.i4 S

6A conv.i8 S

6B conv.r4 S

6C conv.r8 S

6D conv.u4 S

6E conv.u8 S

6F callvirt �

70 cpobj � should be handled like ref types
71 ldobj � should be handled like ref types
72 ldstr �

73 newobj �

100 APPENDIX A. MSIL INSTRUCTION SET

Code Instruction Supported Comments

74 castclass S

75 isinst � not possible to verify statically
76 conv.r.un �

79 unbox �

7A throw �

7B ldfld �

7C ldflda �

7D stfld �

7E ldsfld �

7F ldsflda �

80 stsfld �

81 stobj �

82 conv.ovf.i1.un S

83 conv.ovf.i2.un S

84 conv.ovf.i4.un S

85 conv.ovf.i8.un S

86 conv.ovf.u1.un S

87 conv.ovf.u2.un S

88 conv.ovf.u4.un S

89 conv.ovf.u8.un S

8A conv.ovf.i.un S

8B conv.ovf.u.un S

8C box �

8D newarr �

8E ldlen �

8F ldelema �

90 ldelem.i1 �

91 ldelem.u1 �

92 ldelem.i2 �

93 ldelem.u2 �

94 ldelem.i4 �

95 ldelem.u4 �

96 ldelem.i8 �

97 ldelem.i �

98 ldelem.r4 �

99 ldelem.r8 �

9A ldelem.ref �

9B stelem.i �

9C stelem.i1 �

9D stelem.i2 �

9E stelem.i4 �

9F stelem.i8 �

A0 stelem.r4 �

A1 stelem.r8 �

A2 stelem.ref �

B3 conv.ovf.i1 S

B4 conv.ovf.u1 S

B5 conv.ovf.i2 S

101

Code Instruction Supported Comments

B6 conv.ovf.u2 S

B7 conv.ovf.i4 S

B8 conv.ovf.u4 S

B9 conv.ovf.i8 S

BA conv.ovf.u8 S

C2 refanyval �

C3 ckfinite �

C6 mkrefany �

D0 ldtoken �

D1 conv.u2 S

D2 conv.u1 S

D3 conv.i S

D4 conv.ovf.i S

D5 conv.ovf.u S

D6 add.ovf �

D7 add.ovf.un �

D8 mul.ovf �

D9 mul.ovf.un �

DA sub.ovf �

DB sub.ovf.un �

DC endfinally �

DD leave �

DE leave.s �

DF stind.i �

E0 conv.u �

FE 00 arglist �

FE 01 ceq �

FE 02 cgt �

FE 03 cgt.un �

FE 04 clt �

FE 05 clt.un �

FE 06 ldftn �

FE 07 ldvirtftn �

FE 09 ldarg �

FE 0A ldarga �

FE 0B starg �

FE 0C ldloc �

FE 0D ldloca �

FE 0E stloc �

FE 0F localloc �

FE 11 endfilter �

FE 12 unaligned. �

FE 13 volatile. �

FE 14 tail. �

FE 15 initobj �

FE 17 cpblk �

FE 18 initblk �

FE 1A rethrow �

102 APPENDIX A. MSIL INSTRUCTION SET

Code Instruction Supported Comments

FE 1C sizeof �

FE 1D refanytype �

Appendix B

The Soundness Theorem

This appendix contains proof of soundness for the Safety Theorem 5.1: The proof technique
of this theorem is adopted from the original proof presentedin [33]. What we are left to do is
to adopt this technique to this particular case - the Microsoft Intermediate Language and the
Design By Contract policy.

Theorem B.1(Soundness of Verification Condition Generator for Design by Contract). If the
verification condition for a given module M is valid, i.e.|= VC(M) then all executions of
any module methods are correct with respect to the Design By Contract security policy, i.e.
SafeSC(M).

Since the verification condition of a module is the conjunction of conditions of all methods
from the module, we are left to prove the theorem for any single methodF ∈ M.

The proof uses the induction on execution length of a method body. From the definition of
the safety policy we can assume that the execution was started in a state that satisfies the precon-
dition. Then at each state of the runtime environment we showthat there exists a corresponding
state of the symbolic evaluator. This correspondence is themain concept of the proof.

