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Abstract

Modern computer systems depend on many pieces of softw#nergd together to perform
certain activities. That is why various forms of distribdit®/stems are being developed where
individual software components come fronttdrent developers.

Such distributed systems bring a lot of freedom and conweeidut when misused they
can do a lot of damage. Thus, there is a deep need for variads kif safetyand securityat
different levels of a software life-cycle.

In this work we investigate some notions of safety takinggakety based on contracts into
special consideration. We build eXtensible Multi Securiyframework based on the notion of
Proof Carrying Code which is a powerful and coherent platfable to unify various notions
of safety. We also show how XMS forms a certification framewior Microsoft Intermediate
Language and other programming languages of the .NET PRiatfo
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Chapter 1

Introduction

1.1 Convenience of distributed systems

Distributed systems play a major role in today’s computsteys.

Although we usually think of distributed systems as of hugemmercial frameworks like
banking systems, we use such systems every day often besgaumof it. Modern distributed
systems integrate well even with common web browsers andldesto perform botlserver-
sideandclient-sideactivity.

For example, when | visit my favourite online bookshop anddes some books, | perform
some activity locally: | enter my personal data and | chobsdoboks | like to buy. Then | click
a button and there is some activity performed remotely: ntg dad my order are sent to the
remote server which stores the order in a database.

In fact however, even these applications which we buy or eéesynload for free can be seen
as distributed systems. Indeed, when | install a new piesefbivare in my operating system, it
can itself perform some local or remote activity and intesadth other software components.
It can for example gather some data from my computer and us&tamal library to send the
data somewhere with or without my knowledge.

The convenience and freedorfiered by the distributed systems is sometimes misused. The
software and the hardware is a potential victim to a maligiginus, the data is a potential
victim to a trojan horse or a spy-software. There is a lot oéfraeness when dealing with dis-
tributed systems. There are still critical bugs found evevitial parts of operating systems and
commonly used applications. From the developer’s persgeittis still too easy to introduce
unintentional bugs into the software or even more - to tinektrusting user and make him run a
malicious code on hjker system. From the user’s perspective it is often impéssiexamine
every aspect of the software.

1.2 Safety and security of distributed systems

Of course, every action has a reaction. That is why there a$ aflwork at the area of safety
and security of distributed systems.

Alas, over forty years after the Internet has been born, thpmty of users still have to
believe that the software they buy or download is safe in aesémat it will not do any harm to
their hardware and data.
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Widely spread antivirus software can detect several thulsaf computer viruses. That's
good. Alas, it is able to detect only these viruses that acsvkn That's bad. If the new virus is
released, my machine is as vulnerable like a little baby.

Runtime environments can dynamically supervise the codewtion and for example dis-
allow the execution of some activities. That's good. Theyrzd however make sure that the
code runs correctly. That's bad. Even the advanced managklis not a bit helpful when the
banking software altered by hackers steals money from mk dacount.

1.3 eXtensible Multi Security

The goal of eXtensible Multi Security (XMS, [46]) is to unifsarious notions in one coherent
and extensible platform. The idea is built around two congmbparadigms which together form
a powerful certification framework - these two paradigms2esign By Contract (DBC, [26])
and Proof Carrying Code (PCC, [33]) unified around the MiofotNET Runtime Environment.

The original PCC approach focuses on type-safety. Alagyfee safety does not guarantee
that other important features of safety are preserved.cnvarious aspects of safety are rather
independent. The code can be type-safe but not correct erugpafe but perfectly safe from
‘control flow’ point of view.

This is where the XMS starts. The infrastructure can encoe®esign By Contract specifi-
cations for software components written for the .NET RuetiEmvironment. The specification
is then verified using the dynamic verification engine or tia#icsverification engine. In case of
the former the specification stored in the binary meta-datessed at the run time to check if it
is satisfied. In case of the latter digital certificates tdleeform of formal logic proofs and are
stored in the meta-data so that they do not play any role icdde execution but instead they
are used in the verification process.

Although the core of XMS is built at the low level of Microsdftitermediate Language
(MSIL), the intermediate language of the .NET Platform, \Wwews how the certificates can be
adopted to high-level .NET languages like C# or VB.NET.

It is interesting to recall that although these two termfgetyaand security are closely related
there is a subtle éierence. A software isafewhen it will not do any harm to the user. A
software issecurewhen some additional activity was taken to prevent the usen fetting any
harm from it. That is why we will say that on the one hand XM3dsals to build safe software
and on the other hand it builds a security framework that lis stbdetect unsafe software.

1.4 Benefits of XMS

Here is the short summary of XMS benefits:

e XMS is designed to certify the MSIL language, one of the maskely used enterprise
intermediate languages

o XMS certificates can be seamlessly adopted to high-level .ldBguages

e XMS is primarily designed to certify the Design By Contraci lother formal policies
could also be expressed
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e The certification framework makes it much easier for deveidspo find bugs in the soft-
ware

o XMS certificates are built around the notion of PCC thus irthmgy all desirable properties
of PCC:

— formal theorems guarantee that certificates cannot be acomgped

— the certificates are flicient to guarantee that the code is valid, the authority of a
code producer is completely insignificant

e XMS certificates are stored in meta-data so the proofs aredwith the code

e To support XMS the .NET Runtime Environment does not nee@tchanged in any way.

1.5 Other Security Frameworks

The PCC is not the only formal approach to notions of safetysacurity. There are dozens of
interesting formalisms such as Model Checking andH@alculus [24], Propositional Dy-
namic Logic (PDL, [8]), Model-Carrying Code [37], Symbolicdajectory Evaluation (STE
[17]), Communicating Sequential Processes [39] and Sgd@rocess Algebra [14%-Calculus
[29] and other Value-Passing Process Algebras ([19]) and/nmaany others which are beyond
the scope of this work.

Both core components of XMS are subjects of extensive sflidg. Design By Contract
evolved from earlier works of Hoare ([18]) and the reseamfhtioues in many areas. In recent
years the challenge of adopting the Hoare-style specificatinto object-oriented languages
has been taken by researchers and several approaches kavsuloeessful ([35], [45]). We
believe that XMS is more general since it scales from thenmégliate language to high-level
languages and thus is not bound to a single programming ¢éyggar a family of languages.
Many other interesting works focus on selected aspectsegpdnadigm, for example on auto-
matic discovering of loop invariants ([12]).

As for PCC, the original idea ([33]) focuses on type safetgl @noften compared to the
Typed Assembly Language ([30]), a low-level infrastruetuvhere type information is pre-
served during the compilation and is used to certify the {y@iety of low-level code.

For many reasons the type safety is strongly desirable typed assembly-level languages.
The language presented in the original PCC paper, SAL, i®d grample - in [33] it is shown
how the type-safety of SAL binaries can be enforced by usargfally designed logic that
detect illegal memory/O operations.

In such approach the primary goal of PCC is to validate thguage compiler by detect-
ing compile-time bugs. This idea was further adopted tafgette type safety of Java binaries
at machine-level (SpecialJ compiler described in [7],.[@})pe safety policy has some ma-
jor advantages - PCC signatures can be built automaticedigrding to original signatures of
methods and the proofs are rather straightforward. Thumfrestructure can be automated to
certify even large programs.

A more general approach to PCC was developed ([1] and [18fhi$ approach the semantic
properties of the language do not have to be known by theitigoperforming the analysis
but are rather a part of the Safety Policy.
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Other security properties can be enforced by PCC and somégékat allow temporal
specifications for a restricted low-level language were alsown ([5]).

From the distant perspective there are two aspects of PQCGnilst be addressed in each
particular implementation:

e which language shall be certified?

e which Safety Policy shall be enforced?

Both these issues laid the base of XMS. XMS was designedtifyddicrosoft Intermediate
Language, widely recognized language targeted by a braagkraf enterprise programming
languages. But in contrast to for example the Speciald, XE8fies the code at the MSIL
level, not at the machine-level. We believe that the trdimiebetween MSIL and the actual
machine-level language shall preserve all encoded safepepies.

Working at the level of intermediate language gives andbeekfit to the XMS - certificates
can be used for any .NET high-level language (like C#). Toenade of XMS a developer does
not necessarily need to know MSIL but rather be aware of sam®der translation schemes.

On the yet another hand, the IL languageype-safe because that is the way it has been
designed ([16]). What is more - the .NET Runtime Environntgpe-checksall binaries just
before they are actually executed (binaries that pass steate calledserifiable. This static
type-checking operation rejects binaries that do not vobtrict type-safety rules. We will dis-
cuss this and other safety mechanisms of the .NET Runtimedfmaent in chapter 4.

Although the existing static algorithm for MSIL type-safe$ potentiallyweakerthan the
PCC type-checking (for example, it does not aim at detecativagid array indexing operations),
the PCC style type-checking is beyond scope of XMS. Figutesthows precisely the level at
which XMS operates and the level at which original PCC omsa¥Vhile PCC focuses on
type-safety of low level language, XMS focuses on safetyigiiér-level languages.

Initially XMS started as a PCC variant for a toy-like objeahfuage. After migration to
.NET platform, XMS marks out its own way:

e XMS does not certify type-safety of the low level languageibstead it allows to certify
other safety policies of the MSIL language.

e Since the certificates can be applied to any high-level lagguXMS is more general
than solutions bound to a single low-level ([33]) or higkdg([36]) language.

o XMS will ultimately adopt other security policies, such agrNInterference, to its verifi-
cation engine

Currently, as a contract verification framework, XMS congsetvith specialized contract
frameworks for .NET Platform like the Spec# ([28]). Below list major diferences between
these two:

e Unlike XMS, Spec# is bound to a single language - it is a sugteisC#.

e Unlike XMS, Spec# is bound to a single safety policy (cortsacXMS is an extensible
framework with pluggable verification engines

e In Spec# contracts are declared using the language extsnaia turned into inlined
code during the compilation. In XMS, contracts are extetadhe language (attributes)
and code instrumentation technigues are used for dynaralgsas
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Figure 1.1: XMS safety versus PCC type-safety

e Spec# uses its own intermediate representation of the &mteiePL, which is inter-
preted and transformed before it is provided to the theoreyagp. XMS uses symbolic
evaluation to build verification traces directly from the&ENIntermediate Language code.

1.6 Overview of the dissertation

We start our dissertation with a brief introduction to theiow of XMS and motivate our work
by comparing XMS to other security frameworks.

In the second chapter we present and classify various aspesafety and security.

In the third chapter we describe two core XMS paradigms: tesigh By Contract and
Proof-Carrying Code. In the fourth chapter we present the od XMS environment - the
Microsoft Intermediate Language. Because the MSIL languags chosen as the target XMS
language, we build the operational semantics of a signifisabset of it. This subset captures
the majority of important aspects of the IL including aritines, control flow, objects, arrays
and exceptions.

Fifth chapter is a core of the dissertation. It is here wheegvesent safety formalisms for
the XMS, define a safety policy and show two XMS engines.

In the sixth chapter we show how MSIL level certificates cansbamlessly adopted to
high-level .NET languages.

In the seventh chapter we discuss some internal details of XlNid discuss its practical
applications.
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Chapter 2

Safety and security

2.1 Enforcing safety policies

In this chapter we discuss severattdient notions of safety. It turns out that the short and
seemingly precise termafetycan have several fierent meanings. All of them are heavily
studied and new solutions are constantly developed.

Talking about safety we will often use the tegafety policy The safety policy is a formal
set of rules and restrictions that somehow tells us whiclygams are valid and which are
invalid and should be considered illegal, unsafe.

An example of a naive safety policy would be

Any code that is given to me by system administrator is s¢cure
Any other code is insecure.

Of course such safety policy could bring a lot of harm and thlusuld not be probably
considered seriously. Even in its much more complicateohfenown asAuthentication by
Personal Authority, such policy in fact does not state any security. These twoggsecurity
and authentication, should not be mistaken. Even the stsingyptographic signature does
not guarantee that the code is secure, it can only authéatica code producer. When one
accepts a software component signed digitally by a well kmand reliable software developer,
does it mean that this new component is automatically safe&t\if' the software component
is unintentionally insecure or worse, someone used theatligignature of this well known
developer to sign an intentionally malicious software comgnt?

The true security can be only forced by so callsshguage Based Security It means
that the safety policy must somehow exploit the semantidh@fprogramming language, an
operating system or the runtime environment.

The true security must then be objective; we musth®ieve we have tde sure

2.2 Classification of safety properties

What kind of reasonable security policies should be comsife Well, from a really distant
perspective we can name following main categories of sgcproperties:

memory safety where the code should not access the memory that was nohadsmit in an
explicit way. This is one of primary security properties dretause of its importance it is

7
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built into all mature operating systems. The times wherea wasy to write a malicious
code that steals or modifies the memory of another procesbk@pefully, gone forever.

type safety where thetypesplay the main role. It appears that the strict typing disnglcan
eliminate many common errors like accessing resourceshimatid be hidden or calling
methods with wrong number of parameters or parameters afguype. These common
errors are not only exploited by a malicious software bub al® serious worries to code
producers.

As a benefit, strict typing can make it easier to perform comemde analysis, transfor-
mations and optimizations. An example of such system cantnadfin [30].

code correctnesswhere thesecuremeansproducing correct resultsSuch notion of security
should be desirable for example in financial or computatiapplications where a small
mistake in a calculation could lead to unpredictable result

An example of such approach is described in [2].

control flow safety where there should be no jumps outside the current blockaé emd any
jump should target the beginning of valid code instructidlso, it should not be possible
to exploit the so callebyffer underruntechnique, where due to the corruption of runtime
stack, the data supplied by the attacker is executed in thiexoof running application.

An example of such policy is implemented as the algorithnt #tatically verifies the
integrity of .NET assemblies.

information flow safety aims at controlling the way the information flows amondfatient
entities. Such properties were primarily proposed to félyndescribe the notion ofon-
fidentiality but turned out to be usable in other situations as well fongpta to detect
deadlocks or unwanted covert channels.

But how can these policies be verified? Which mechanisms earséd to distinguish be-
tween secure and insecure code? Well, in general there arentin approaches: static and
dynamic. The distinction between these two is crucial beeawwoth have their own pros and
cons.

2.3 Static and dynamic security

In dynamicchecking, the safety policy is constantly checked to bedvatithe run time. This
of course requires the existence of a virtual machine or amenenvironment that would be
powerful enough, in the sense that it can detect any actildy breaks the safety policy. An
example of such an infrastructure is the Java Virtual Maglinthe Microsoft .NET Frame-
work. Both "supervise” the code execution and enforce geechecks before any potentially
dangerous instruction is executed.

For example, if the safety policy forbids anyOl activity, the runtime environment puts
proper checks before eaclOl call. If the safety policy forbids to make connections tongo
specific servers, again, proper checks are put into the codi¢h® exception is thrown when
an illegal connection is detected. What's more, illegal ragnoperations are immediately de-
tected.
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The dynamic approach has undeniable advantages. It albodefine quite precise security
policies and checks them very strictly. It also has drawbdmoicause it is not general. The
existence of a runtime environment with rich standard hpiia a non-trivial condition and
there is still a lot of code that runs natively on a target hane. The dynamic approachfiers
from something we could calllaoomeffect. Let’'s imagine that dynamically checked code runs
for a long period of time and performs a lot of activity durialy that time. Then, suddenly
the safety policy becomes broken and the execution is texexdh But what will happen to the
effects of all actions that were executed to that time? Shoelglltle cancelled? Is it possible to
do it at all? These questions do not have any satisfying answe

On the other hand in the processstéiticchecking the code is verified without being actu-
ally run. The answer of a static check is always positive gratige and the code is accepted
or rejected. It is impossible to break the execution in thddig, as in the dynamic approach.
A static checking does not necessarily need any support foontime environment. In this
sense it is more general than the other. However, the setiarity policies are usually less
precise because all nontrivial security policies are ofrsewndecidable. The user must then
accept the fact that some programs would be misjudged wheansithat some perfectly legal
programs are sometimes rejected. The opposite situatioereran illegal code was accepted
would be a true disaster and should never happen. In pragigdéen aim at buildingonser-
vativealgorithms which accept only valid programs and rejectradalid and as few valid ones
as possible.

All these observations lead to an obvious conclusion: tieer® perfect way to enforce a
safety policy. The best what we could probably do would beutiotipe advantages of dynamic
and static checking together in a framework which unifiebadt features of these two.

Pros Cons
Dynamic | - precise security policies - non-trivial
- exact verification - boomeftect
Static - does not require the VM - intoo sensitive
- noboom ¢fect

Figure 2.1: Comparison of static and dynamic techniques

This is exactly what XMS is. On one side modern runtime emrments such as the Mi-
crosoft .NET dfer quite sophisticated dynamic policies. Formal aspectsnaterlying inter-
mediate language also impose some static policies (like-sgbety). At top of that the XMS
dynamic verification engine uses code instrumentationtibyde safety policy at the run time.

On the other side, the pros of dynamic security built int@thenvironments can be extended
with static policies which would allow the user to be even enoonfident that the code is
perfectly safe in variety of ways. In its current form XMS cstatically validate the Design By
Contract safety policy, however because it is built on tofhefProof Carrying Code paradigm,
it is imaginable that it could validate any safety policy segsible in a formal way.

2.4 Modularization and compositionality

There are other important aspects of safety that have areid®ion the way security policies
are enforced.
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First aspect isnodularization. Ideally it would be desirable to prove that a big module
consisting of many smaller ones is safe by breaking up thetyseéquirement to these smaller
parts of it. We would just like the following property to hold

SAFEM) /\ SAFHF)
FeM

That is exactly how the Design By Contract safety policy velsaWe do not validate the
whole execution graph of the application. Instead, we a®afvery single method separately
and then conclude that the application is safe regardletseapecific execution trace.

Second important aspect of safetyc@mpositionality. In concurrent environment it would
be desirable to prove that a concurrent system is safe odlgwly if all its parallel components
are. We would like to have:

SAFEM, | ...| My) & SAFEM)) A ... A SAFEM,)

Although the Design By Contract policy is not compositiofait-of-the-box”, it is known
that the analysis of the concurrent execution can be peddr(f2]) and in the future XMS
could probably adopt these techniques.

Nevertheless, these two properties, modularity and cormgoaality, are not general. They
hold for some safety properties but do not hold for othersatW$ more unfortunate, they are
completely independent of each other. For example, anatiprtant safety policy, the Non-
Interference ([14]) is compositional but not modular. Thiuld bring interesting issues if such
policy would be adopted to XMS.



Chapter 3

Core Paradigms

3.1 Design By Contract

3.1.1 Overview of the Paradigm

TheDesign By Contract([26]) paradigm lays the base for systematic object-oeémtevelop-
ment. It defines a precise framework where software comgsiman be seen as communicating
entities whose interaction is based on mutual obligatiosteenefits.

These obligations take the form of predicates which précidefine what requirements
must be met for a code to be run and what is the result of theurec Assuming that there is
a code supplier module and code client module, there areaéwvgortant predicates that must
be provided for the DBC:

precondition of a method is a predicate which forms an obligation for thentl(the client side
has to make the precondition satisfiable upon the invocatidime method) and a benefit
for the supplier (it assures the supplier that cases thabtsatisfy the precondition have
not to be handled)

postcondition of a method is a predicate which forms an obligation for thepdier (the sup-
plier side has to make the postcondition satisfiable upomtinod’s exit) and a benefit
for the client (it precisely defines the state of supplieémputation)

class invariant is a predicate which obligates the supplier to make it sab$ifor all the time
the client has an access to an object instance

invariants are predicates used internally by the supplier to deschibstiate maintained upon
each entry into a loop body

Contracts can be seen as a strong mechanism for enforgatety of computation For
any method to be predictable, if precondition is met whenntte¢hod is run then we should
expect that the execution will end in a state in which the gmsdition is also met. Contracts
are also a form oformal documentation since they provide a detailed description of code
semantics.

The Design By Contract paradigm introduaesilti-level testing. According to this idea
Contracts should not be verified only in a production envinent but rather during the testing
process. There arenit testswhere modules are tested in isolation and assuming that clisi-
gations are met, tests verify that supplier’s obligatiores@rrect. There are thentegration

11
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testswhere modules are tested together and then the primary feasverifying the client’'s
obligations.

3.1.2 Contracts in Practice

Contracts are gradually introduced in new programminguaggs. In some programming lan-
guages they are even a first-class constructsg|g25], Nemerle, D).

For other languages there are usually many DBC implementato choose from, just to
mention a few:

e DBC for C' and GNU Nan& are DBC implementations for the/C++ programming
languages

e eXtensible C#is a postcompiler that transforms declarative contracG#rapplications
into a code that verifies pre- and postconditions of methadgpaoperties

e ContractFord, JContractoP andSpringContractare Design By Contract implementa-
tions for the Java and they use various code instrumentatidrbytecode augmentation
techniques to verify contracts in the run time

Yet another level where Contracts play an important roleestorld of software modelling.

As models expressed in thnified Modelling Languageusually are not precise, their seman-
tics is often expressed using tlject Constraint Language a formal language maintained
by the Object Modelling Group which is "used to describe expressions [...] which typically
specify invariant conditions that must hold for the systemd¢y modeled or queries over objects
described in a mod&l” As such, the OCL can be seen as the Design By Contract shitiad f
the programming language level to the software modellinglland existing OCL frameworks
should be also mentioned in DBC context ([3], [9]).

3.2 Proof-Carrying Code

The Proof Carrying Code paradigm was proposed in 1998 (@83])is based on earlier works
on digital certificates.

3.2.1 Overview

The main idea is a notion d&ferification Conditiona logic predicate that contains the informa-
tion about the program execution. The Verification Conditnot just any predicate but rather
a special one - if the predicate is provable then the progpraaugion is valid. It turns out that
the formal proof of such a predicate can be used as a digittificate which guarantees that
the code is safe according to the safety policy.

Ihttp://dbc.rubyforge.org

“http://savannah.gnu.org/projects/nana

Shttp://www.resolvecorp.com/

“http://www.contract4j.org/contract4j

5http://jcontractor.sourceforge.net/

Shttp://springcontracts.sourceforge.net/

"OMG Specificationshttp: //www.omg.org/technology/documents/modeling_spec_catalog.htm
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The overview of the PCC infrastructure is shown in figure 3He figure depicts the PCC
in its simplest form. As we can see there is a kind of a protbetlveen the Code Producer and
Code Consumer. This protocol is sometimes referred #8GS protocol.

CODE CODE
PRODUCER CONSUMER

CODE

SOURCE IS !
SAFETY POLICY

]
’, CODE + : E>
INVARIANTS ' VC

1

: GENERATOR
' LOGIC

1

1

1

K

THEOREM
PROOVER

\V/
‘I7 > PROOF

CHECKER

Figure 3.1: Overview of basic PCC protocol

The PCC protocol consists of the following steps:

[EEN

. The Safety Policy is defined by the Code Consumer.
2. The Code Producer prepares the source code.

3. The Code Consumer uses the Verification Condition Gemetatscan the source code
and build a predicateverification Condition) that is sent back to the Code Producer.

4. The Code Producer is responsible for finding a formal pobdtie Verification Condition.
The proof of the Verification Condition acts as the certiftcat safety.

5. The proof is again sent back to the Code Consumer and tedidath a Proof Checker.

6. If the Verification Condition is valid then the code is adty run on a client machine.

Earlier we have discussed several notions of safeturity. No matter what kind of pol-
icy we turn into account, it must be somehow expressible &igmusing some kind of logic
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with a precise proof system. This requirement is fundaméotdCC because the Verification
Condition built upon the code together with its proof actshescertificate of the code safety.
Two really dfficult issues arise here. These are:

¢ building a Verification Condition from the code
e concluding that the code is safe if the Verification Condiiti® provable

In fact for any Safety Policy these two issues require a unitherem In the most general
form it can be stated asmaetatheorem:

Theorem 3.1(Meta-theorem of PCC)For a given Safety Policy S and a code F, if the Verifica-
tion Condition for the S built from F is valid, i.e.

Sk VGCs(F)
then the code F is safe according to S.

This is where the diiculty of PCC lies - for any Safety Policy we need an algoritlon f
building Verification Conditions (the algorithm is call&@rification Condition Generator or
VCGen) and an "instantiated” version of theorem 3.1 which wouldhfally validate that the
VCGen is correct in a sense that safe programs corresporalit(provable) predicates.

The PCC Protocol presented above is general but not quittigah It is too complicated
to be used iciently. The main problem is the need for the communicatietwieen the Code
Producer and Code Consumer. That is why the original protwes simplified ([33]). The
simplification is built upon an observation that the Safeb)idy can be shared between Code
Producer and Code Consumer. In fact some common policiebeaeveloped, presented to
the public and used by all interested parties.

XMS extends this modified protocol with one important detalilcertificates are embedded
into the binary’s metadata so the validation engine carfyatl certificates at once with no
additional resources required. This modified protocol mghin figure 3.2.

The Code Producer and Code Consumer use the same public afedveafety policy
which defines logic and algorithms to build Verification Cdiuhs.

The Code Producer:

1. adds method specifications to the source code,

2. uses VCGen to build and encode Verification Conditions,

3. constructs proofs for VCs,

4. encodes VCs and proofs and binds them into the code

The Code Consumer:

1. uses VCGen to build Verification Conditions,

2. checks if the same VCs have been supplied with the codesb@dlde Producer,

3. validates the correctness of proofs (certificates).
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CODE CODE
PRODUCER CONSUMER

CODE
SOURCE

SAFETY POLICY

'
: VC GENERATOR + {> vC
. THEOREM PROOVER GENERATOR '

PROOF
CHECKER

8

Figure 3.2: A modification of PCC protocol for the XMS
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The steps above are required to accept the code as safe.Hdotlis protocol can fail at
several points. Specifically:

1. the code can have no extra information that is requiredlaitd the Verification Condi-
tions,

2. the predicates rebuilt at Code Consumer side d@@rdrom these supplied with the code,

3. proofs supplied with the code can be invalid in a sensettiegt prove something but
actual predicates

If the protocolfails for any of these reasons the codedgcted as unsafe.



Chapter 4

The Intermediate Language

The Microsoft Intermediate Language (MSIL or just IL) is drnjext-oriented intermediate lan-
guage. It is executed by the Common Language Runtime (CLR)n@me environment that
itself is a part of Common Language Infrastructure (CLI).

The IL makes it possible to unify software components wmiitemany dfferent program-
ming languages. It supports several high-level languagjeifes and that is why it can be easily
targeted by most of them. In fact, any language that follawsesspecial rules known as Com-
mon Language Specification (CLS) can use MSIL as a back-eadgh some languages had to
be redesigned. The ILflers class-based objects, inheritance and the type sdfetg iR dfers
the garbage collection and a rich set of library classes krnas\the Base Class Library (BCL).

Today a wide set of compilers for a variety of languages islavie for the .NET Frame-
work. One of the most widely adopted languages is undouptib@l C# language designed
exclusively for the .NET Platform. As an descendant te+Gand Java, the language is used to
develop console-based and window-based application aasveleb-based services. The .NET
Framework is also a target for a new dialect of Visual Basie+@nd J# compilers. Compilers
are also developed outside Microsoft for Ada, COBOL, Pyitsiffel, Haskell, OCaml, SML
and many other languages. Because each higher level cortatets the same intermediate
language, the .NET components written ififeiient languages can cooperate very closely by
not only calling each other’s methods but also on the levelass inheritance.

In contrast to Java’'s paradigm:

Java=
One language, any platform.

this new .NET paradigm was concisely summarized by BruceEHgk0]):

NET =
Any language, one platform.

The full specification of the .NET Runtime Environment ashaslthe IL and C# languages
was published under ECMA standard ([27]). Consequently,.NET Runtime Environment
was also implemented outside Microsoft and released to ffle@ource community

Mono and DotGNU projects

17
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4.1 The Runtime Environment

4.1.1 Managed Modules

A moduleis a primary physical building unit of a .NET application. ©ar several modules
can form anassembly a primary logical building unit of an application. Sincermajority of
practical cases assemblies consist of one module, thegerms - module and assembly - can
be used exchangeably.

From the OS perspective there are two types of modules - t&adgles and shared libraries.
From the .NET perspective there is almost nfietence - the only dierence between an exe-
cutable and a library is thentry point- a special marker in the code so the OS recognizes it as
the entry point of the application. It is then obvious thaN&T application can consists of a
single executable module and an arbitrary number of shdyeaties.

PE/COFF HEADER

CLR HEADER

IL CODE IL METADATA

NATIVE CODE + DATA
(OPTIONAL)

Figure 4.1: Structure of a managed assembly

Figure 4.1 shows a structure of a managed assembly. The kdtdader is a standard
Windows Portable Executable or Common Object File FormBtCP®FF) header. Itis followed
by the CLR header that describes the structure of the asgembl

The most interesting part of the managed assembly follaws.dalled themetadata The
module’s metadata precisely defines all objects - types, fietds and methods - declared or
referenced in the module. It is a complete logical desaiptif the module, data that describes
data. Since the metadata is publicly accessible, it is ptes$d analyze the structure of the
module from anywhere in the code. As the metadata is cruziahy interaction between the
module and other modules, the integrity of the metadataasigely checked by the runtime
environment before the module is executed.
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4.1.2 Execution Process

When MSIL code is executed in the Operating System, it is eded to platform native code by
the so called just-in-time (JIT) compiler which is builtanthe runtime environment. The term
"just-in-time” reflects the fact that rather than compiliath MSIL at once, the JIT compiler
converts the code as needed and stores the result for angosidrg calls. Thus, the JIT com-
pilation takes no longer than necessary since when onlydheop the code is used in current
context, the unused methods will never be JITted. Also tleeated code could be, theoreti-
cally, even faster then the native code produced by "stabaipilers since the JIT compiler can
make use of the information on system architecture to opérnttie produced code in current
context.

The most important aspect of such execution scheme, howstbee MSIL portability - as
the same MSIL can be JITted on almost any architecture (Eig#?). For example, if run on a
64-bit platform, JIT compiler can make use of 64-bit regst® perform 64-bit arithmetic as
fast as possible. The same code run on 32-bit platform mosdiyee more complex native code
to handle 64-bit arithmetic.

PROGRAMMING LANGUAGES

LANGUAGE
COMPILERS

MSIL

JIT COMPILERS / l \

PLATFORMS

Figure 4.2: High-level compilers versus JIT compilers

4.2 Safety and Security of IL

The Common Language Infrastructure Draft ([27]) definesrangt safety conditions for the
Intermediate Language. In fact, the safety is one of the mla&tienges for the CLI designers.
There are also several security mechanisms which can bebysex end-user or by the de-
veloper. Before we consider the safetjeved by XMS, we have to analyze mechanisms that
already have been built into the CLR to see how XMS fits betwieem.
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4.2.1 Safety
Validity and Verifiability

There are several independent levels of safety and sesugthanisms in the CLR. As the
assemblies are loaded by the runtime environment, a stagickcis performed to see if the
assembly is valid aridr verifiable. If the assembly is not rejected, any other sgcchecks are
performed dynamically in the runtime.

There are four types of .NET assemblies: syntacticallyemtyvalid, type-safe and verifiable
(Figure 4.3).

An assembly is callestalid if the file format, the metadata and the IL stored in the assem-
bly are self-consistent. An invalid (inconsistent) IL seqae could be syntactically correct but
would for example contain invalid metadata or an opcodedbas not belong to the set of valid
IL opcodes or a jump to an operand rather than to an instmuctio

At the next level of security we hauwgpe-safeassemblies. Here the "type-safety” means
for example that private methods are not called from outsfdeclass, i.e. class interaction is
based on public information only.

Finally, at the last level of safety there are verifiable agséees. An assembly is called
verifiableif it passes a much stronger type-safety check than type-asdemblies. This test
tries to detect any unsafe memory operations that couldtleatauthorized memory access.
An unverifiable assembly would for example contain a nativée; use pointer arithmetic or
convert pointer to values and vice-versa. The verificatigorithm isconservative code that
is memory safe, can be rejected as unsafe.

Syntactically correct

Valid

Typesafe

. Verifiable

Figure 4.3: Valid and verifiable IL
Below we briefly summarize the type-checking algorithm. Te¢ailed description can be

found in part 1, section 1.8 of the CLI Draft ([27]).

1. Consecutive IL opcodes are checked for syntactic vgl{ddrrect number of parameters).

2. Jump are checked to not to fall out of the method bodies.
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3. The one-pass scanner analyzes consecutive opcodesesnd 8imulate an execution of
the method body. The scanner verifies the stack is propeglyepved by emulating the
stack state at each opcode. The scanner also verifies tthahatic and pointer instruc-
tions are type-safe:

e if the opcode pushes the data onto the stack, the type of tadsleemembered in
the emulated stack

e if the opcode pops the data from the stack it will succeed dmgmembered types
are valid in the context of the current opcode

e the stack depth is remembered at each point so in the caseawfkavérd branch
the remembered stack depth at the destination locatiommparced to actual stack
depth (this check is to eliminate the code that could cawszk siverflows or stack
underflow by continually pushing or popping the data in a Joop

¢ if a method is returning a value the stack depth is checkee th if a method is not
returning any value the stack depth is checked to be O (thissbminate a common
buffer underrunattacks where additional data is pushed onto the stack doéfier
method returns)

¢ in case of a method call the returned type is remembered oentidated stack

¢ in case of a type-sensitive arithmetic instruction verifleecks if types of consecu-
tive parameters match the instruction requirements

Because of such a strict algorithm the code is type-safe &t M$el to quite reasonable ex-
tent. Several serious problems faced by some loosely-tgpetevel languages are not present
in MSIL ([16]). It has also been noticed that the MSIL Runti@evironment had been able to
avoid some security issues of Java Runtime Environmen})([31

This is up to the Runtime Environment to preserve this tygfety at the machine-level
when the code is run in the Operating System. In fact, no ecgelevas found that the existing
Runtime Environments break this property in any way (alttono formal proof of translation
adequacy was given). It means that type-safe code at MSH! froduces type-safe machine
code after MSIL is JITted.

The .NET Framework provides arffiine verification tool,PeVerify.exe. The tool val-
idates and verifies selected assemblies and provides dedettafiormation about all detected
incompatibilities.

Runtime safety

A valid or verifiable assembly executed by the runtime emuinent is still prone to security

issues that can not be detected by a static check. Thess m®ueeported to the application as

exceptiongand can be gracefully handled by the application accordirige exception type.
There are several types of security exceptions reportdtetapplication by the CLR, i.a.:

e any reference to an uninitialized object is raisedNaiReferenceException

e arithmetical MSIL instructions can raigeithmeticOverflowException or DivideByZe-
roException

e array operations can raitedexOutOfRangeException
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e any OS security exception is caught and rethrown by CLR,Xan®le an jO operation
on a file to which the current user have no access rights caigd$ecurityException

4.2.2 Security

Beside strong safety mechanisms which include static gatifin of assemblies and runtime
detection of unsafe operations, the CLR also gives secarégghanisms to both developers
andor end-users.

Assemblies can be executed under thrégetinthosting environments

OS shell - the shell can run assemblies from the command line
ASP.NET - a web application can be hosted inside a web server
Internet Explorer - a web browser can run assemblies referenced by web pages

When an assembly is loaded by the runtime environment, teedmyironment provides an
evidencdor that assembly. Among any other assembly attributesvitence tells the runtime
environment where the code comes from. Based on this inftwmahe runtime environment
assigns various permissions to the assembly. For examptiefault assemblies that are loaded
from the local machine are given "full trust” and have unliea access to the local file system
controlled only by user OS privileges. In contrast, asseslthat are loaded from the Internet
zone have no access to the local file system and any file sygpenatmn raises a security
exception.