To be able to use induction we first state theinduction hypothesis for an execution state
Σ = (i, ρ) and corresponding symbolic evaluator stateSE(i, σ,L). The induction hypothesis
reflects the fact that:

• the verification condition forF is valid, i.e.|= VC(F)

• the execution was initiated in a state satisfying the precondition, i.e.|= PreF

• the stateΣ of the execution ofF and the stateSE(i, σ,L) of the symbolic evaluator are
related

Definition B.1. Let us consider the simultaneous execution of the MSIL Runtime Environment
executing the method F in a state(i, ρ) and of the symbolic evaluator in the state SE(i, σ,L).
Let τ be the current evaluation of symbolic values. We say that theinduction hypothesis holds
in this state (we write|= IH F(i, σ,L, τ, ρ)) when:

1. the current evaluation of the verification condition is valid, i.e. |= τ(SEF(i, σ,L))

2. σ, τ andρ are related such that|= τ(σ(v)) = ρ(v) for any v in Dom(ρ)

3. τ correctly captures the invariant contextL, i.e. ifL = L1 + (i, σ′1) where

103

104 APPENDIX B. THE SOUNDNESS THEOREM

(a) L is empty and for all v we have|= τ(σ0(v)) = ρ0(v), or

(b) L = L1 + (i, σ′1) withσ′1 = σ1[. . . , lV(vi 7→ v′ vi∈Var
i), u′1 . . .u

′
k · s] then

i. F i = Inv(P,Var, k)

ii. v′i and u′i are fresh variables

iii. τ = τ1 + [v′i 7→ ti, u′i 7→ t′i]

iv. |= τ1(σ1(P))

v. |= τ1(∀v′0, . . . , v
′
m.u
′
1 . . .u

′
k.σ
′
1(P) ⇒ SE(i, σ′, . . .))

vi. τ1 is correct with respect toL1

Having stated the induction hypothesis we will show that:

• the hypothesis holds at the time of invocation ofF

• the hypothesis holds at each step of the execution progress of F

• methods are safely invoked from withinF

• the hypothesis implies that at the end of the executionF is secure with respect to the
safety policy, i.e.|= PostF

The lemma below restates the main theorem by resolving the notion of safety using the
definition of the safety policy (Definition 5.1) and the induction hypothesis.

Lemma B.1. If the verification condition for given method F is valid, i.e. |= VC(F) then for any
initial state(0, ρ0) such that PreF(ρ0) and assuming that all invoked methods are safe we have
that for any reachable stateΣ = (i, ρ) there existsσ,L andτ such that the induction hypothesis
holds, i.e. IHF(i, σ,L, τ, ρ) and we have that either::

• Fi = ret and PostF(ρ)

• Fi , ret, there existsΣ′ such thatΣ 7→ Σ′ and the induction hypothesis holds in the new
stateΣ′

The lemma B.1 can be further reformulated to four other auxiliary lemmas.

Lemma B.2 (Invocation). If the verification condition for F holds, i.e.|= VC(F) and F is
invoked in a ”safe” state, i.e. PreF(ρ0) then there existsσ0 andτ0 such that IH(i, σ0, ǫ, τ0, ρ0).

Lemma B.3 (Progress). If the induction hypothesis holds in a state(i, ρ), i.e. |= IH(i, σ,L, τ, ρ)
and the current instruction isnot a call and not a return instruction then when the execu-
tion engine makes a progress to the state(j, ρ′) then there existsσ′, L′ and τ′ such that
|= IH(j, σ′,L′, τ′, ρ′).

Lemma B.4 (Call). If the induction hypothesis holds in a state(i, ρ), i.e. |= IH(i, σ,L, τ, ρ)
and the current instructionis the call of a method G such that Safe(G) then if the execution
engine returns from the call to the state(i + 1, ρ′) then there existsσ′ and τ′ such that|=
IH(i + 1, σ′,L, τ′, ρ′).

Lemma B.5 (Return). If the induction hypothesis holds in a state(i, ρ), i.e. |= IH(i, σ,L, τ, ρ)
and the current instructionis the return instruction then the return is safe, i.e. PostF(ρ).

105

Lemma B.2, allows us to establish the induction hypothesis at the method invocation, lemma
B.3, guarantees that if the execution makes progress then the induction hypothesis holds in the
new state, lemma B.4, states that the method call preserves the induction hypothesis and the last
one, B.5, deals with the method return case.