Since from the developer’s point of view it is not possibled&termine in advance what
evidence will be given to an assembly, the same code can mot@ccording to the context it
is executed in. To reduce the possibility of data loss bexatianexpected security restrictions,
developers can "secure” the code in two ways, either ddatatg by putting special attributes
on methods:

[PrincipalPermissionAttribute(SecurityAction.Demand, Role=@"Rolel")]
public static void Method() {

}
or imperatively, by calling proper method of a permissiorech

public static void Method() {

PrincipalPermission p = new PrincipalPermission( null, "Rolel" );
p.Demand();

There are the cases where one of the ways should be used ew@htr, although in both
cases a security exception is thrown either at the methaxtation in declarative style or at
permission demand in imperative style. The exception caof beurse gracefully caught by the
application.
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From the end-user perspective ttede-accessnechanisms can be used to define custom
sets of permissions and custom rules for granting evidetocassemblies, thus creating custom
"sandboxes” for untrusted assemblies. If for example allassembly can not be fully trusted,
a custom sets of permissions can be defined that disallowisitamgiction between the local file
system and the networking subsystem. Then a custom ruleecdefined that assigns assem-
blies from a fixed location, for example the folder\MySandbox, to be assigned previously
defined permission set. If run from local machine, when sisamtiboxed” untrusted applica-
tion tries to interact with the file system or use the netwaglsystem, the security policy would
disallow it and a security exception would be thrown.

There are several possible permission types that refer thima or operating system ob-
jects: afile system, the system’s registry, networkingesysietc Role-basedecurity attributes
can refer to users and their roles in operating system anliceqvidence requests, so that an
assembly can be for example run only when it comes from loealmme.

The Microsoft .NET Framework contains thMicrosoft .NET Framework Configuration
shap-in fiscorcfg.msc), a tool that allows easy and visual manipulation of sevewdk-based
security policies. Other CLR implementations can contairilar tools.

&+ NET Configuration 1.1

File Action view Help

L) Corfigured Assemblies ~ . . |
L @ Remaoting Services M_achme__ F'l:ll]_l:y_.

= ;_,] Runkime Security Policy
. B Enterprise There are three configurable policy levels {enterprise,
=r machine, and user) that the security system uses to

- =L Cods Groups determine what permissions an assembly receives. Each

: B All_code
L2 =] Q My_Computer_Fone

Q Microsoft_Skrong_MName
-4 ECMA_Strong_Mame

= € Locallntranst_Zone
<} Inkranet_Same_Site_Access
C} Intranet_Same Directory_Access

= ‘Q Inkernet_Zone
C} Internet_Same Site_Access

‘9 Reestricted_Zone

= Q Trusted_Zone

<} Trusted_Same_Site_Access

paolicy level contains code groups, permission sets, and
a list of policy assemblies, all of which are configurable
using this toal,

The enterprise level is the highest, describing security
policy for an entire enterprise, Below that, machine
policy applies to all code run on that computer, User
policy is a third level that can be defined based on the
currently logged-on user. When security policy is
evaluated, enterprise, machine, and user levels are
separately evaluated and intersected - meaning that
code is granted the minimum set of permissions granted

H | Lg";} Permission Sets
H FullTrust

by any of the levels,
IE:

[f Skipvterification
-] Execution
[f

I

[F

| Expand this node to edit code groups, permission sets,
1
-{[g@] Mothing
1
|

or the list of policy assemblies.

Lacallntranst
Internet

[ Everything
1 B g ;g} Policy Assemblies
w7 User “oconfighsecurity. config
i @ Applications R @

This security policy applies to this computer.

This policy level file is located at:
CAWINDOWSYMicrosoft. METYFrameworki\vl. 1.4222

Figure 4.4: NET Framework Code-based policy configuratibah

Yet another level of security is maintained by the cryptpgie signatures which can be
used tosign assemblies. Any reference to a signed assembly maintapultkc key and the
integrity of the referenced module can be checked at thementThis makes it impossible to
replace the signed assembly with an untrusted one.

4.3 The Language

As pointed out in the previous sections, the MSIL togethéhwie Runtime Environment form
the core of the .NET Platform.
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However, to be able to formally define the semantics of XMSfieation engines we have
to build the semantics for the language. In subsequenosecive present the IL language and
adopt existing description and conventions ([27, 16, 43]uild the semantics.

Table A contains the full set of IL instructions and commaearigheir support in XMS.

4.3.1 Naming Conventions

An IL assembly can be seen as a set of types (types are aled tellhsses”). A type signature
contains fields, methods (including constructors). A sigreaof a field consists of a name and
a type. A signature of a method consists of a name, a type diuenesl value and a list of
arguments with their types. Methods bodies are sequendegtidnally labelled) instructions.
This is summarized in following figure.

M = (CD,..) modules
C,D, T = (f,g,h,....,F,GH) types
f.g fields
F,G methods
Fi, G; instructions
I labels

Figure 4.5: Naming conventions

Note thatT :: f andT :: F will be used to denote that a particular figlér method~ belong
to specific clasg'.

4.3.2 Types (classes)

The IL types fall into two categories: reference types ardestypes. Reference types represent
objects that are stored on the heap and are referenced fistabk or the heap during the
computation. Value types are much like C structures, thpyersent objects that are stored on
the stack.

This distinction however is introduced mainly for performsa reasons. From the type sys-
tem point of view, the class hierarchy is single-rooted @y stem.Object (or justobject)
is a root of the object hierarchy. Even simple value typesiitifirom theobject class and can
be uniformly treated like regular objects with little pemizance penalty - boxing and unboxing
of value types is handled at the MSIL level.

Type system contains several built-in value types (boagemegers, etc.) and can be ex-
tended with custom value or reference types (figure 4.6).

Types contain fields and methods with specific signaturesréig.7). A field signature
contains name and type of a field. A method signature contamsiame, type of returned
value, names and types of arguments and onecallthg conventions static, vararg, instance
andinstance vararg(static methods do not refer to any specific instance of a class and are
opposite ofinstancemethods which operate on class instances).

Note that types which are part of the Common Type System héwk mame of the form
System.Object, System.Int32, System.Boolean etc. indicating that they come from the
System hamespace. Programming languages are free to progige aliasefor common types
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void no bits
object root of the class hierarchy
bool boolean value
int32 signed 32-bit integer
- other value types
class C custom reference type

Figure 4.6: Types

so that the name alias can be used aside of the type’s full.faanexample, the MSIL language
provides name aliases for common types of the fobect, int32, bool etc.

f = C name field signature
F == conv C name(Ciny...,C¢ny) method signature

Figure 4.7: Field and method signatures

4.3.3 Inheritance

The inheritance relation between IL types is presentedvbelking thesubtype relation. An
inherited type contains al least all fields and all methodmfits ancestor.

In particular, any type can be used in the context wisgretem.Object is expected. We
will write D <: C to denote that typ® is a subtype (inherits from) type.

The <: obeys some rules. Two most important are: the class hlgrascsingle-rooted and
each type inherits from exactly one type. (even value typbsrit from the base typebject
however they cannot be inherited).

These rules are summarized in figure 4.8

A <: System.Object Hi Root
A<:BAB<:C=> A< C Hi Trans
A< FAA<:G=F <G v G<:F HiSingle
A<:F AFisavaluetypes A=F Hi Val

Figure 4.8: Basic inheritance rules

4.3.4 Method bodies

IL method bodies are sequences of instructions. It is istarg to notice that many instructions
have several forms, most oftenshortandlong form. Forms difer only in parameter size, a
short form requires a 1-byte parameter and a long form reg@ard-byte parameter.

Although the semantics will be presented in following sems$i, we should notice that the
IL is a stack-based language. Every instruction takes itarpaters from the top of the stack
and puts its result onto the top of the stack. In particutere is no direct addressing of local
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variables or method’s parameters exdept andstoreinstructions which move values between
the stack and variabl¢ggparameters.

The depth of the stack is measured wsthts not with bytes. For example, when there are
two 32-bit integer values and a string value on the stackdtyh is 3. Since the language
is strongly-typed, all values contain the information abtheir type and the incompatibility
between actual and expected types are detected duringtiévarification phase.

IL instructions fall into 6 categories and in following se@lasion we present selected instruc-
tions.

Control Flow Instructions

Each IL instruction can be labelled by a label. Labels arel tsenark the destination points of
jumps. For example:

br jump_1
jumpl:

Selected IL control flow instructions are presented in tdde

br label unconditional branch
brtrue label conditional branch
brfalse label conditional branch
bge label conditional branch
bgt label conditional branch
ret return

Figure 4.9: Selected IL Control Flow Instructions

Thebr labelinstruction unconditionally jumps to an instruction ladedlbylabel.

In contrast, thértrue label [brfalse label] instruction pops the value from the stack and
jumps to an instruction labelled bgbel only if the popped value is nonzero [zero].

The bge label andbgt label instructions pop two values from the stack and jump to an
instruction labelled byabelwhen the first value is greater-or-equal or greater, regebgt

Theret instruction pops the stack frame and ends a method’s executia method that
have been called should return a value then exactly one wdlpeoper type must be on the
stack at the moment theet instruction is invoked. The value is then removed from tlaelst
of the method and is put onto the stack of calling method witecan be then popped and
processed.

Arithmetical Instructions

IL supports several arithmetical instructions which aresented in Figure 4.10.

Arithmetical instruction set contains parameterlessyyaad binary instructions. Any in-
struction that needs parameters take them from the staekteBult of an arithmetical instruc-
tion is always stored on the stack after the instruction ecated.
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ldc.i4 i
dup

pop

add

sub

mul
div, rem
neg
and, or, xor
not

shl

shr

27

load integer value onto the stack
duplicate the stack value
remove the value from the stack
addition
subtraction
multiplication
division, remainder
negation
bitwise AND, OR, XOR
bitwise unary inversion
bitwise shift left
bitwise shift right

ceq, cgt, clt check if first equal tg greater/ less than the second

Figure 4.10: IL Arithmetical Instruction Set

Instructions for Addressing Fields, Arguments and Local Vaiables

Instruction for addressing fields, arguments and locabdes are presented in Figure 4.11.

ldarg v
ldarg.i
starg Vv
ldlocn
ldloc.1i
stlocn
stloc.i
1df1dC T :: f
1dfldaC T :: f
stfldC T:: f
1dsfldC T:: f
stsfldC T:: f

load from argument
load fromi-th argument
store into argument
load from local variable
load fromi-th local variable
store into local variable
store intoi-th local variable
load from instance field
load manager pointer from instance field
store into instance field
load from static field
store into static field

Figure 4.11: Selected IL instructions for fields, argumemid local variables

Theldarg vinstruction loads the value of anmethod argument on the stack. Téwearg

v instruction takes the value from the stack and stores iteratigument slot.

The 1dloc ninstruction loads the value of arth method’s local argument on the stack.

Thestloc ninstruction takes the value from the stack and stores iteéridbal variable number

n.

Theldfld C T :: f instruction pops an object referencdrom the stack and loads the

value of the object’s field :: f of typeC on the stack. Thetfld C T :: f instruction pops the
value from the stack, pops an object reference from the stagdlstores the value to the object’s
field T :: f of typeC. Theldflda instruction behaves just liked1£1d but instead of loading
the value of the field on the stack, it loads a reference to éhe ¢in the stack.

In contrast, thddsf1ld C T :: f instruction loads the value of the static fifld: f of type
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C on the stack. Thetsfld C T :: f instruction pops the value from the stack and stores the
value to the static fiel@ :: f of typeC.

The distinction between these two pairs of instructidrild, stfld vs1dsfld, stsfld)
is then obvious: they apply to instance and static fieldseetsgely.

Instructions for Calling Methods

IL instructions for calling methods are presented in Fighde?

callconvC T: F call a method
callvirt convC T:: F call avirtual method

Figure 4.12: IL Instructions for Calling Methods

The call instruction pops arguments from the stack and call the naetvith given argu-
ments. For example:

ldc.i4 1
call int32 TheClass::StaticMethod(int32)

first loads an integer value 1 onto the stack and then callstie stethod which expects single
integer parameter and returns an integer value.

Note that thecall instruction expects a full signature of the method (inahgdihe type of
a return value) as a parameter. This is to avoid any confusi@ase of multiple overloaded
methods sharing the same name.

Thecallvirt instruction does almost the same but the call is conducteahligstance’s
vtable (table of virtual methods) which means that the sgtialymorphic.

The distinction between virtual and non-virtual calls isple: thecall instruction does
not use the vtable which means that inesver polymorphic. It is then suited to static functions
and non virtual calls. In contrast, tkallvirt instruction always uses the instance’s vtable. If
an instance of a class is cast to the parent type and a methallied bycall then the parent’s
method will be called but when a method is calledday 1virt a child method will be called
as a result of the vtable entry.

Is interesting is that a non-virtual method can be alwayslgafalled withcallvirt as it
will have the sameféect ascall.

Parameters to methods should be pushed on the stack in dtleir@ppearance in the sig-
nature (first parameter pushed first, last parameter pugssgdIf an instance method is called,
the first parameter must always be a reference to the instdrageobject this parameter).

Instructions for Addressing Classes and Value Types

As an object-oriented language the IL includes instrucidedicated to classes (table 4.13).

Theldnull instruction loads a null object reference on the stack. ddwobj instruction
allocates memory for a new instance of specified class. I$ poguments from the stack, calls
appropriate constructor (which must be callethr) and pushes the reference to a newly created
object on the stack.

Example 4.1 Following sequence of code:
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ldnull load null reference
newobj T ::.ctor create a new instance

Figure 4.13: Selected IL Instructions for Class Manipwlati
ldc.i4 4
newobj instance void TheClass::.ctor(int32)

initializes a new instance dheClass by calling a one-parameter constructor and passing the
value 4 to the constructor.

Vector Instructions

The IL also includes few instructions dedicated to vectarapons (table 4.14).

newarr token create a vector
ldlen get the element count
ldelem.x 11 instructions to load vector element
stelem.x 8 instructions to store vector element

Figure 4.14: IL Instructions for Vector Operations

The newarr instruction pops the element count from the stack and csee vector of
elements specified by theoken. The 1delem andstelem groups contain strongly-typed in-
structions to load and store vector elements. For exampieng 11 instructions to load a vector
elements we havkdelem.i4 to load an element of typent32, 1delem. i1 to load en element
of typeint8, 1delem.ul to load unsigned element of typ@t8 andldelem.ref to load an
element of reference type.

Example 4.2 Following sequence of code:

ldc.i4 13
newarr System.Int32

creates a vector of 13 integer values.

Theldlen instruction takes the vector reference from the stack amsithe element count
onto the stack.

Each ofldelem instructions take the element index and the vector referénoen the stack
and put the value of the element on the stack. Eadtelem instructions take the value to be
stored, element index and the vector reference from th& stad put the value of the element
into the appropriate slot of the vector. In case of any illdglem or stelem operation (index
of bounds of the vector, null reference for vector, type mpatibility) a runtime exception is
thrown.
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4.4 The Semantics

The semantics of the IL language is documented in [27], hewditakes a semi-formal form.
Because a precise semantics is a core of XMS infrastrudturaq a decisive role in construc-
tions of verification conditions and proofs of their correess) below we presentitin a concise,
formal manner inspired by [16] and [43].

4.4.1 Values

The IL language runs under the control of a stack-based meackitack size is measured in
slots not in bytes. A stack slot can accept one item of any type.
For example, after following sequence of instructions:

ldc.i4 ® // put 0 onto the stack
ldc.i4 1 // put 1 onto the stack
ldc.r8 3.14 // put 3.14 onto the stack
ldc.r8 2.71 // put 2.71 onto the stack

four stack slots are occupied.

Most instructions take arguments from the stack and plaeedbults back onto the stack.
For example following sequence:

ldc.i4 1 // put 1 onto the stack
ldc.i4 2 // put 2 onto the stack
ldc.i4 3 // put 3 onto the stack
add // take top two values from the stack,

// add then and put result onto the stack
add

lefts a single result value 6 on the stack. The result valugdcbe then used as a parameter
for another instruction. Aesult value of an instruction can be empty, can be a value type or a
reference (Figure 4.15).

u V= result value
0 void, no result
i1,i2,i4,18 1,2,4 and 8-byte integer
r4,r8 4 and 8 byte floating-point
p reference
null null reference

Figure 4.15: Result values
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4.4.2 Memory

The Runtime Environment executes the IL code by running datksigned as thentry point
of the code. Many high-level languages enforce the namingexttion on the entry point, for
example, in case of the C# language the entry point must batia,gparameterless method
called Main, optionally accepting a vector of strings as an argumentv Niack frames are
initialized on the stack as consecutive methods are called.

During the execution of consecutive instructions of a meéfiioe stack frame contains either
values or references. For value types, stack contains waleobject and the slot size depends
on the size of the value. For reference types, stack consaieterence to the object data, the
slot size has the size of a reference and the object dataexisto the heap.

Our semantic model must then contain the stack and the heapuBe classes contain static
fields, we need a shared storage where static values fronasdlas are stored. To complete the
description of the method’s local memory context we willcateed method’s local arguments
and local variables.

Table 4.16 summarizes the definition of a method’s loeamory context Since methods
call other methods, we will use the notatjgn pc to denote local contexts offéierent methods.

If this is clear from the context or not important to the comit¢he reference to method’s caller
will be omited.

o = (Ialv,h, H, s 06) local memory context of
o = [ag ag,...,a, — ag] local arguments
lv = [VoB Vg,...,Vh > Vy] local variables
h = pon heap
o = T[fi- u<n] object
H o= T/ e yietn shared storage
S = Uy...,Un stack
06 local memory context of’s caller

Figure 4.16: Local memory context

Note that the entry point method'’s local context must para fixed memory context which
is handled by the runtime environment so that the entry pogthod could return values to the
operating system.

Local argumentscan be seen as a vectar= (ay, . . ., a,) Of values andocal variablesas
a vectorly = (vy, ..., Vvy) Of values.

Both vectors can be also seen as partial functions fromblasao their values. What we
should point is that the IL method arguments aggnedarguments, so we can reference them
by nameor by numbelibut local variables areumberedarguments (their name is not present in
the binary image) so we can reference them daylywumber

We will adopt this duality and we will writéa(v) to denote the value of method argument
namedv andly(n) will denote the value of local variable numbeWe will also writel o[V - U]
(Iv[n — u] respectively) to denote the local arguments (local véesovector, in which the
valuev (n) is updated to a new value Formally:
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v ) = { o V27
>y = { 1 020

Theheapis a finite set of the object data, each taking the fdiffy — u/“-"] whereT is
the type and the mapping+— u'“*-" maps instance fields to result values (for example, a field
value can be another reference). The object data caeféencedand we will writep — oto
indicate that the referengereferences the object datdrom the heap.

We will write pr(f) to denote the value of instance fieldrom an object of typd refer-
enced byp. We will write pr[f — u] to denote an object in which the value of the instance field
f has been changed to Formally:

, pr(f) f=7F
(mHHMXH—{U (g
Vectors (arrays) are special kind of objects. They map 0-based eslexactual values and
take the formT[i — ui“*-"] to denote a vector of values of tydeindexed from O tan where
n+ 1 is the length of the vector. A vector is stored in a singl¢ sioa stack.
We will write ar (i) to denote the value indexed byrom a vector of typel referenced by
a. We will write ar[i — u] to denote a vector in which the value at the indé&as been changed
to u. Formally:

ar(i’) i#1
u i=1i

(&UHMW7={

We will write |a] to denote the length of vectar Note that since the length of a vector is set
during the initialization, it is fixed and cannot be changadmp the lifetime of the vector.

References are result values and they are usually storeatimbles. When the value of a
variable that holds a reference changes, the object datastheferenced by this reference is
lost. The Runtime Environment introduces the Garbage Cwlig GC), a mechanism that is
independent of the code execution and which sweeps the helajg@oves object data that are
no longer referenced using generational mark-sweep #hgoriNote that although extremely
practical, the Garbage Collector purpose is purely te@inict would be unnecessary if the
heap was infinite and new object data could be allocated aadenThus, the existence of the
Garbage Collector does ndfect the language semantics.

Theshared storageis a finite map from class names to their memory representateach
one takes the forrT[f; — u/<--"], whereT is a class name and the mappifig- u'*-"is a
mapping from static field names to result values.

We will write T(f) to denote the value of static fiefdfrom classT. We will write T[f — u]
to denote a class in which the value of the static fielths been changed to Formally:

UHHMXﬂz{IW)iig

The stack is a vector of result valuesiy. .., V). We assume that stack grows from right to
left, so the ¥, s) (or v - s) will denote a stacls with v put at the top. We will writég to denote
the length of the stack
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Example 4.3 Consider a memory contextwhere
prla=[X— 0,y 1]

and let a predicatP
def
P=Xx>0Ay-Xx>X

We then have
p(P)=0>0 A 1>0-="false

which can be read as "the predic@&eloes not hold in memory context.

4.4.3 Instructions

The body of any metho# is a vector of instructions. We assume that these instmgtire
numbered, starting from 0. We wrii2om(F) for the set of numbers of all instructions frafm
We also writeF; to address theth instruction of the method.

We model the execution state as a tuple= (i,p) that contains a program countere
Dom(F) and a local memory contept In a fixed context, we will sometimes write (1, lv, h, H, 9))
instead of {, p)

The operational semantics is defined as a formal judgememfa@imF + (i,p0) — (j,p’).
The judgement says that the executiorrabkes one step from statief) to state (, p’).

We assume that & Dom(F) and that the execution éf starts in a statgq = (0, |, lv, h, H, €))
(it means that & Dom(F) for anyF) wherely,(u) = O for any local variable of value type and
lv(u) = null for any local variablei of reference type.

The semantics of selected instructions from all groups e¥sgnted below.
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Fi:brl

Fr(op) = (Le)op) Evalbr

F; = brtrue |

- - Evalbrtrue®
Fr@,...,009—(i+1,...,9 rerue

Fi =brtruel An#0

_ Evalbrt
Fr...n-9— Le()...9 rhrae

Fi = brfalse |
Fr@,...,0-9 = (Le(D),...,9)

Evalbrfalse®

Fi =brfalsel An+0

- - Evalbrfal
Fr(@,...,n-9—>(i+1,...,9 rralse

Fi=bgelAu<yv

Fr(,....uv-9—(@(+1,...,9 Evalbge®
Fr (.F J_?,?es)' *:U(EF\(ID,---,S) Evalbge
Fr (i,,,Ei,lj.]?,g.ts; :u(iivl’_“’s) Evalbgt®
Fr (|FI J.]:/?ts)l ,:U(EF\(G)““’S) Evalbgt
o Evalret

Fr(,....,v- s 06) - pelSs/V- Sl
Figure 4.17: Semantics of selected Control Flow Instrungio
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Fi=1dc.i4 i

Fr@,...,9—>(@{+1...,i-9
Fi:dup
Fr@,...,v-9 > (i+1...,v-v-9
Fi = pop
Fr(@,...,v-9 > (i+1...,9
Fi = add
Fr@,...,u-v-9)—>(+1...,u+v-9)
Fi =sub
Fr@,...,u-v-9)—>(+1...,u-v-9
Fi = mul
Fr@,...,u-v-9)—>(i+1,...,uxv-9
Fi:diV
Fr@,...,u-v-9)—>(i+1,...,u/v-9
Fi = rem
Fr(@,...,uv-9—>(i+1...,u MODVv-Y9
Fi = neg
Fr@,...,.v-9 > (i+1...,-v-9
F; = and
Fr(@,...,uv-9—>(i+1...,uAND V-9
Fi = or
Fr@,...,uv-9)—>(i+1,...,uOR VY9
Fi = xor
Fr(@,...,uv-9>(i+1...,uXORVvY)

Eval ldc

Eval dup

Evalpop

Evaladd

Eval sub

Evalmul

Evaldiv

Evalrem

Evalneg

Eval and

Evalor

Eval xor

Figure 4.18: Semantics of Arithmetical Instructions
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Fi=ceqlAu=v

Fr(,..,u-v-9) - (+1...,1-9 Evalceql
Fk(i,...[:lij.:v(fes;l:\(lijfi/,___,o.S) Evalceq0
SRR ey e e ML
F|—(i,...t:liJ-:vC-gs;IH/\(liin/,m,o.S) Evalcgtd
Fk(i,...i:lij.zvcfls;:\(liJ:]\_/,_,_,]_.S) Evalcltl

Fizcltinusy Evalclt®

Fr(@,...,u-v-9m—>(i+1,...,0-9

Figure 4.19: Semantics of Arithmetical Instructions, cont
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Fi = 1darg v

. . Evalld
Fri,...9=(+L.. . .1,)-9 arg
Fi = starg v
. - Evalst
Fr@,a...,u-9)> (i+1,1s[v—u],...,9) starg
__ Fi=1dlocn Evalldloc
Fr@,....,.9>(@0+1,...,Iy(n)-9
F, = stlocn
. . Evalstl
FrG,.. ... u9—30+L. . .Nn—-u,. .9 sthoc
. Fizldfld_C Tof Eval ldfld
Fr@,....,p-9—(0+1,...,pr(f)-9)
. FizstfldC Tt Evalst£ld
Fr@,....,v-p-9—(i+1...,p[f—V],...,9
Fi=1dsfld C T: f
. . Evalldsfld
Fr,...9—(@+L...T(0)-9 s
Fi=stsfld C T: f Evalstsfld

Fr@,....,Tu-9ge-=(i+1,...,T[f > U],9)

Figure 4.20: Semantics of Instructions for AddressingdagArguments and Local Variables

Fi=call C T:G
Fr(@,...,Uy-...-Ug- S — pc Wherepg is a new context
pG:(O,lA[aOHuO,---aanHun]a---,E’pF)

Evalcall static

Fi = call instance C T: G
Fr(,...,up-...-Up- p) — pc Wherepg is a new context
pG = (O7IA[a‘thlS g p,aO'_) UO’---’an = Un],...,E,pF)

Evalcall instance

Figure 4.21: Semantics of Instructions for Calling Methods
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Fi = 1dnull
Fr@,....,.9>({+1,...,null-9

Evalldnull

Fi = newobj T ::.ctor(ug,...u,)
Fr@,...,Uy-...-Up-9 > (@{+1....,p-9

wherep = T[fi = u] Evalnewobj

Figure 4.22: Semantics of Instructions for Addressing Ctgje

Fi = newarr T

wherea — T[i'¢* - 0/null] Eval newarr

Fr(,....,-9>(@{+1,...,a-9
Fi =1d1

: ' s wherel = |a] Evalldlen
Fr@,...,a-9)—>(i+1,...,1-9

. . Fizlde}em - Evalldelem
Fr@,...,ira-g+—>(@{+1,...,a()-9

Fi = stel

. - : St? e . Evalstelem

Fr(@,...,viira-9 (i+1,...,ai—>V]-9

Figure 4.23: Semantics of Instructions for Vector Operatio



Chapter 5

The Infrastructure

5.1 The Safety Policy

In previous sections we have presented two core paradigiigl8f the Design By Contract and
the Proof-Carrying Code. To formally define PCC for XMS Safeolicy we have to provide:

e formal definition of a Safety Policy

e an algorithm for the Verification Condition Generator acgamied by the Theorem of
Soundness, an "instantiation” of the Theorem 3.1.

This is where the two paradigms are unified within the XMS:ghfety policy is expressed
on top of DBC. To achieve this, the code producer has to peogidomplete specification of
each method of the code - method signatures have to be extentihepreconditionspostcon-
ditionsandloop invariants

In contrast to the classic DBC we also require one additipaé of the extended specifi-
cation - the list of arguments (or their internal propeiti@hich are modified by the method’s
body such that the modificatiorffacts the caller side. This is purely technical and could be
avoided with the additional scan of the callee method’s blmglyin the current implementa-
tion it speeds up the analysis. In addition - the analogaisriust be provided for each loop
invariant for same technical reasons.

The intuition behind this requirement is that when a metlsodhilled and the call returns,
some variables (or their internal properties) passed asvaqgts to the callee can be modified.
For example, when a value type variable is passed by refeiga€ in C#) it can be potentially
modified in the method’s body and the modificatidfeats the caller side. From the other side,
any modification to a value type variable which is not passeceterence does notfact the
caller. As for loop invariants - a loop body can modify someafales and although the list of
modified variables could be also determined by the additiscen of the loop body, knowing
it in advance speeds up the analysis.

The reader probably notice that the requirement to provigaiexplicit way the list which
could be determined otherwise could be a potential seduoity in the infrastructure. Neverthe-
less, this is not the case in XMS - in fact both list are relaulinot in advance but rather during
the analysis and the analysis fails if rebuilt listfdrs from the one provided in the specifica-
tion. This explicit requirement is not a security hole buhga it makes it possible to perform a
one-pass analysis.

39
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Eventually, the specification of each method is of the form:

Speg = (Sigs, Prer, Post, Inveg, Modifg)

whereSig: is a method’s signatur@rer is a precondition predicatPpst is a postcondition
predicateJnvg is a partial function that maps instruction numbers to iars andModifg is
the list of parameters that are modified by the method’s body.

How the specification is physically provided is a technicatiad but in our case the specifi-
cation is stored in the metadata thus being inseparabletfieractual code.

Another important feature would be tlodéass invariants predicates which are valid any
time the client has an access to the object instance. Noteveswhat the class invariants can
be modelled by conjunctions with all preconditions and akfoonditions of class methods’
specifications.

Example 5.1 For the following method:
.method public static int32 Foo( int32 a, int32 b, int32 c ) {

ldarg 1
dup
mul // b*b

ldarg ©

ldarg 2

ldc.i4 4

mul // 4%*c
mul // ...*a

sub // b*b - 4*a*c

ret

}

we could write down following specification:

Sigoo ‘= 1int32 Delta( int32 a, int32 b, int32 c)
Preqo = true

P0oS-o = VALUE=bsxb-4xaxc

[V/=8 = 0

Modifre = 0

Following definition formally states the notion of secuntyth regard to Static Contracts
Safety Policy.

Definition 5.1 (XMS Safety Policy) An MSIL method F having the precondition Prand

postcondition Postis safe with regard to Design By Contract safety policy if &y initial

state of the local stor&, = (0, po) such thajpg | Prer and any stat& = (i, p) reachable from
the initial state we have that ifi= ret thenp | Post. We will denote this fact as Safé¢F).
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Safe (F) & VYsy=(0p0),5=(ip) L0 F Pree A Zo =" X A Fi =ret = p = Post

A moduleM is safe with if all methods from the module are safe. We wilbdie this fact as
Safg(M).

Safg (M) & Ve Safg(F)

Note that precondition and postcondition play a cruciaériol the above definition. A
method is safe only if whenever its precondition is valid mpavocation then the postcon-
dition is valid when the method is about to return. Becaust@fway the policy is defined, it
is modular (page 10) and even large applications can be ssitdly verified.

The above definition has two interesting consequences.

First, a method is safe if the precondition is invalid upoe thvocation (even though the
postcondition can be invalid when the method terminates}héory, such situation should
never happen because, as we will see, a method invocatiamrsied in a sense that the its
precondition is verified at the invocation time.

Second, if a method does not terminate at all, it is also $&deguse there is no chance to
falsify the postcondition). It means that the Design By Cacitpolicy does not aim at verifying
the total correctness.

Example 5.2 Let us look at the methoH which takes positive integer parameter, increments it
and returns this new value as the result. MetRatbuld have following specification:

Sig = int F(int X)
Pree = x>0

Post = VALUE> x
Inve = 0

.method public hidebysig static int32 F(int32 x) cil managed

{
.locals init (int32 v_0)

ldarg x

ldc.i4 1

add

stloc © // v_0 = x+1
ldloc ©

ret // return v_0

Let us trace a particular executionfef

ldc.i4 1
call int32 F(int32) // F(1)
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Upon the invocation oF we havepg(Prer) = 1 > 0 so the precondition df is satisfied.
There is only one exit point from the method, it is the stat@)%&nd we have thas = ret
andp(Post) = 2> 1.

According to the definition 5.1 this particular executiorFois then safe. As long as we do
not consider arithmetic overflows, we could even informallgue that any execution &f is
safe.

5.1.1 Specification language

Specification language must be expressive enough to ensatiel@range of interesting safety
properties as possible. In case of XMS Design By Contradgtya@pecifications are encoded
in standard first-order logic extended with arithmetic @pars and relations as well as some
object-oriented additions like fielkctor access operations.

Base = c|v]|a|aORIGINAL| VALUE| THIS
Exp ::= Base| Expf | Exdi] | ExpM | F(EXpy, ..., EXp)
Pred ;= Exp|-P|G(Py,...,Pyn) |3z Pred2) | Yz Pred2)

where

e Cis a constant value

vis a local variable name

e ais alocal argument name

¢ a_ ORIGINALrefers to the original value of an argument (used only in gmaditions)
e VALUET efers to the value returned from the method (used only ibcposlitions)

e THISis resolved as the reference to current instance in an icstaethod

e Expf is a value of fieldf of object denoted bfxp

e Ex(di]is a value from vectoExpat the index

e ExpM is a value returned from methdd of object denoted bixp

e F, G are any arithmetic or logic operatofgunctions recognized and handled by the
theorem proving infrastructure

Note also that this definition in fact makes the specifica@amguage close to OCL (page 12).
Indeed, except these few OCL predicates which are beyorré#od of a static analysis (for ex-
ampleoclIsTypeOf, oclIsNew, allInstances), the significant subset of OCL specification
language features is directly expressible in our spedficdanguage.

Example 5.3 Following OCL specification:

Post :
if x>0
result = x
else
result = -x
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in XMS is expressed as

((x>0) = VALUE=x) A ( (x<0) = VALUE= —x )

Invariants

Invariants are predicates that guard computation of Idogssense they set a binding of certain
variables which are "fixed” during the loop executions.

However, from the safety point of view it is not enough to 'iirvariables for the loop
body. It is because values of some variables can be changetbap body while keeping the
invariant valid. Because from the static analysis’ poinviefv a loop can be executed arbitrary
number of times, some variables can then have an unknowa wdian a loop terminates (or at
least values of such variables cannot be determined dtgfica

Because the IL is the stack-based language, the loop bodgisaichange stack values and
in extreme cases it can refill the stack with completely nelwes

Because of these two observations, XMS has a special fornvafiants:

Inve(i) = (P, Var, k), for anyi € Dom(F)

whereP is a invariant predicaté/ar is a set of variables that are modified inside the body
of a loop (between the invariant is seen for a first and sedams) iandk is a depth the stack is
modified up to in the loop.

Postconditions

Postcondition describe the state of a computation when hode$ about to return to the caller.
Because the method may return some value to the caller, tehvious requirement of the
postcondition is then to be able to somehow "use” the retliadue in the postcondition.

In our specification language this returned value can beresfeasVALUE. An example
postcondition,

VALUE> 0

refers to a method in which the returned value of value tyjpéngys positive. Another example
of a postcondition,

VALUEage> 0 A VALUEage< personage

refers to a method in which the valueajefield of returned object should be always between
0 andpersonage wherepersonagewould probably be the value @fgefield of method’s pa-
rametermperson

From the caller perspective is it then irrelevant if there several possible return points in
the callee because the callee postcondition refeasiyaeturn point.