We also state the congruence lemma which will be used throughout proofs of B.2 to B.5.
The lemma can be easily proven by the structural induction over P.

Lemma B.6(Congruence). If P is a predicate,ρ is a state of the execution engine,σ is the state
of the symbolic evaluator andτ is the evaluation of symbolic values fromσ to values such that
|= τ(σ(v)) = ρ(v), for any v in Dom(ρ), then|= σ(τ(P)) if and only if |= (ρ(P)).

Proof of Invocation Lemma B.2 Since the verification condition is valid forF we have
∀a0, . . . , an.σ

F
0 (PreF)⇒ SE(0, σF

0 , ∅) whereσF
0 = (lA(ai 7→ ai), lV(vi 7→ 0), ǫ).

Since the values in local argument vector are universally quantified, we have|= τ0(σF
0 (PreF)⇒

SE(0, σF
0 , ∅)) whereτ0 = [ai 7→ ρ(ai)] (because we drop the universal quantification in favor of

fixed values).
What we have to prove is that the induction hypothesis is true, i.e. |= IH(i, σ0, ǫ, τ0, ρ0).
The clause 2 is just by the definition ofσ0 andτ0. By the assumptionPreF(ρ0) and clause 2

we have thatτ0(σ0(PreF)) that gives us the conclusion by using the modus pones.
�

Proof ofProgress Lemma B.3 To show that the induction hypothesis holds when the runtime
environment makes a progress in the execution we analyze thelast instruction used for symbolic
evaluation. We will prove this lemma for few example instructions.

invariant case - first time We have to prove the invariantIH F(i, σ′,L, τ′, ρ′) where

u′i are new variables so that
σ(u′i) = ui andτ(σ(u′i)) = ρ(u

′
i)

v′i are new variables so that
σ′ = σ[vi 7→ v′i , u

′
1, . . . , u

′
k · s]

τ′ = τ + [v′i 7→ ρ(vi)]

Note that because of the way theτ′ is defined we have thatτ′(σ′(v)) = ρ(v).

In order to show that the clause 2 of the induction hypothesisholds we have to refer to
the definition of the VCGen. By the definition of the VCGen for this case we have:

|= τ(σ(P))
|= τ′(σ′(P)) =⇒ τ′(S E(i, σ′,L + (i, σ′)))

Using the congruence lemma we get from the first clause that|= ρ(P) and then because
τ′(σ′(v)) = ρ(v) we have that|= τ′(σ′(P)). From this and from the second clause above
we have the induction hypothesis.

invariant case - second timeThe proof of this clause is a reformulation of the corresponding
clause from [33].

106 APPENDIX B. THE SOUNDNESS THEOREM

caseldarg v, starg v The only non-trivial clause of the induction hypothesis is clause 1.

In case of theldarg v instruction we have to show thatτ(lA(v)) = ρ(lA(v)) which is true
by the induction hypothesis.

In case of thestarg v instruction we have to show thatτ(lA[v 7→ u]) = ρ(lA[v 7→
u]). But sincelA[v 7→ u](v′) = lA(v′) for v , v′ we only have to check thatτ(lA[v 7→
u])(u) = ρ(lA[v 7→ u](u)) since the equality is true in case of any other value because of
the induction hypothesis.

We also haveτ(lA[v 7→ u])(u) = τ(u) = ρ(u) = ρ(lA[v 7→ u](u)) again because of the
induction hypothesis.

casebrtrue l The clause 2 is trivial in this case because both the runtime environment and
the symbolic evaluator just pop the value from the stack. Thenew state of the runtime
environment isρ′ and new state of the symbolic evaluator isσ′.

To prove the clause 1 we have to analyze two cases depending ofthe current valuev at
the top of the stack.

If ρ(v) = 0 then the next state is (i + 1, ρ′) so we have to prove that the clause 1 holds in
the new state, i.e.|= τ(SE(i + 1, ρ′)).

Since the verification condition for current instruction holds and it is the conjunction of
two cases then both cases hold.

Specifically this means that|= τ(σ(v) = 0⇒ SE(i + 1, ρ′)). But sinceρ(v) = 0 and clause
2 we have that|= τ(SE(i + 1, ρ′)).