0-values

Another requirement of a Design by Contract framework iséable to specify the original
values of method’s arguments in postconditions. For exanplthe following C# method
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public void Swap( ref int x, ref int y )

{
int z = x;
X =Y;
y = z;

}

it is crucial to be able to refer to original valuesxfndy in postcondition - as the execution
ends the actual value ofis equal to original value o and vice versa. In our specification
language original values of arguments are referred uSRGGINAL postfix so that in the above
example the postcondition would be stateckas= y ORIGINAL && y == x_ ORIGINAL.

5.2 Dynamic Verification Engine

5.2.1 Test-Driven Development

Dynamic verification is a process in which the safety polgyerified in the run time of the
application. Although dynamic testing is a fundamentahgiple of the Design By Contract
paradigm, much more general development technique hasgreposed and is getting more
and more interest.

This technique is called theest-Driven Development(TDD, [4], [20]) and is strictly con-
nected with théAgile software development methodology ([41], [44]).

The Test-Driven Development requires that so callest Suiteis prepared along with the
initial version of the code. The Test Suite contaliiest Casesvhich call actual methods from
the tested code and use explicit assertions which can betaisedify that the implementation
of methods being tested is compatible with the providedifipation. These test cases can be
then conducted automatically and, in case tests falil, tde orefactored until all test pass.

More formally, TDD consists of 3 major steps ([4]):

1. Create testsAs long as signatures of actual methods are written dowh cteses are
also created. Since the code being tested is not implemgaetedll newly created tests
should fail. It is not obvious how the test cases should beaédated since it requires an
understanding of the code requirements. Often then, testadzled later even when the
implementation satisfies tests created earlier.

2. Write code that passes the testés long as tests are prepared, the actual code has to be
implemented. The implementation should be conceptuahyecbbut since the main goal
Is to satisfy the tests, it can be fhieient or inelegant.

3. Refactor At this stage the code is refactored until it satisfies someairements. Many
important aspects of semi-automatic refactoring and ugieglesign patterns in refac-
toring are described in [15]. This phase can be repeatettampnumber of times until
the result is ficient or elegant enough. Often, some advanced design dsnEegsign
Patterns) are stated as a goal of refactoring ([11], [21]).

The TDD methodology can ease the software development aké tha software more
reliable. By focusing on the specification the developesdbe system with the eyes of its
potential client.
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This benefit is also a biggest limitation of the TDD. Whengest incorrect or not represen-
tative, not only the incorrect code can be written but alsayrienportant features can remain
unimplemented. Another limitation is thefliiculty to use the TDD in complex scenarios where
several components must be tested in the same time (for éxathe user interface, a remote
web service, a database management system) - in such cassmnitetimes impossible to write
test cases at all.

And probably the biggest limitation - even the large numligyassed tests does not prove
that the code is correct. The test case data could be simphgpesentative enough.

5.2.2 Instrumentation of .NET Code

Although the Test-Driven Development methodology apptabe very useful, it assumes that
representative test cases are written and automated tegisrformed at the supplier side.
Why shall we do not just put the specificatiorio the code so that the preconditions, in-
variants and postconditions are alwaysified during the code execution?
Well, some implementations of the Design By Contract pplecbehave exactly this way.
At the beginning of method’s execution the preconditionxglieitly verified and before every
exit point the postcondition is explicitly verified. An exate could be the C'assert macro:

int Square( int x )

{
// explicit precondition verification
assert( x > 0 );

int ret = x * X;

// explicit postcondition verification
assert( ret = x*x );

return ret;

Such approach has one major disadvantage - the specifigation tightly bound to the
code. Infact, itis a part of the actual code. When the codagdmand the specification does not
change (which is quite common), all the places where thefspeon is explicitly verified also
have to be reviewed. This could be extremely painful whenrtiementation is complicated
and there are manyf@ierent places in the code where sua3serts appear.

Another approach would be then to use one of so c&llede Instrumentation techniques.
Code Instrumentation assumes that the execution of the cadde somehow altered or su-
pervised in a transparent way and some additional funditgrean be "injected” during this
modified execution.

From the Design By Contract’s point of view we are interestethtercepting methods’
invocations and exits. This can be seen as one of so catledernsof the Aspect Oriented
Programming paradigm ([22]) and use one of the existing .NET AOP Fram&w/¢40]) or
adopt one of two possibilities:

.NET Profiler API ([3]) an external API for providing a profiler functionalign the .NET
platform. The profiler makes it possible to put custom code the execution pipeline,
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however it works at the IL stream level (sequence of byteskwhave to be decompiled)
and the APl is not well documented.

Context-Bound Objects this route is taken by the XMS

The documentation defines Context-Bound Objects @bjects that reside in a context and
are bound to the context rules are called context-boundaibjé\ context is a set of properties
or usage rules that define an environment where a collectiabjects resides. The rules are
enforced when the objects are entering or leaving a con@bjects that are not context-bound
are called agile objects””

The definition is rather obscure, however the idea is pdyfscited for code instrumenta-
tion. Inheriting from theContextBoundObject class makes it possible to define rules used by
the CLR for objects for which the execution context must laedd. In case of the XMS we
have to put the custom code into the invocation and exit pipel

Following steps are necessary to inject custom code intesxtbeution pipeline:

1. acontext attribute must be declared on intercepted class. Context attributeguat
attributes but they define a new execution contexts for cobieund objects. In our case
this new context is defined inside thiaterceptProperty class

[AttributeUsage(AttributeTargets.Class)]
public class XMSInterceptAttribute : ContextAttribute
{

public override void
GetPropertiesForNewContext( IConstructionCallMessage ctorMsg)

{
ctorlMsg.ContextProperties.Add( new InterceptProperty() );

}

The context attribute is then used like any attribute to @levuntime-available metadata
for a class:

[XMSInterceptAttribute()]
public class ClassWithInterceptedMethods

{
}

2. So callednessage sinkprovide a built-if mechanism for providing custom logic into
the invocation pipeline of context bound objects. TheerceptProperty context prop-
erty inserts a new message sink into the invocation chain:

lhttp ://msdn2.microsoft.com/en-us/library/system.contextboundobject(VS.71).aspx
2http ://msdn2.microsoft.com/en-us/library/c2k19cxd(VS.71) .aspx
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public class InterceptProperty :
IContextProperty,
IContributeServerContextSink

#region IContributeServerContextSink Members
public IMessageSink
GetServerContextSink(IMessageSink nextSink)

{

return new InterceptSink( nextSink );

}

#endregion

3. the XMS’s message sinknterceptSink, is responsible for preprocessing - where pre-
conditions are verified - and postprocessing - where poditions are verified. Since
original values of method’s parameters can be used in podiitons, these original val-
ues must be stored during the preprocessing phase so tharthavailable during the
postprocessing.

public class InterceptSink : IMessageSink

{

private IMessageSink nextSink;

public InterceptSink( IMessageSink nextSink )
{
this.nextSink = nextSink;

}

#region IMessageSink Members
public IMessage SyncProcessMessage( IMessage msg )
{
// preprocess
IMethodCallMessage mcm
InterceptContext preContext
bool pre =
this.PreProcess(
preContext /* use actual values during postprocessing */

)

msg as IMethodCallMessage;
new InterceptContext( mcm );

// actual call

IMessage retm

IMethodReturnMessage mrm

InterceptContext postContext
new InterceptContext( msg as IMethodCallMessage );

nextSink.SyncProcessMessage (msg) ;
(retm as IMethodReturnMessage);

// postprocess
bool post =
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this.PostProcess(
preContext, /¥ use original values during postprocessing */
postContext, /% use actual values during postprocessing */
mrm.ReturnValue );

if ( !pre || !post )
{
Trace.WriteLine(
string.Format
"Testing failed for {0}.",
mcm.MethodName ) );

return mrm;

}

private bool PreProcess( InterceptContext preContext )
{
ProcessAttribute[] attrs =
(ProcessAttribute[])preContext.MethodBase
.GetCustomAttributes(typeof(ProcessAttribute), true);

bool pre = true;
for(int i=0;i<attrs.Length;i++)
pre &= attrs[i].Processor.PreProcess( preContext );

return pre;

}

private bool PostProcess(
InterceptContext preContext,
InterceptContext postContext,
object retValue )

ProcessAttribute[] attrs =
(ProcessAttribute[])postContext.MethodBase
.GetCustomAttributes(typeof(ProcessAttribute), true);

bool pre = true;
for(int i=0;i<attrs.Length;i++)
pre &=
attrs[i] .Processor.PostProcess(
preContext,
postContext,
retValue );

return pre;
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In the above code bofreProcess andPostProcess methods first search for specific
processorsand then use them for pre- and postprocessing. Becausetoéeliaral inde-
pendent processors can be defined for a single method. Ocessay can just trace the
invocation and write some information to a log, another carused to authenticate the
user who is running the application and yet another can be toseerify preconditions
and postconditions:

public interface IProcessor
{
// preprocess message
// varValues: contains method call parameters
bool PreProcess( InterceptContext varValues );
// preprocess message
// varValuesOrg : contains method call parameters
// varValues : contains exit parameter values
// retValue : contains method’s return value
bool PostProcess(
InterceptContext varValuesOrg,
InterceptContext varValues,
object retValue );

4. Provide specific functionality of message processorsexample processor which just
logs the invocation would be:

public class TraceProcessor : IProcessor

{

public TraceProcessor() {}

public bool PreProcess( InterceptContext varValues )

{

Trace.Write( varValues.MethodName );

Trace.Write( "(C " );
foreach ( DictionaryEntry de in varValues.Values )
Trace.Write( string.Format( "{0} {13}, ",
de.Value.GetType() .Name,
de.Key ) );
Trace.Write( ")" );

Trace.Write( " [ " );
foreach ( DictionaryEntry de in varValues.Values )
Trace.Write( string.Format( "{0}={1}, ",
de.Key,
de.Value ) );
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Trace.Write( "]" );
Trace.WriteLine(string.Empty);

return true;

}

public bool PostProcess(
InterceptContext varValuesOrg,
InterceptContext varValues,
object retValue )

Trace.WriteLine(
string.Format
"retval [{03}]: {1}",
retValue.GetType(),
retValue ) );

return true;

The most interesting would be of course the XMS processothnisiresponsible for vali-
dating method'’s pre- and postconditions. In current img@etation, XMS processor uses
dynamic code generation techniques to build methods thigiata substituted predicates
by executing them as the C# code. This techniqgue has some stinacomings since
few logical operators are not directly interpreted by thed®#hpiler and an additional
phase is required where all such operators are convertemtesponding C# constructs.

For example, following specification predicate:

((x>0) = VALUE=x) A ( (x<0) = VALUE=—x )

would be converted to a C# code:

if (x>0)
VALUE == x;
else
VALUE == -x;

and executed witk andVALUE substituted by actual values.

public class XMSProcessor : IProcessor
{
public XMSProcessor() {}

#region IProcessor Members

public bool PreProcess(
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InterceptContext varValues )
{
// find the XMS specification
XMS_Spec[] specs =
(XMS_Spec[])varValues.MethodBase
.GetCustomAttributes( typeof(XMS_Spec), true );
if ( specs != null )
foreach ( XMS_Spec spec in specs )
{
SymbExpr exp = SymbExpr.Parse( spec.Precondition );
return EvaluateExpression( exp, varValues, varValues, null );

}

return true;

public bool PostProcess(
InterceptContext varValuesOrg,
InterceptContext varValues,
object retValue )
{
XMS_Spec[] specs =
(XMS_Spec[])varValues.MethodBase
.GetCustomAttributes( typeof(XMS_Spec), true );
if ( specs != null )
foreach ( XMS_Spec spec in specs )
{
SymbExpr exp = SymbExpr.Parse( spec.Postcondition );
return EvaluateExpression( exp, varValuesOrg, varValues, retValue );
}
}

return true;

}

#endregion

private bool EvaluateExpression(
SymbExpr Predicate,
InterceptContext varValuesOrg,
InterceptContext varValues,
object retValue )

// use dynamic code generation technique
// to validate the predicate
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5.2.3 Using the Engine

To use the XMS Dynamic Verification Engine for methods froassC, following requirements
must be fulfilled:

¢ determine the clagdfrom the class hierarchy that inherits directly from fyastem.Object
class andC inherits fromB

e move theB class in the class hierarchy so that it inherits fréamtextBoundObject
instead ofSystem.Object

e put the XMS context attribute in the definition Gf

The integration is not perfectly transparent as one coutebetxbut still the specification is
external to the code.

Our experiments reveal that the execution of ContextBounjeld for which the XMS spec-
ification is verified in the run time is about 500-1000 timesagtr than the normal execution.
The dynamic predicate evaluator which uses code generigtible main bottleneck here. The
Dynamic Verification Engine is then not quite usable at tientiside since the runtime penalty
seems huge but it is perfectly suited for the producer-sdertg.

Note, that the engine is not optimized since speed was noja msaue. A highly éicient
implementation of dynamic verification engine should plapde built using low-level .NET
Profiler APl and moref@cient predicate evaluator.

Example 5.4 Consider following simple C# code:

[XMSIntercept]

public class Test : ContextBoundObject

{
[Process(typeof (XMSProcessor)) ]
[XMS_Spec( "true", "x == y_ORIGINAL && y == x_ORIGINAL" )]
public void Swap( ref int x, ref int y )

{
int z = x;
X =Y;
y =25
}

The specification would be:
Prer = true POSE =X==Yy A Y==Xg

Note how theXMSIntercept andProcess attributes are placed on the class and method
respectively.
Actual client code:

intu=20, v=1;
t.Swap( ref u, ref v );

The XMS Dynamic Verification Engine outputs:
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Preprocessing Test.Swap.
Specification found:

Pre=[true]

Post=[x == y_0 && y == x_0]
Precondition : true

Substituted expression : true
Evaluated expression : True
Postcondition : x == y_0 && y == x_0

Substituted expression : =1&& 0 ==
Evaluated expression : True

5.3 Static Verification Engine

5.3.1 Symbolic Evaluation

According to the Meta-Theorem (3.1) the Verification CoimtitGenerator (VCGen) is the
main component of the PCC infrastructure. The original p#33]) proposes a pattern called
the Symbolic Evaluator. The Symbolic Evaluator is a recursive state transformdaftimction
that scans the code and produces the Verification Condibioa §ignificant part of it). We will
refer to the Symbolic Evaluator &=and to Verification Condition agC.

Symbolic Evaluation is the process in which a "virtual” exgon is performed but instead
of actual values their symbolic representations are usduknaver the evaluation cannot deter-
mine the symbolic result of a computation, a new fresh symbm@alue is used.

Symbolic Evaluation of the IL language arise several isb@esuse IL is an object-oriented
language. Below we briefly examine these issues:

arithmetics an arithmetic instruction causes VCGen to update its syimbtire to new state.

conditionals a conditional jump causes VCGen to split the symbolic evauaanto recursive
paths for all branches. Conditions become assumptiongartise verification predicate.

backward jumps backward jumps could lead to infinite recursion. VCGen rezpithen that
each backward jump targets an instruction for whichramariantis provided. Invariants
are validated when they are seen for the first time and thedatetl again when a back-
ward jump is encountered.

method calls a method call puts the method’s precondition as an assumiptio the predicate
and initializes a new state with all variables which couldnbedified inside the called
method (out parameters) set to new, fresh values.

objects objects are evaluated symbolically in a similar way as irs&g-typed object-oriented
languages - by maintaining an internal dictionary which sxgd names to their actual
symbolic values.

vectors a vector is stored as a index-value dictionary where bothxed and values are sym-
bolic.

polymorphism is it not known until the run-time which exact method is cdlfeom a class
hierarchy. VCGen relies here onsaibcontractingprinciple ([25]) according to which
contracts of inherited methods must depend on contractas#-blass methods
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O-values contracts must allow to use original values in postcondgio

exceptionsinside a "try-catch-finally” block any checked arithmetitstruction, vector ref-
erence instructions and method calls could cause an egoefatibe thrown. All such
instructions must be then treated as potential branchstguctions.

The Evaluator assumes that the code is verifiable (page 2i@ghwheans that there’s no
possibility of reaching states which are not type-safe.aBse of this assumption, there’s no
need to constantly check whether symobilic states are Vidiiel evaluation would of course fail
on unverifiable code. The Evaluator is presented in Figuke 5.

The Evaluator (SE) is defined as a recursive function thastédur parameters, written as

SE-(i,0, L,b)
where
e F is a method whose body is evaluated

i is an address of evaluator’s current instruction

o is asymbolic store

L is aloop stack
¢ bis a boolean variable which controls the way the invariargshandled

A symbolic local storeg is of the form (a, Iy, h, H, s) defined just like its semantic coun-
terpart but values are represented in a symbolic way. Becalithe way the invariants are
associated with instructions (they do not form separatieuosons but rather point to actual in-
structions)p determines whether an invariant should be taken into adeoluen the instruction
is scanned. Ib is omitted at all, the default value t3rue. A loop stackL captures changes to
stack and variables during execution of a loop and is desdiiio next subsection.

The symbolic evaluator is run against all methods in a moddiland the global verification
condition is build using the resulting predicates. The didin of the Verification Condition is
presented in Figure 5.1.

Few notes here. The verification condition for the module c®@ajunction of verification
conditions for all methods from the module. The verificattmmdition for a method is a con-
junction of two predicatesyCl and VCE named fromVerification Condition for I nheritance
andVerificationCondition for SymbolicEvaluation.

The VCI part of the verification condition is responsible for handlvirtual methods and
checks if the so calledubcontracting holds for the methodr. If F is virtual then its contract
must be compatible with the contract of the same method buat the base class (denoted here
asBasd€F). Details are presented on page 60.

The VCE part of the verification condition is responsible for handlthe symbolic evalu-
ation and indeed it starts in first state which assumes tegbitacondition holds and evaluates
the method symbolically starting from the initial state.