�

Proof of Call Lemma B.4
The structure of this clause is compatible with the corresponding lemma from [33]. What

we have to show is that the verification is also correct for polymorphic calls.
Since both the induction hypothesis andVCI part of the Verification Condition hold, we

have:

σG(PreG) ∧ ∀u.σG(PostG[u/VALUE]) ⇒ SE(i + 1, σ′,L)
PreG =⇒ PreInherited(G) ∧ PostInherited(G) =⇒ PostG

From this we conclude that

σG(PreInherited(G)) ∧ ∀u.σ
G(PostInherited(G)[u/VALUE]) ⇒ SE(i + 1, σ′,L)

This means that if the induction hypothesis holds for a base class call then it also holds for
any inherited class call.

�

Proof of Return Lemma B.5 From the clause 1 of the induction hypothesis and from the
definition of the symbolic evaluator we have that|= τ(σ(PostF)). From the clause 2 of the
induction hypothesis we have that|= ρ(PostF) which is what we need to prove.

�

Appendix C

Examples

C.1 Dynamic Verification Engine

The Dynamic Verification Engine uses code instrumentation to supervise the execution and
evaluate specificatin predicates at the run time. Detailed description of the engine can be found
in Section 5.2 on page 44.

The example test suite class:

/* XMSIntercept attribute required by dynamic engine */

[XMSIntercept]

public class TestSuite1 : ContextBoundObject

{

/// <summary>

/// Sum of provded parameters.

/// </summary>

/// <param name="x"></param>

/// <param name="y"></param>

/// <returns></returns>

[Process(typeof(XMSProcessor))]

[XMS_Spec(

"x >= 0 && y >= 0", /* precondition */

"VALUE == x+y", /* postcondition */

"" /* invariants */

)]

public int TestInt1(int x, int y)

{

return x+y;

}

/// <summary>

/// Postcondition refers to VALUE returned by the method.

/// </summary>

/// <param name="a"></param>

/// <returns></returns>

[Process(typeof(XMSProcessor))]

[XMS_Spec("notnull(a)", "VALUE == 1", "")]

107

108 APPENDIX C. EXAMPLES

public int TestArrayListCount(ArrayList a)

{

a.Add(1);

return a.Count;

}

/// <summary>

/// Example of builtin notnull(*) predicate.

/// </summary>

/// <returns></returns>

[Process(typeof(XMSProcessor))]

[XMS_Spec("true", "notnull(a)", "")]

public ArrayList FactoryMethod()

{

ArrayList a = new ArrayList();

return a;

}

/// <summary>

/// Precondition checks if valid array is provided.

/// </summary>

/// <param name="a"></param>

[Process(typeof(XMSProcessor))]

[XMS_Spec("notnull(a)", "true", "")]

public void TestArray_1(int[] a)

{

return;

}

/// <summary>

/// Postcondition can refer to original values of parameters.

/// </summary>

/// <param name="a"></param>

[Process(typeof(XMSProcessor))]

[XMS_Spec("true", "x == y_ORIGINAL && y == x_ORIGINAL", "")]

public void Swap(ref int x, ref int y)

{

int z = x;

x = y;

y = z;

}

}

The tests are executed from following context:

TestSuite1 ts = new TestSuite1();

/* this should pass */

int int1 = ts.TestInt1(5, 6);

C.1. DYNAMIC VERIFICATION ENGINE 109

/* this should fail (precondition) */

int array = ts.TestInt1(-5, 6);

ArrayList arraylist = new ArrayList();

/* this should pass */

int count0 = ts.TestArrayListCount(arraylist);

arraylist.Add(1);

/* this shoudl fail (postcondition) */

int count1 = ts.TestArrayListCount(arraylist);

/* this should pass */

ArrayList arrayList = ts.FactoryMethod();

int[] x = new int[5]; x[0] = 0;

ts.TestArray_1(x);

int u = 0, v = 1;

/* this should pass */

ts.Swap(ref u, ref v);

Actual output of the XMS dynamic engine:

Preprocessing TestSuite1.TestInt1.

specification:

Pre=[x >= 0 && y >= 0]

Post=[VALUE == x+y]

Invs=[]

Precondition : (x >= 0) && (y >= 0)

Substituted expression : (5 >= 0) && (6 >= 0)

Evaluated expression : True

Postcondition : VALUE == (x + y)

Substituted expression : 11 == (5 + 6)

Evaluated expression : True

Preprocessing TestSuite1.TestInt1.

specification:

Pre=[x >= 0 && y >= 0]

Post=[VALUE == x+y]

Invs=[]

Precondition : (x >= 0) && (y >= 0)

Substituted expression : (-5 >= 0) && (6 >= 0)

Evaluated expression : False

110 APPENDIX C. EXAMPLES

Postcondition : VALUE == (x + y)

Substituted expression : 1 == (-5 + 6)

Evaluated expression : True

Testing failed for method TestInt1.