Note that the local variables are zeroed in the initial g¢ate> 0)and the local arguments are
initialized with the symbolic representations of themsslhg; — a;). This initial assignment
Is correct with respect to the IL semantics, where the loeaiables are always zeroed and
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VEM) = Apem VC(F)
VC(F) = VCI(F) A VCE(F)

where:
VCI(F) = IsVirtual(F) = ((Pregas¢ry = Prer) A (Post = PoOSkaser)))
VCE(F) = Vao,...,ano§ E Prer = SHO, 07,0, true)
F

o (Ialai - a],1a[a-ORIGINAL- &, lv[vi - 0], €)

Figure 5.1: Definition of Verification Condition for DesigryE ontract

arguments can take arbitrary values upon the method’s atiwt (these values are set by the
caller).

Additionally, a set auxiliary variables referring to omgil values of arguments is initialized
with symbolic representations of these argumeatORIGINAL — &). This is to ensure that
during the symbolic evaluation of the postcondition (eatilon of theret opcode), original
values are available to the evaluator.

5.3.2 Symbolic Evaluation Cases

During the scan, the Symbolic Evaluator simulates the nihexecution by updating the
symbolic store with respect to current instruction. SE gdedforms some checks. If any of
the checks falil, the code is automatically rejected. In taltli some maintenance actions are
performed for some actions.

The essential part of the Evaluator is presented in Tablebdage 62.

From the Evaluator’s perspective there are two types ofunsbns. For some instructions
SE does not produce anything, it just changes the state adyiimbolic store. For other in-
structions SE not only changes the state of the symbolie $iot also produces a part of the
Verification Condition.

When a Symbolic Evaluator scans the method’s body, it scamsecutive instructions start-
ing from the first one. If a conditional branch is scanned Sfmbolic Evaluator splits into two
copies that scan both branches independently. This of eawosld lead to infinite recursion
in case of backward jumps. That is where invariants play ttoéés. Invariants help Symbolic
Evaluators to avoid the infinite recursion gyardinginstructions that are targets for backward
branches. In fact, no instruction can be a target of a baakyuanp if it does not have its own
invariant. If this is the case - the evaluation fails.

The Symbolic Evaluator will use the information providednmariants to properly univer-
sally quantify variables for loops. For example if variataes on the list of variables modified
during a loop then the VCGen will pittvy in appropriate position inside the Verification Condi-
tion to indicate that, can have arbitrary value during the loop execution. The saeepplies
to stack - arbitrary values can be pushed onto and poppedfestack in a loop body. VCGen
will handle this possibility by putting universal quantisdor all stack values that are modified
in a loop body.

A non-empty invariant changes the way the instruction isuatad. At first the evaluator
checks if the invariant is seen for the first time.

When the invariant is seen for the first time, the SE checkkafihvariant is valid with
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respect to the current state of symbolic store by appenditg the Verification Condition.
This corresponds to the fact that the invariant should bel wahen a loop is entered. Then
the symbolic store is filled with new, fresh values for allishites and stack values that are
modified during the loop, the loop invariant is used as thenge in the Verification Condition
and the execution continues. This corresponds to the fatatthough actual values of variables
modified in a loop body are not known in any other but first exiecy the invariant still holds.
Additionally, a new invariant slot is initialized on top afdp stackL. This new slot, referred as
Lrop is avector i, o, V, s), wherei is a number of invariant instruction; is a symbolic state
in this instructionV is an initially empty set that accumulates changes to vlagabis a value
responsible for tracking the depth up to which the stack idifredl inside a loop.

When the invariant is seen for the second time, the SE chéttlesinvariant is valid after the
loop is executed once. The symbolic evaluation of the loajsdrere, because if the invariant
is valid when the loop is entered and after the loop is execatee then SE concludes by
induction that the invariant is valid after the loop is exieclian arbitrary number of times.
Additionally, an invariant slot that corresponds to theainant instruction number together
with all other slots that were allocated later (nested Ipogises precise information on which
variables have been changed in a loop body and what depthatietsas been changed up to.
This is where the list of variables which were declared inrttagification list of the invariant
is compared to the actual list of modified variables. Also stk is controlled to be within
declared limit of modified slots. If any of these checks fidig evaluation fails.

Formally, we will allow two operations on invariant slotsfhduring the execution of SE to
track modifications of variables and altering the depth efdtack.

We can add a variable to the set of modified variables in slots of L. We will denotesth
operation asL(V « {u}). We can also trace the stack depth and we will wii{fs < K) to
indicate that evaluation stack depth increased Bjots. We can also get a set of all variables
that were modified in an invariant slot (denoted Bf)) or get a depth the stack was modified
up to in an invariant slot (denoted bg(i)|).

Control Flow Instructions

Having argued about backward jumps and invariants we carasswme that branching instruc-
tions are forward jumps only.

In case of thér instruction SE continues the evaluation at the jump destinaThe case
of thebrtrue, bge andbgt instructions is similar but now both branches must be caneu
in the resulting evaluation. If any of these jump instruetioesults in a backward jump, SE
also checks if the invariant function is defined for the desion instruction. Note that both
branches correspond to branching conditions which are passumptions in the Verification
Condition.

Branching requires that the symbolic evaluator splits tato independent contexts. Tech-
nically, the current context isloned and it must be done with proper caution. On one hand,
both contexts are independent and changes of values made of them must not be visible to
the other. On the other hand, during the symbolic evaludkiersame reference can be stored in
several places (for example a reference can be created stattteand then stored in two local
variables) and the cloning must detect these duplicatedaetes and make only a single copy
of it but still duplicated in all places where the referengeses.

The symbolic evaluation of theet instruction depends on the method’s signature. If the



5.3. STATIC VERIFICATION ENGINE 57

evaluated method should not return any value, the VC chéthe imethod’s postcondition is
valid with respect to current symbolic store. If the evadishinethod should return a value, the
VC checks if the method’s postcondition is valid with redpedhe current symbolic store and
the stack value that represent the method’s result.

Arithmetical Instructions

In case ofldc instruction SE puts the integer parameter at the top of thabsyic stack. In
case ofdup instruction SE duplicates the value at the top of the synslstick. In case aop
instruction SE removes the value from the top of the stack.

In case of all arithmetic instructionadd, sub, mul, ...) SE performs the symbolic evalua-
tion and puts the result back to the symbolic stack.

Instructions for addressing fields, arguments and local vaables

The 1darg, 1dloc and1ldsfld instructions put the value from local argument, local stare
the shared store (respectively) at the top of the stack.

The starg, stloc andstsfld update the local argument, local store or the shared store
(respectively) with the value from the top of the symbolckt

Instructions For Calling Methods

In case ofcall andcallvirt instruction VC first checks if the invariant of the callee &did in
current state and then, assuming that the return value isowrkit is set to fresh symbolic value
and the postcondition of the callee is valid, SE continuestraluation at the next instruction.
Of course the callee function may not terminate at all bug Wwuld be safe according to the
definition of this Safety Policy (5.1).

Instructions for Addressing Classes and Value Types

Thenewobj a bit complicated because of the way it is handled by the CLR. ffewly created
object instance is put onto the stack but is not yet storemlanty local variable or method’s
argument. Symbolic evaluator createsyanbolic object a symbolic representation of a value
of reference type and stores it in an auxiliary collectiorreferences. The symbolic object
maintains the internal dictionary where field instancesstweed. In case oft1£d instruction
the value from the stack is put into the internal dictionémycase of thad df1d instruction the
value from the dictionary is put on the stamkthere is no value stored in the dictionary yet and
the new, fresh value is created and put in the dictionary auadl the stack.

Vector Instructions

The newarr instruction raises similar issues as thewobj instruction - the newly created
vector reference must be stored in yet another auxiliadgctbn. In this cassymbolic vector
is created and it is responsible for storing the informa#ibout symbolic content of the vector.
There are three possible cases forldelem instruction.
The easiest case is when there exists a value stored in tHeotgaector at the symbolic
index which is symbolically equal to the index expressiothafldelem instruction. In such
case the symbolic value from the symbolic vector is put ongostack.
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It is however possible that the indexing expression is nmatlly equal to any symbolic
indexes stored in the symbolic vector. In such case, a sequeinbranching instructions is
generated, each one taking the equality of symbolic indagdke premise.

The last case is when the symbolic index is not equal to anypslimindexes previously
stored in the symbolic vector. In such case a symbolic reptesion of the symbolic value is
put onto the stack.

Example 5.5 Consider following C# code:
int Foo( int[] TheArray )
{

TheArray[k]
TheArray[n]

1;
2;

int v = TheArray[n];

What is the symbolic value of? According to the description above, the simplest case
would be to find the symbolic expression stored in the vectalen the same symbolic index,
in this casen. In the above example there is a value stored at this index &d.

Consider however following code:

int Foo( int[] TheArray )
{

TheArray[k]
TheArray[1]

1;
2;

int v = TheArray[n];

What is now the symbolic value @ In this case, there is no value stored in the vector under
the symbolic indexn and a sequence of branches for each symbolic index storempséy is
produced. Informally

(n==k = SHi+1....0[v/1])) ) A (n==1 = SHi+1....0[v/2]) )

whereSHi+1,...,o0[Vv/1]) means the recursive call symbolic evaluator for the mesttuction
where the symbolic value ofis 1.

The last branch corresponds to the fact that the indexingesspn can refer to an index
not equal taany indexes previously stored in the vector:

(n#k A n#l) = SHi +1,...,0[v/TheArrayn]])

which means that the evaluation continues in a state whbes the symbolic value from the
array but with unknown exact value, denotedragArrayn|.
Note, that symbolic indexing expression can be arbitraiignplicated, for example:
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int Foo( int[] TheArray, int k, int 1 )
{

TheArray[l] = 2;

n:k*k+1;
int v = TheArray[n];

In this case, the indexing expressiorkisk + I.

Thestelem instruction follows the same pattern. It stores the valugaensymbolic vector
if the vector is empty or a value of the same index has beerdtmfore.

If however the indexing expression is not syntacticallyada any symbolic indexes stored
in the symbolic vector, a sequence of branching instrustisrgenerated, each one taking the
equality of symbolic indexes as the premise. What is intergss that in such case there are
two updates to the array - the value to be stored is saved timelactual index and the value of
the existing index is removed from the array.

And, similariliy to theldelem case it’s possible that the symbolic index is not equal to any
symbolic indexes previously stored in the symbolic vedtosuch case the value is stored in a
new slot in the symbolic vector but the premise has to expliccapture the fact that the index
Is not equal to indexes of previously stored values (pleefs to the example on Page 114).

Consider the following example:

int Foo( int[] TheArray )
{

TheArray[k]
TheArray[n]

1; /%1
2; /* 2

-.':/
-.':/

int v = TheArray[k]; /* 3 */

The first value, 1, is stored under the symbolic inéleXhe second value, 2, generates two
branches.

The first branch assumes that n so the value is stored under the symbolic intkeand
the value from the indek is removed from the array. When the value is then read from the
array usingk as the index, thé@delem semantics generates yet another two subbranches. The
first subbranch has the compatible premise,n, and the value 2 will be returned. The second
subbranch has a contradictory premise, n, so the remaining part of the predicate will always
hold (as a result of two contradictory premises which cqoesl to impossible control flow
sequence).

The second branch assumes thigt n and the vector stores twoftrent values under two
different indexes.
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Virtual Calls

Any time a virtual method is calleccéllvirt) the object’s vtable is used to determine the
actual method to be called.

class Base {
public virtual void Foo() { };
}

class Derived : Base {
public override void Foo() { };

}

void Bar( Base instance )

{

instance.Foo();

}

In the above example the actual method called insid@8#lrenethod cannot be determined
statically since it depends on the caller. And since Rxbe: :Foo andDerived: :Foo can
havedifferent specifications, XMS must address this issue in a special way.

The solution is proposed by the Design By Contract so célglcontracting Rule Sub-
contracting means that the signature of overridden methast strictly depend on signature of
the virtual one.

To formally define the subcontracting we need some termgyM/e will say that the pred-
icateP is stronger than the predicat® if P = Q.

For example, predicate := x > 5 is stronger thai®Q := x > 0. Note that the strongest
predicate isfalse and the weakest isrue. The intuition is that the more strong a predicate is,
the harder to satisfy it becomes.

From the supplier point of view, the stronger precondititirg better - there are simpler
cases to handle. For example, it helps the supplier to betilsatéhe method has been invoked
with Personage > 0 A Personage < 20 than the solé’ersonage > 0. The stronger the
precondition the easier it is to satisfy the postcondition.

And again, from the supplier point of view, the weaker posttiton, the better - the
implementation needs not to handlgfidult cases. For example, it is much easier to satisfy
Personage> 0 thanPersonage> 0 A Personage< 20.

From the client point of view the situation is completely opjte. The weaker precondi-
tion, the easier it is to satisfy it. The stronger the postittoon, the more knowledge about the
computation is needed.

The object-oriented methodology defines so callsttov Substitution Principle:

IAny object of the derived class must be usable in place of a bass objett

This principle lays the base for a subcontracting rule:
e precondition of derived class must iveaker than the precondition of base class

e postcondition of derived class must steonger than the postcondition of base class
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In any other case the Substitution Principle would not bested. This situation is handled
by theV CI part of the Verification Condition (page 54).

Example 5.6 Consider the following example which breaks the SubsttuRrinciple.

class Person {

Pre := Age > 20
virtual void Hire() { }
}

}
class Manager : Person {

Pre := Age > 20 && Education == Higher
override void Hire() { }

In this case, for any code which accepts Herson object, the preconditioage > 20
must be satisfied to call tH&ire method. However, th#anager class cannot be substituted
for Person because the precondition of there method is stronger and it would not necessarily
be satisfied upon the invocation.

5.3.3 The Safety Theorem

The soundness of the verification condition algorithm isestan a following theorem which is
an instantiation of thenetatheorem 3.1.

Theorem 5.1(Soundness of XMS Safety Policyif the verification condition for a given mod-
ule Mis valid, i.e= VC(M) then all executions of any module methods are correct wipeet
to the Design By Contract security policy 5.1, i.e. S@a({81).

The formal proof of this theorem is the only missing piece X framework. Note that
although the above formulation is clear and concise, thefgmesented in appendix B is rather
technical and must precisely consider all the details pteskeabove.



Table 5.1: XMS Symbolic Evaluator for Design By Contract

Fi | Condition/ action | Symbolic state | Verification condition | £
Instructions with non-empty invariants

any, where i ¢ Dom(L) A b=true (i,...,Up...Uc- 9 o(Inve(i))A

Inve(i) = VG, - Uy - Uo (InVe (i) =

(Pred Var, k) SHi,o”, (i,0,0,0)- L, false)
where :
o = (. v e VY UL s
Vg, ..., Vi, Uy ..., U are fresh variables

any, where i € Dom(L) (i,0) o (Pred) L(i) ¢ Var = fail

Inve(i) = |L()| > |kl = fail

(Pred Var, k)

Control Flow Instructions

br 1 | <i A Inve(i) = e > fail SH|, o, L)

brtrue 1 | <i A Inve(i) = €= fail | (i,...,v-9) o(V)=0=SHi+1,...,5 L)A L(s<-1)
ocv)#0=SH|,...,s L)

brfalse 1 | <i A Inve(i)=€e= fail | (i,...,v-9) oV) #0=SHi+1,...,5 L)A L(s<-1)
ocV)=0=SH|,...,s L)

bne 1 | <i A Inve(i) = €= fail | (i,...,u-v-9) ocu=0c(\)=>SHi+1,...,5 L)A L(s« -2)
o(u) #o0(v) = SHI,...,s L)

bgt 1 | <i A Inve() =e= fail | (i,...,u-v-9) oy <o(V)=>SHi+1,...,s OA L(s < -2)
o) >o((v) = SHI,...,s L)

blt1 | <i A Inve() =e= fail | (i,...,u-v-9) o(u>o0c(V)=>SHi+1,...,5 LA L(s < -2)
o(u)<o(v) = SHI,...,s.L)

bge 1 | <i A Inve(i)=€e= fail | (i,...,u-v-9) oUW <o(V)=>SHi+1,...,s DA L(s< -2)
o(u) >o(v) = SHI,...,s.[)

ble 1 | <i A Inve(i)=€e= fail | (i,...,u-v-9) oU)>oc(V)=>SHi+1,...,s DA L(s<-2)
o) <o(v)= SH|,...,s.L)

ceq (i,...,u-v-9) ocU=c(V)=>SHi+1,...,1-5 LA L(s< -1)

29
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Fi | Condition/ check | Symbolic state | Verification condition | Action

o(u#o(V)=>SHi+1,...,0-5.0)
cgt (,...,u-v-9) ou)>oc(V)=>SHi+1,...,1-5 LA L(s< -1)

o(Uy<o(vV)y=>SHi+1,...,0-5.0)
clt (i,...,u-v-9) ocUy<o(V)=SHi+1,...,1-5, LA L(s< -1)

o(u>o0(V)=>SHi+1,...,0-5.0)
ret Sige=CF(...) (i,...,u-9s o (Post[u/VALUE))
ret Sig- =void F(...) a,...,9 o (Post)

Arithmetical instructions
ldc.i4 u a,...,9 SHi+1,...,u-s /1) L(s<1)
ldc.r8 u a,...,9 SHi+1,...,u-s /1) L(s<1)
dup (i,...,v-9) SHi+1,...,v-v-s /L) L(s<1)
pop @(,...,v-9) SHi+1,...,8 L) L(s« -1)
add (,...,u-v-9) SHi+1,...,(u+Vv)-s L) L(s« -1)
sub (,...,u-v-9) SHi+1,...,(u-Vv)-s L) L(s« -1)
mul (,...,u-v-9) SHi+1,...,(uxVv)-s.L) L(s« -1)
div (,...,u-v-9) SHi+1,...,(u/v)-s,.L) L(s« -1)
rem (,...,u-v-9) SHi+1,...,(u%v)-s L) L(s« -1)
and (,...,u-v-9) SHi+1,...,(uAv)-s L) L(s« -1)
add (i,...,u-v-9) SHi+1,...,(uvv)-s.f) L(s« -1)
Xor (i,...,u-v-9) SHi+1,...,(ueVv)-s L) L(s« -1)
neg (,...,v-9) SHi+1,...,-v-s L)
not (,...,v-9) SHi+1,...,~v-s.1[)
Addressing Fields, Arguments and Local Variables
ldarg v @(,...,9 SHi+1,...,1a(V)- s, 1) L(s<1)
starg Vv (,la,...,u-9) SHi + 1, 1alve ul,...,s L) L(s« -1)
LV « {v))
ldloc n @(,...,9) SHi+1,...,lv(n)-s, L) L(s<1)
stlocn G,....ly,u-9) SHi+1,...,Iy[n—u],s L) L(s« -1)
LV — {\y})

ANIONT NOILYDIHJIH3N DILVLS €S

€9



Fi

| Condition/ check

| Symbolic state

\ Verification condition

| Action

1df1d T :: f (,....p-9 SHi+1,...,p(f)-s.L) L(s<1)
stfld T i f (,...,u-p-9 SHi+1,p[f—~u],...,sL) L(s« -1)
LNV« {p:f)
1dsf1d T :: f @(,...,9 SHi+1,...,T(f)-s L) L(s<1)
stsfld T :: f (,...,u-s) SHi+1,T[f—u],...,s5.L) L(s« -1)
LNV < {T: 1)
Calling methods
call G Sigs = C G(ay, ..., a,) (i,...,Un...Ug-9) oC(Preg) A L(s— —-(n+1))
callvirt G | Gis static Yu.o¢(Post[u/VALUE) =
SHi+1,0", L)
where:
o® = (I%(a = ), I5(vi — 0),¢)
uis a fresh variable
o’=(..,u-s)
call G Sig =void G(ag,...,a,) | (i,...,Up...Up-9) oC(Preg) A L(s——-(n+2))
callvirt G | Gis static Yu.oc®(Post) =
SHi +1,0,2L)
where:
o = (I5(a = W), I5(vi = 0),¢)
call G Sigs = C G(ay, ..., a,) (i,...,Uy...Ug-Pp-9) | c(Preg)A L(s— —-(n+2))
callvirt G | Gisinstance Yu.oc®(Post[u/VALUE, p/THIS)) =
SHi + 1,0, L)
where :
O-G = (Ii(p’al = Ui), IS(VI i O)’ 6)
uis a fresh variable
o' =(..,u-9s)
call G Sigs = void G(ag,...,a,) | (i,...,Uy...Up-P-9) | c°(Preg)A L(s— —-(n+3))
callvirt G | Gisinstance Yu.c®(Post[p/THIS) =
SHi +1,0,2L)
where :
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s

| Condition/ check

| Symbolic state

\ Verification condition

| Action

[ 0° = (1S(p,a ~ W),IS(vi - 0), )

Classes and value types

ldnull

(.

)

SHi+1,...,null-s Jf)

L(s<1)

ldstr str

@a,..

., 9)

SHi+1,...,str-s, [)

L(s< 1)

newobj C

Sig: = .ctor(Up, ..., Un)
Prec = .ctor precond.
Post = .ctor postcond.

Q...

>Up...Ug-9)

o“(Prec)A
oC(Post[p/THIY) =
SHi+1,...,p-0", L)
where :
o© = (I§@a - w),15(vi — 0),¢)
p is a fresh symbolic object

L(s— —(n+1))

Vectors

newarr T

Q..

SHi +1,...,ar[Length— K] - s, [)
where:
ais a fresh symbolic vector of type T

L(s< 0)

1dlen

0.

SHi+1,...,a(Length - s, 1)

L(s<0)

ldelem

Dom(a) = 0

a,...

SHi+1,...,ae]-s L)
where:
ale] denotes an unknown element of the vec

L(s< -1)

tor

ldelem

Dom(a) # ® A e e Dom(a)

0.

'S)

SHi+1,...,a(e)-s,.L)

L(s« -1)

ldelem

Dom(a) # ® A e ¢ Dom(a)

Q...

'S)

e=Uy = SHi+1,...,a(up) s LA
e=U = SHi+1,...,a(u)- s .LOA

e=u, = SHi+1,...,a(u,) s, LA
(W A...ANE£U) =
SHi+1,...,a(e)-s,.L)

where:

Dom(a) = (up, ..., U)

L(s« -1)

stelem

Dom(a) = 0 v e e Dom(a)

G ...

c

.a.s)

SHi+1,...au~€...5.L)

L(s < -3)

stelem

Dom(a) # ® A e ¢ Dom(a)

@a,...

c

-a-s)

e=Uy —

ANIONT NOILYDIHJIH3N DILVLS €S
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| Condition/ check

| Symbolic state

\ Verification condition

| Action

SHi+1,....,au— eu €S LA
e=u —
SHi+1,...,alu— eu; > € -s LA

e=u, =
SHi+1,....,au— eu, €] -S LA
(U A...ANEe£U) =
SHi+1,....,au— €] -s.L)

where :

Dom(a) = (up, ..., U,)

L(s« -1)
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Chapter 6

Towards High-Level Languages

6.1 From MSIL to High-Level Languages

The .NET paradigm unifies many programming languages at N&yil. Whether you use C#,
VB.NET, Managed @+ or any other .NET language, your code can closely cooperidteavwy
other .NET code.

Since the Verification Condition Generator works at MSILdkevt cannot determine which
language was used to produce MSIL binary. And no matter ifnardyi was produced by IL
compiler, C# compiler or any other language compiler, itudtide certifiable in the uniform
way.

The goal of "lifting” the certification framework from MSilota high-level language is then
executed under two assumptions:

¢ A high-level language developer should not be forced tonldaSIL language. In par-
ticular, a solution where a high-level code is first compiledMSIL and then manually
certified is unacceptable. Certificates should be thenyeagplicable to a high-level lan-
guage code.

¢ A high-level compiler should not require any major changestpport the certification.
In fact, it would be perfect, if the high-level compiler didtrequireany changes. In par-
ticular, existing high-level language compilers should d@amage certificates that were
applied to high-level code.

At first look these assumptions do not seem troublesome 4fgjaions are provided in
attributes and attributes should not be damaged duringadhslation from high-level language
to MSIL.

Unfortunately, it seems that comparing to other securitycps, Design By Contract is
non-trivial to be applied to high-level languages. Theeetaro important diiculties that have
to be addressed:

e XMS invariants have the formmvg(i) = (P,...) wherei is the MSIL instruction number
andP is the invariant predicate. It could be however extremeffiailt to determine the
MSIL instruction number for given high-level instructiasince it would require a deep
knowledge of compiler transformation routines.

67
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e During the compilation to MSIL, names of local variables amitted. Whenever such
local variable plays any role in one of the predicates (inagplmvariant for example) it
cannot be referred with its name since the name is lost dthimgompilation.

The first dificulty can be addressed with a clever technical trick. We aidike to avoid
attributing invariant predicates with MSIL instructionmbers. We would rather like to have an
ordered set of invariants:

Invss = (Po,...,Pn)

and somehow infemvg from it by mapping consecutive invariants to instructiohattneed
invariants.

This goal can be achieved with additional scan of the binadecwhich could discover
instructiond = (io, .. ., ix) that are targets for backward jumps.

We could then take:

Ve (i) = P; if i =i;forsomejandj<n
FYV7 1 € inothercase

Note that although this trick seems to be restrictive atlins (these andnly these instruc-
tions which are targets for backward jumps will have invatsamapped) in practice it works
perfectly since invariants are used by the Symbolic Evaluatly for such kind of instructions.

The second diiculty can be addressed by "virtually” renaming consecutwal variables
to any set of fixed namesy, . .., v, in case of XMS) and using these "virtual” names in speci-
fications by a high-level language developer.

Example 6.1 Consider following C# method used for calculating the sumaadfies from O to
n.

[XMS_Spec(

"n >= 0",

"VALUE=sum(®, n)",

"V_O=sum(®, V_1) & n >= V_1"]
public int Foo( int n )
{

int retval = 0;

for ( int k=0; k<=n; k++ )

{

retval += k;

}

XMS attribute in metadata, including */
precondition, */

postcondition, */

and invariant */

/%
/*
/%
/*

return retval;

}

Note that there is one loop in above code which requires arigmwt and there are two local
variablesyetval andk, which have to be "virtually” renamed tg andv;.

Note also that both the postcondition and the invariantaus®a(X) function whichmust
be defined in the logic and handled by the theorem proovingrlaf/the infrastructure. In the
above examplsun(0, n) denote<! i.
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Fortunately, the high-level language compiler translatssecutive high-level local vari-
ables to consecutive MSIL local variables. In above examtpkeretval variable is defined as
first local variable and it will become the first local variatsh MSIL output and so on.

This is why thev_® andV_1 names are used in the invariant specified in the method’s at-
tribute. Thev_0 refers toretvalandv_1 refers tok.

The Verification Condition for this method is as follotws

forall n. (n >= 0 => O=sum(®, 0) & n >= 0 &
forall V_O_. forall V_1_.
V_0_=sum(0®, V_1_) &
n>=V_1_=>
((V_1_<n => (V_O_+(V_1_+1))=
sum(®, (V_1_+1)) & n >= (V_1_+1)) &
(V_1_>=n => V_0_=V_0_ &
V_0_=sum(®, n))))

Note that the invariant was first checked using the actus sththe symbolic evaluation
[the 0= sun(0,0) A n >= 0 part] and then variables which are modified inside the loagyb
were replaced with new, fresh, universally quantified valj¢ andVy) and the invariant was
first used as a premis&Vy.YVy.Vo = sun(0, Vi) A n >=Vy => .. ] and then verified after
the loop iteration Yy + (V¢ + 1)) = sun(0, (Vv + 1)) An>= (Vy + 1)].

6.2 Common Certificate Specification

Both above technical tricks require that the high-leveblzage satisfies two important con-
ditions. These conditions aessentialfor the "lifting” process to work, so we will formulate
them as th&Common Certificate Specification(by analogy to Common Language Specifica-
tion and Common Type System, two fundamental .NET paradightee Common Certificate
Specification is as follows:

Variable Ordering Consecutive high-level language local variables becomsexitive MSIL
local variables.

Structure of Loops High level language loops become MSIL loops with corresagdtruc-
ture.

While the above specification does not look formal enoughaveenot going to make it
formal. It is because some important existing compileke({he C# compiler) fulfill both these
requirements and the CCS formulation should be treated eisad guidelines for new compil-
ers.

Both requirements are crucial for proper translation oplowariants between a high-level
language and MSIL. In the example above the loop invaridatseo variablesum andk but in
MSIL they becomé/y andV;. Since there is only one loop in C# code, only one loop inveria
should be supplied. VCGen will automatically detect therungion which correspond to the

!Actual predicate can fier from this one since compiler translation routines depemdompiler version and
compiling options



70 CHAPTER 6. TOWARDS HIGH-LEVEL LANGUAGES

invariant. Note that the actual number of instructions dailgpend on the optimization level
used by the C# compiler.

In fact, the main reason that makes the ”lifting” possibl¢hiat .NET high-level language
compilers follow few simple and obvious patterns while prodg MSIL from high-level code.
This is not a coincidence and chances are that future corapii also behave in similar way
because MSIL is not a platform-native language — it is thé-llu$ime compiler which does
most of fancy optimizations while translating the MSIL tafbrm-native language.

Of course this "simple translation” rule applies mainly tajor enterprise languages for the
.NET platform - C# and VB.NET. Other languages witftelient translation schemes must find
their own way to integrate with XMS. There are three possifitiegration strategies

no integration or limited integration Developers are forced to consult the compiler output to
find exact MSIL structure and then put appropriate attrib@iéher at language level or
at MSIL level.

attribute integration The language recognizes XMS attributes and knowing its oamsta-
tion schemes puts the attributes in appropriate placedandSIL.

language integration The language syntax is augmented with first-class contrguressions
which are compiled either as direct expressions used duh@glynamic testing or as
static XMS attributes used during static verification.

6.3 High-Level Compiler Translation Schemes

In this section we would like to present few specific C# traheh schemes to informally argue
that this is possible to adopt XMS at the level of C# with no ondiitficulties.

6.3.1 Variable Ordering

Local variables declared in a C# method’s body usually becoomsecutive variables in MSIL
body. Look at following example:

C# MSIL
public static void F() | .method public static void F(Q)
{ {

int i, j, k; .locals init
(int32 V.0, int32 V_1, int32 V_.2)
i=0; ldc.i4.0
stloc.0®
j=1; ldc.i4.1
stloc.1
k=2; ldc.i4.2
stloc.2

ret
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There are three local variables in the C# code which becoree ttonsecutive variables in
the MSIL code and writing a predicate referring to any of theariables at the C# level would
bring no dfficulties.

Things became slightly more complicated when the .NET 294een released. It seems
that the internal compiler routines workgterently when optimization is enablelisabled. In
case of disabled optimizations the code is bloated withlianyivariables which store results
of logical expressions or the result value of the method.

Consider following C# method:

public int Abs( int x )
{
if (x>0)
return Xx;
else
return -x;

which would have the preconditictrue and obvious postconditiodALUE > 0
When optimizations are enabled it produces following MStide:

.method public hidebysig
instance int32 Abs(int32 x) cil managed

{
.maxstack 8
L_0000: ldarg.1l // x onto the stack
L_0001: 1ldc.i4.0® // 0 onto the stack
L_0002: ble.s L_0006 // x <=0 ? jump to 0006
L_0004: ldarg.1 // x onto the stack
L_0005: ret // return x
L_0006: ldarg.1 // x onto the stack
L_0007: neg // -x on the stack
L_0008: ret // return -x

}

which gives following Verification Condition:

Vxtrue = ((x=>0)=> (x> 0)A((x<0) = (-x=>0)))

Note that in the above example it is théarg. 1 which loads the first formal method pa-
rameter onto the stack and not thiarg. 0.

It is because thédarg.® would load thethis reference onto the stack since it is always
passed as first, hidden parameter to instance methods.

With optimizations disabled the C# code is translated as:

.method public hidebysig
instance int32 Abs(int32 x) cil managed
{

.maxstack 2

.locals init (
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[0] int32 num,
[1] bool flag)

L_0000: nop // do nothing

L_0001: ldarg.1 // x onto the stack

L_0002: 1ldc.i4.0® // ® onto the stack

L_0003: cgt // x>0 on the stack
L_0005: 1dc.i4.® // O onto the stack

L_0006: ceq // x <= 0 on the stack
L_0008: stloc.1 // store the bool expression

L_0009: ldloc.1
L_000a: brtrue.s L_0010 // x <= 0 ? jump 0010

L_000c: ldarg.1 // x onto the stack

L_000d: stloc.0® // store it in local variable
L_000e: br.s L_0015 // jump 0015

L_0010: ldarg.1 // x onto the stack

L_0011: neg // -x onto the stack

L_0012: stloc.0® // store it in local variable
L_0013: br.s L_0015 // jump 0015

L_0015: 1ldloc.0® // local variable onto the stack
L_0016: ret // return

}

which gives diferent Verification Condition:

VX.true =
(x<0) =
(((true =0) = (x=>0) A
((true #0) = (-x=0))) A
(x=0) =

((false =0) = (x=0)) A
((false # 0) = (-x=>0)))))

The first observation is that twoférent translation schemes lead t@elient MSIL code
and two diferent Verification Conditions. However, both should holchot in the same time
since they correspond to the same high-level source cods.iprobably one of the most
interesting properties of the XMS static verification.

In our case, both predicates are true and they exactly réfectructure of two dierent
translation schemes - note how the bloated structure ofribptimized code produces the hier-
archy of assumptions which lead to branches which always etause of false assumptions.

The second observation is that these two translation schaneebased on fiierent rules.
There are twaret instructions in the optimized version while the unoptintizeheme accumu-
lates the returning value in an auxiliary variable. The umozed scheme uses also completely
different pattern for the conditional expression with an aawylivariable to store the result of
the logical expression. As a result - there are two auxiNanyables in the unoptimized scheme
and no auxiliary variables in the optimized one.

Concluding this example - while the high-level languagestigper must be aware of such
issues and while it looks cumbersome at first sight, it shawidg no major problems when
using the XMS at a high-level language level, at least wherahguage is compatible with the
Common Certificate Specification set of obligations.
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6.3.2 Assignments, Expressions

Expressions in the high-level language code expand to seqa®f MSIL instructions. Assign-
ments translate to one stloc, starg, stelem, stfld or stsfld instructions. For example:

public int Foo( int a, int b, int c )
{
return b * b - 4 * a * c;

}
with following postconditionVALUE = b = b — 4 « a = ¢, produces following MSIL sequence:

.method public hidebysig
instance int32 Foo(int32 a, int32 b, int32 c¢) cil managed

{
.maxstack 8
L_0000: ldarg.2 // b onto the stack
L_0001: ldarg.2
L_0002: mul // b*b on the stack
L_0003: 1dc.i4.4 // 4 onto the stack
L_0004: ldarg.l // a onto the stack
L_0005: mul // 4*a on the stack
L_0006: ldarg.3 // c onto the stack
L_0007: mul // 4*a*c onto the stack
L_0008: sub // b*b-4*a*c on the stack
L_0009: ret

}

and following Verification Condition:

va.vb.vetrue => ((b+b) — (4 a) = ) = (b b) — (4 * @) * ©)))

6.3.3 Loops

The C# language has inherited three loop constructions ifiancestor, the C language:

e while ( bool_expression )

{
..loop body..
};
e do
{
..loop body..

} while ( bool_expression );

e for ( init_expression; bool_expression; loop_expression )

{
..loop body..