Preprocessing TestSuite1.TestArrayListCount.

specification:

Pre=[true]

Post=[VALUE == 1]

Invs=[]

Precondition : true

Substituted expression : true

Evaluated expression : True

Postcondition : VALUE == 1

Substituted expression : 1 == 1

Evaluated expression : True

Preprocessing TestSuite1.TestArrayListCount.

specification:

Pre=[true]

Post=[VALUE == 1]

Invs=[]

Precondition : true

Substituted expression : true

Evaluated expression : True

Postcondition : VALUE == 1

Substituted expression : 3 == 1

Evaluated expression : False

Testing failed for method TestArrayListCount.

Preprocessing TestSuite1.FactoryMethod.

specification:

Pre=[true]

Post=[notnull(a)]

Invs=[]

Precondition : true

Substituted expression : true

Evaluated expression : True

C.2. STATIC VERIFICATION ENGINE 111

Postcondition : notnull(a)

Substituted expression : true

Evaluated expression : True

Preprocessing TestSuite1.TestArray_1.

specification:

Pre=[notnull(a)]

Post=[true]

Invs=[]

Precondition : notnull(a)

Substituted expression : true

Evaluated expression : True

Postcondition : true

Substituted expression : true

Evaluated expression : True

Preprocessing TestSuite1.Swap.

specification:

Pre=[true]

Post=[x == y_ORIGINAL && y == x_ORIGINAL]

Invs=[]

Precondition : true

Substituted expression : true

Evaluated expression : True

Postcondition : (x == y_ORIGINAL) && (y == x_ORIGINAL)

Substituted expression : (1 == 1) && (0 == 0)

Evaluated expression : True

C.2 Static Verification Engine

The Static Verification Engine uses the Verification Condition Generator to analyze assembly
metadata, read MSIL instructions and perform symbolic evaluation to produce verification pred-
icates. Detailed description of the engine can be found in Section 5.3 on page 53.

Example C.1(Constructors) Class constructors are analyzed just like all other methods. Con-
sider following C# code:

public class StaticTestsSuite

{

public int a, b, c;

112 APPENDIX C. EXAMPLES

[XMS_Spec("true", "this.a = av && this.b = bv && this.c = cv", "")]

public StaticTestsSuite(int av, int bv, int cv)

{

this.a = av;

this.b = bv;

this.c = cv;

}

}

The constructor C# code compiled to MSIL follows:

.method public hidebysig specialname rtspecialname instance

void .ctor(int32 av, int32 bv, int32 cv) cil managed

{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’)

string(’this.a = av && this.b = bv && this.c = cv’)

string(’’) }

.maxstack 8

L_0000: ldarg.0 // load "this" reference

L_0001: call instance void [mscorlib]System.Object::.ctor()

L_0006: ldarg.0

L_0007: ldarg.1 // load av and store into this.a

L_0008: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::a

L_000d: ldarg.0

L_000e: ldarg.2 // load bv and store into this.b

L_000f: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::b

L_0014: ldarg.0

L_0015: ldarg.3 // load cv and store into this.c

L_0016: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::c

L_001b: ret

}

The VCGen produces following verification condition:

forall av. forall bv. forall cv. true => (((av = av) && (bv = bv)) && (cv = cv))

Example C.2 (Constructor calling) The constructor from the Example C.1is called from ex-
ternal code and values are provided for constructor parameters.

[XMS_Spec("true", "VALUE = x + x + x", "")]

public int TestTheConstructor(int x)

{

StaticTestsSuite ts = new StaticTestsSuite(x, x, x);

return ts.a + ts.b + ts.c;

}

C.2. STATIC VERIFICATION ENGINE 113

The above code is compiled to MSIL as follows:

.method public hidebysig instance int32 TestConstructor(int32 x) cil managed

{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = x + x + x’) string(’’) }

.maxstack 4

.locals init (

[0] class Uwr.XMS.Tests.StaticTestsSuite ts)

L_0000: ldarg.1 // load argument onto the stack

L_0001: ldarg.1

L_0002: ldarg.1

L_0003: newobj instance void Uwr.XMS.Tests.StaticTestsSuite::

.ctor(int32, int32, int32)

// call the StaticTestsSuite(x, x, x)

L_0008: stloc.0 // store the reference in the local variable

L_0009: ldloc.0 // load ts.a

L_000a: ldfld int32 Uwr.XMS.Tests.StaticTestsSuite::a

L_000f: ldloc.0 // load ts.b

L_0010: ldfld int32 Uwr.XMS.Tests.StaticTestsSuite::b

L_0015: add // ts.a + ts.b

L_0016: ldloc.0 // load ts.c

L_0017: ldfld int32 Uwr.XMS.Tests.StaticTestsSuite::c

L_001c: add // ts.a + ts.b + ts.c

L_001d: ret

}

The VCGen produces following verification condition:

forall Uwr.XMS.Tests.StaticTestsSuite__1.a.

forall Uwr.XMS.Tests.StaticTestsSuite__1.b.

forall Uwr.XMS.Tests.StaticTestsSuite__1.c.

forall x.

true =>

((((Uwr.XMS.Tests.StaticTestsSuite__1.a = x) &&

(Uwr.XMS.Tests.StaticTestsSuite__1.b = x)) &&

(Uwr.XMS.Tests.StaticTestsSuite__1.c = x)) =>

(((Uwr.XMS.Tests.StaticTestsSuite__1.a +

Uwr.XMS.Tests.StaticTestsSuite__1.b) +

Uwr.XMS.Tests.StaticTestsSuite__1.c) =

((x + x) + x)))

Example C.3(Method calling) The method from the Example C.2 is called from external code.

[XMS_Spec("true", "VALUE = 6", "")]

public int MethodCalling()

{

int val = 1;

114 APPENDIX C. EXAMPLES

// since TestConstructor actually return value is

// 3 times the parameter value,

// following should return 6

return 2 * TestConstructor(val);

}

The MSIL translation is as follows:

.method public hidebysig instance int32 MethodCalling() cil managed

{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = 6’) string(’’) }

.maxstack 3

.locals init (

[0] int32 val)

L_0000: ldc.i4.1 // load 1

L_0001: stloc.0 // val = 1

L_0002: ldc.i4.2 // load 2

L_0003: ldarg.0 // load this

L_0004: ldloc.0 // load val

L_0005: call instance int32 Uwr.XMS.Tests.StaticTestsSuite::

TestConstructor(int32)

L_000a: mul // 2 * TestConstructor(val)

L_000b: ret

}

The VCGen produces following predicate:

true => (true &

(forall Int32__1. (Int32__1 = ((1 + 1) + 1)) =>

((2 * Int32__1) = 6)))

Example C.4(Symbolic arrays) Consider following C# code:

[XMS_Spec("i != j", "VALUE = 3", "")]

int Arr_SymbolicIndexes(int[] array, int i, int j)

{

array[i] = 1;

array[j] = 2;

return array[i] + array[j];

}

The C# compiler output for this method is as follows:

.method private hidebysig instance int32

Arr_SymbolicIndexes(int32[] array, int32 i, int32 j) cil managed

{

C.2. STATIC VERIFICATION ENGINE 115

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = 3’) string(’’) }

.maxstack 8

L_0000: ldarg.1 \\ load array

L_0001: ldarg.2 \\ load i

L_0002: ldc.i4.1 \\ load 1

L_0003: stelem.i4 \\ array[i] = 1

L_0004: ldarg.1 \\ load array

L_0005: ldarg.3 \\ load j

L_0006: ldc.i4.2 \\ load 2

L_0007: stelem.i4 \\ array[i] = 2

L_0008: ldarg.1

L_0009: ldarg.2

L_000a: ldelem.i4 \\ load array[i] (=1)

L_000b: ldarg.1

L_000c: ldarg.3

L_000d: ldelem.i4 \\ load array[j] (=2)

L_000e: add

L_000f: ret \\ ret array[i] + array[j]

}

The VCGen produces following verification predicate:

forall array[i]. forall i. forall j.

i != j =>

(

((j == i) =>

(((i == j) => ((2 + 2) = 3)) &&

((i != j) => ((array[i] + 2) = 3))))

&&

((j != i) => ((1 + 2) = 3))

)

Example C.5(A loop invariant) Consider following C# code:

[XMS_Spec("x > 0 && y > 0",

"VALUE = GCD(x,y)",

"GCD(x,y)=GCD(V_0,V_1):0:V_0,V_1")]

public int GCD(int x, int y)

{

int k = x;

int l = y;

while (k - l != 0)

{

if (k > l)

k -= l;

else

l -= k;

116 APPENDIX C. EXAMPLES

}

return k;

}

The C# compiler output for this method is as follows:

.method public hidebysig instance int32 GCD(int32 x, int32 y) cil managed

{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’x > 0 && y > 0’)

string(’VALUE = GCD(x,y)’)

string(’GCD(x,y)=GCD(V_0,V_1):0:V_0,V_1’) }

.maxstack 2

.locals init (

[0] int32 k,

[1] int32 l)

L_0000: ldarg.1 // load x

L_0001: stloc.0 // k = x

L_0002: ldarg.2 // load y

L_0003: stloc.1 // l = y

L_0004: br.s L_0014 // jump to the loop condition check

L_0006: ldloc.0 // load k

L_0007: ldloc.1 // load l

L_0008: ble.s L_0010 // jump if k <= l

L_000a: ldloc.0 // load k

L_000b: ldloc.1 // load l

L_000c: sub // k - l

L_000d: stloc.0 // k = k - l

L_000e: br.s L_0014 // jump to the loop condition check

L_0010: ldloc.1 // load l

L_0011: ldloc.0 // load k

L_0012: sub // l - k

L_0013: stloc.1 // l = l - k

L_0014: ldloc.0 // load k

L_0015: ldloc.1 // load l

L_0016: sub // k - l

L_0017: brtrue.s L_0006 // jump if k - l != 0

L_0019: ldloc.0

L_001a: ret // return k

}

The VCGen produces following predicate for above code:

forall x. forall y.

((x > 0) && (y > 0)) =>

((((x - y) = 0) => (x = (GCD(x , y)))) &&

(((x - y) != 0) => ((GCD(x , y)) = ((GCD(x , y)) &

C.2. STATIC VERIFICATION ENGINE 117

(forall V_0__1. forall V_1__1.

((GCD(x , y)) = (GCD(V_0__1 , V_1__1))) =>

(((V_0__1 > V_1__1) =>

((((((V_0__1 - V_1__1) - V_1__1) - V_1__1) = 0) =>

(((V_0__1 - V_1__1) - V_1__1) = (GCD(x , y)))) &&

(((((V_0__1 - V_1__1) - V_1__1) - V_1__1) != 0) =>

((GCD(x , y)) = (GCD((V_0__1 - V_1__1) , V_1__1)))))) &&

((V_0__1 <= V_1__1) =>

((((V_0__1 - ((V_1__1 - V_0__1) - V_0__1)) = 0) =>

(V_0__1 = (GCD(x , y)))) &&

(((V_0__1 - ((V_1__1 - V_0__1) - V_0__1)) != 0) =>

((GCD(x , y)) = (GCD(V_0__1 , (V_1__1 - V_0__1)))))))))))))

Index

Class Invariants, 40
Common Certificate Specification, 69
Common Language Infrastructure, 17
Common Language Runtime, 17
Common Language Specification, 17

Design by Contract, 11

Garbage Collector, 32

IL
execution, 19
fields, 25
inheritance, 25
instruction set, 26
Intermediate Language, 17
just-in-time (JIT) compilation, 19
language cooperatibility, 17
metadata, 18
methods, 25
types, 24

Language Based Security, 7

Microsoft Intermediate Language, 17

Proof Carrying Code, 12
general theorem, 14
protocol, 13

safety policy, 7
compositionality, 10
for Design by Contract, 40
modularization, 10

Symbolic Evaluator
aka SE, 53
for Design by Contract, 54

Verification Condition, 12
generator, VCGen, 14

XMS
method specification, 40

118