}
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C# MSIL
int i; .locals init (int32 V_0)

for ( i=0; i<1; i++ ) ldc.i4.0

{ stloc.® // i=0
...body... br loop_end

}

loop_body:
...body...

ldloc.0

ldc.i4.1

add

stloc.0 // i=i+1

loop_end:

ldloc.0®

ldc.i4.1

blt loop-body // jumpif i<1

Figure 6.1: Translation scheme féor instruction

Example translation scheme for ther loop is presented in Figure 6.1. At first the loop ini-
tialization takes place, then execution code jumps to thp tmndition checking and depending
on the test the loop is executed or ends. The similarity bexvtiee C# and MSIL loop structures
makes it possible to formulate loop invariants at C# levelcistill makes sense after the code
is translated to MSIL by the C# compiler.

6.4 Other High-Level language features

6.4.1 Class Invariants

As we have already mentioned the class invariant is a pretehich obligates the supplier to
make it satisfiable whenever the client has an access to aotabhgtance. It is a common belief
that class invariants are redundant since they can be ethesdearts of pre- and postconditions.

Example 6.2 Consider following C# class:

[ClassInvariant( "this.deposit >= 0" )]
class Account {

int deposit;
[Precondition( "Money >= 0" )]

[Postcondition( "true" )]
void Add( int Money ) {
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deposit += Money;

}

[Precondition( "Money >= 0" )]
[Postcondition( "true" )]
void Withdraw( int Money ) {
if ( Money <= deposit )
deposit -= Money;
else
deposit = 0;

According to this common belief actual specifications cdadcaugmented so that instead

Prexaqa = Money>0
Postqa = true
we could have
Prexqa = Money> 0 A this.deposit- 0

Postqqe = this.deposit 0

It has been however pointed out that there are obvious casa®wuch "shifting” of a class
invariant to pre- and postconditions of all instance meghisqust incorrect - perhaps the most
obvious counter example considers an instance method valeicbrms some initial activities
and then calls another instance method. Since the exeaftiba first method is not completed
the instance can be in a state where the class invariant ddd®ld (the class invariants is
obligated to hold when client has access to the instancenex#ssarily in the middle of an
execution sequence!). Because of that, the augmentedngligion of the callee also does not
hold and the invocation fails.

XMS handles class invariants at two levels.

Class Invariants in Verification Conditions Since the Verification Condition corresponds to
the execution from the client’s point of viewgaganbe augmented with the Class Invariant.
The augmented Verification Condition would be:

VC(F) = VCI(F) A VCEF)
where:

VCE(F) = Vao,...,an Classing A of = Prer =
(SHO, o, 0, true) A orer(Classiny)
VCI(F) = same as before (section 5.3.1, page 54)
op = Ssame as before
Oret Symbolic Evaluator state at thret instruction

(reader can refer to Figure 5.1 to compare the original aeétiymented version)
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Class Invariants in case of method callsAnytime thecall orcalli is evaluated by the Sym-
bolic Evaluator a part of the Verification Condition is pragd which takes the pre- and
postcondition of the callee into consideration. Whenekienta method fronthe same
class orthe sameobject instance is called the pre- and postconditions araugmented
with the class invariant and when a method franother class or the same class but on
another object instance is called - its class invariant should haldiiais concatenated to
both the precondition and the postcondition.

6.4.2 Properties, Indexers

Properties and indexers are not MSIL language construlsts; @re considered tlsyntax-sugar
and are translated to one or two methods depending on thearwhaccessors provided.

Example 6.3 Consider following C# code:
class Foo {
int theProperty;

int TheProperty

{
get

{

return theProperty;

set

{

theProperty = value;
}
}

The C# compiler produces two methods at MSIL level:

.method private hidebysig specialname
instance int32 get_TheProperty() cil managed

{
.maxstack 8
L_0000: ldarg.0®
L_0001: 1dfld int32 Foo::theProperty
L_0006: ret
}

.method private hidebysig specialname
instance void set_TheProperty(int32 ’value’) cil managed
{

.maxstack 8

L_0000: ldarg.0®

L_0001: ldarg.1
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L_0002: stfld int32 Foo::theProperty
L_0007: ret

Since separate attributes are allowed on both propertysaoc® specifications for both
accessors can be provided for XMS. The only important isstled compiler generated name
for the parameter of theet accessor.

The similar pattern applies to indexers. In this case algoayriwo methods are generated
and their parameters depend of actual parameters of theande

6.4.3 Delegates

Delegates are special kind of reference types designegtesent function pointers. They in-
herit from System.MulticastDelegate class, cannot be inherited and must provide two or
four mandatory methods. In the former case these two metredbe two-parameter construc-
tor and theInvoke method.

The main diference between delegates and function pointers is thagateke are type-
safe both at compile and run-time and produce verifiable coldere function pointers are
considered type-unsafe (for example, converting fungbioimters with incompatible signature
is possible in C with direct cast, however the actual callsegua serious run-time problem
which usually terminates the application because of thekstarruption. This mechanism can
be also exploited to take the control of the running applbcgt

All member methods of a delegate class are implemented byutiteéne so even at the
MSIL level their implementation must not be provided. Thel@#guage introduces delegates
as first-class language constructs with simplified syntaxfeInvoke method.

Example 6.4 Following C# code:

public class FooClass {
public delegate int FooDelegate( int x );

public int FooExample( int n ) {
return n;

}

public int InvokeDelegate() {
FooDelegate foo = new FooDelegate( FooExample );
return foo( 1 );
}
}

produces the inner delegate class with four runtime-impleied methods, the constructor and
Invoke and two complementarBeginInvoke and EndInvoke methods for asynchronous
calls.

.class auto ansi sealed nested public FooDelegate
extends [mscorlib]System.MulticastDelegate

{
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.method public hidebysig specialname rtspecialname
instance void .ctor(object ’object’, native int ’'method’)
runtime managed

{13

.method public hidebysig newslot virtual
instance class [mscorlib]System.IAsyncResult
BeginInvoke( int32 x,
class [mscorlib]System.AsyncCallback callback,
object ’object’) runtime managed

{1

.method public hidebysig newslot virtual
instance int32
EndInvoke (
class [mscorlib]System.IAsyncResult result)
runtime managed

{1

.method public hidebysig newslot virtual
instance int32 Invoke(int32 x) runtime managed

{1

There are two possibilities a delegate reference can bénebta it can be created inside
a method or obtained from outside (passed as an argumemtyeek from instance field of
another object or a static field of some class). Let's exarbatk cases.

explicit delegate instantiation A delegate can be created in an explicit way using the automat
ically generated constructor.

public int FooExample( int n ) {
return n;

}

public void ExplicitDelegate() {
FooDelegate foo = new FooDelegate( FooExample );
int res = foo( 1 );

}
In this case following MSIL is produced for ttExplicitDelegate method:

.method public hidebysig
instance void ExplicitDelegate() cil managed
{
.maxstack 3
.locals init (
[0] class DelegateTest/FooDelegate foo)
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L_0000: ldarg.® // instance onto the stack

L_0001: 1dftn instance int32 // instance function pointer
DelegateTest: :FooExample(int32) // onto the stack

L_0007: newobj instance void // create delegate
DelegateTest/FooDelegate::.ctor(object, native int)

L_000c: stloc.®

L_000d: 1ldloc.®

L_000e: 1ldc.i4.1 // 1 onto the stack

L_000f: callvirt instance int32 // invoke the delegate
DelegateTest/FooDelegate: :Invoke(int32)

L_0014: pop

L_0015: ret

}

Such case is handled by XMS by first storing the function mimt asymbolic delegate
reference and then reducing the call to Tn@oke method to the typicatall case using
the specification from the stored symbolic delegate as afgyaion of the callee method.

implicit delegate reference The delegate can not only be created in an explicit way as show
in previous case but also the reference can be obtained isawlgere. For example:

public int FooExample( int n ) {
return n;

}

public void DelegateReference(
FooDelegate F, int k ) {

int res = F( k );
3

which translates as

.method public hidebysig instance void DelegateReference(
class DelegateTest/FooDelegate F, int32 k) cil managed
{
.maxstack 8
L_0000: ldarg.l
L_0001: ldarg.2
L_0002: callvirt instance int32
DelegateTest/FooDelegate: :Invoke(int32)
L_0007: pop
L_0008: ret
}

The easiest trick in this case would be to restrict the ptssilvocations by forcing the
pre- and postcondition of the delegate to fulfill some regmients similar as in subcon-
tracting. Unfortunately, delegates often come frorffedtient classes and provide com-
pletely diferent functionality so their specifications are not relateany way.
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Such case is then handled by XMS by reducing the call tattveke method to the typ-
ical call case but using unknown predicatese(k) andPost(k) to denote the unknown
precondition and the postcondition of the deledat& is supplied as the parameter to the
delegate and thBre andPostpredicates must be parametrizedidy

The Verification Condition for the methdaklegateTest would be then:

Préperegatetest = ... Pre(k) A Vu.Post(k)[u/VALUE] = ...POSbeiegatetest

Note that above predicate is a second-order predicate waHunctionsPre andPost
Whether or not such second-order predicate is still pra&vdbpends on actual case.

Although the predicate can be unprovable, anytimeDéikegateReference method
is invoked from a place where tHere and Postpredicates are known from the caller
context, an "instantiation” of the Verification ConditionrfDelegateReference with
Pre andPostreplaced by actual predicates could be appended to thelglebfication
Condition for the module. This would still leave tbelegateReference unsafe but
could validate any potential calls to it.

Nevertheless, if the reference to the delegate is obtamreskimple from a static field of

another class, the actual function pointer and its spetidic@annot be determined stat-
ically and the code would be probably rejected as unsafea(lsecno proof of a second-
order formula could be found).
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Practical Issues

7.1 The Implementation

A practical implementation of PCC-oriented certificatisarhework requires three key com-
ponents: the VCGen which builds Verification Conditionsdaoren code modules, an external
theorem prover for code producer to build formal proofs ofifigation Conditions and an ex-
ternal proof checker for code consumer to verify proofs.

The VCGen was exclusively developed for XMS and runs on theT.lglatform itself.
It reads .NET binaries, scans method bodies and builds &atiiin Conditions. Current im-
plementation supports a broad range of MSIL instructiosms,arithmetical and control flow
instructions, instructions for addressing fields and arguimand instructions for calling meth-
ods.

7.1.1 Code-Producer Components

The architecture of the Code-Producer framework is presentthe Figure 7.1.
The framework consists of three major components.

Framework Base consists of the Common Definitions component and Specificatanguage
Parser.

e Common Definitionscontains mainly the definition of specification attributésy
XMS .NET module uses these attributes to provide specifinador method and
class invariants.

e Specification Language Parseis the component responsible for providing pars-
ing routines for the specification language. The parserad by both the static and
dynamic verification engines. The parser component contaliso the definitions
of symbolic objects, symbolic vectors and symbolic indirepressions used dur-
ing by the static engine during the symbolic evaluation. geltser-defined classes
inherit from theSymbolicExpression class which provide the common mainte-
nance such as evaluating the closure, substitution orrajofar symbolic expres-
sions.

Language parser is written in C# and uses external parserafen
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DYNAMIC VERIFICATION STATIC VERIFICATION
ENGINE ENGINE

THEOREM PROVER
CONTEXT-BOUND OBJECTS

INFRASTRUCTURE
VERIFICATION CONDITION
GENERATOR
DYNAMIC EVALUATOR OF
EXPRESSIONS MSIL READER

FRAMEWORK BASE

SPECIFICATION-LANGUAGE
PARSER

COMMON DEFINITIONS

Figure 7.1: XMS Framework at the Code-Producer side

Dynamic Verification Engine consists of the Context-Bound Objects infrastructure dred t
Dynamic Evaluator of Expressions.

e Context-Bound Obijectsinfrastructure contains complete toolbox for .NET code
instrumentation. The toolbox is described with detaildia $ection 5.2.

e Dynamic Evaluator of Expression is responsible for evatggbredicates during the
pre- and postprocess phase of the execution under the dyrarification engine. It
uses the .NET dynamic code generation techniques to accegjeot specification
predicates by evaluating them. The result of the evaluadialways a boolean value
or an exception is thrown when the evaluation cannot be pedd.

Both the Context-Bound Objects infrastructure and the Dyind&valuator are writ-
ten in C# and the code size is about 20kB.

Static Verification Engine consists of théSIL Reader, Verification Condition Generator
and an externalheorem Prover.

e MSIL Reader is written in C# and uses both the reflection and a clever ine#iv-
ing theGetILAsByteArray of theMethodBody class - the result of the call is not
directly usable because its resultis a byte array of MSlka @iatluding opcodes and
their arguments), however it has been shown in [42] how th&tiag opcode enu-
meration fystem.Reflection.Emit.OpCode) can be used for extracting actual
opcodes and values of their arguments from the MSIL stream.

The reader is written in C# and the code size is about 20kB.
e Verification Condition Generator is responsible for the symbolic evaluation of

MSIL methods and producing Verification Conditions. The gyaor is described
in Section 5.3.
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The generator is written in C# and the code size is about 90kB.

7.1.2 Certification Components

There are three possible approaches to theorem proving raed ¢ghecking. XMS does not
favour any but currently uses the first one.

1. A tactical theorem proveiqabelle Cog) can be used for proof construction and proof
validation. Proofs are concise and in many cases can beraotest automatically without
any manual guidance. However, the prover must be presemtde Consumer side. Such
requirement can be the major disadvantage of this approacé the theorem prover is
not easily verifiable and even a single inconsistency in ttoeqy engine could lead to
incorrect judgements.

2. Proofs can be encoded in a metalogic LF ([38]). This resaltong and detailed proofs
but the proof checking procedure is cheap at the Code Conssidee Metalogic proof
checkers are short and thus reliable. Additional techrsgaa be used to shorten proofs

([34]).

3. Alogical interpreter can be used as a proof checker ([&]¢h interpreter uses informa-
tion about the proof structure provided by the Code Prodbigeinstead of recreating the
proof it actually checks if the proof exists at all.

7.2 Private Computation

One of free benefits of conforming to static verification wptledicategroofs as certificates is
the possibility of using XMS foPrivate Computation.

Suppose that a pary needs expensive computation to be performed on some pdatde
A is unable to perform the computation locally. Suppose tlaatyB is able to perform the
computation forA.

However,A does not want its private data to be revealeB endB does not want its private
algorithm to be revealed 4.

Using XMS as a certification framework and ASP.NET Web Sawvi@s remote computation
layer,A andB can rely on followingXMS Private Computation Protocol:

1. A andB ask a trusted party;, to make a Web Servic®y, available to both of them.
2. B publishes its service oW together with XMS specification and certificates.

3. A asksW for the specification oB’s service, checks if the specification meetgfmes re-
quirements and ask¥ to verify thatB’s service is correct with respect to its specification
using XMS Protocol.

4. W verifies theB's service and sends the verification resulfto

5. A checks the verification status and if it is positive, senslgléta toWW and collects the
results of the computation.
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Figure 7.2: XMS Secure Computation Scheme
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Conclusion and Future Work

8.1 Contribution

While XMS is not the first approach to the Design By Contractdo enterprise development
platform, it is probably the first one based on two strong pigiras, the Design By Contract and
the Proof-Carrying Code. The framework is built for the Misoft .NET Framework platform
and it starts by defining the model and the semantics of thgukage and then shows how the
dynamic and static verification engines form a coherent amaptete environment for security
policy validation.

Although the framework is built for the Microsoft Intermeatie Language, the intermedi-
ate language of the .NET platform, we show that it is possibléft it to enterprise high-
level languages to a quite reasonable extent which makesdilgle to certify significant parts
of software systems. We also provide the Private Comput&iotocol which shows that the
framework can be used when both the data and an algorithm tiranparties should remain
private.

The XMS Framework has been implemented and will be releastticommunity together
with this dissertation.

8.2 Future Work

Formal certificates can rely on other certification paradidike the Model Carrying Code
([37]) where the certificate takes the form of an abstractehotithe code execution and model
checking techniques are involved to verify these models. XMS could ultimately unify var-
ious approaches. The combination of PCC and MCC seems afip@ctomising.

Three main directions of future XMS development are:

e support for more MSIL instructions and built-in predicates (Static Verification):
Currently the static verification does not support all MShistructions, for example it
does not handle generics. Whether or not these opcodesahte b static analysis is
another research goal. Some built-in predicates couldsupported, such aSNULL.

e other code instrumentation techniques (Dynamic Verificatbn): Although context-
bound objects are an easy way to perform code instrumentaising .NET Profiler API
could make the dynamic verification faster and more tramsgail he dynamic analysis
could be easily turned goff at the client-side.
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e better integration with high-level languages Current handling of loop invariants re-
quires high-level languages to cope with Standard CertEfiSpecification. Also the de-
veloper must be aware of some translation schemes and spssifes regarding the set
of active optimizations. This could be too restrictive fonee high-level languages, for
example functional languages with compilation schemeghkvhre much more indirect.
A long-term goal would be to integrate XMS with such langusagsing one integration
strategies we have proposed.

Yet another issue is the tendency to extend high-level laggsiwith new and new syntactic-
sugar. For example, the C# 2.0 language introduces a noaktextension for writing
custom enumerations usigdeld instruction. The short and concise enumerator:

public class Tree

{
public Tree left;
public Tree right;
public int value;
public Tree( Tree left, Tree right, int value )
{
this.left = left;
this.right = right;
this.value = value;
}
public IEnumerator<int> GetEnumerator()
{
if ( left != null )
{
IEnumerator<int> e = left.GetEnumerator();
while ( e.MoveNext() )
yield return e.Current;
}
yield return value;
if ( right !'= null )
{
IEnumerator<int> e = right.GetEnumerator();
while ( e.MoveNext() )
yield return e.Current;
}
}
}

translates to a private, internal class implementing#iremerable interface which han-
dles the enumeration by a compiler-implemented methodving states corresponding
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to eachyield used in the original enumeration definition. Unfortunatelych new lan-
guage construct brings separate issues to the "lifting’eofificates.

e other Safety Policies Contracts Safety Policy is not the only interesting Safetjicy
that can be verified in a XMS manner. Other formal policieshsas Temporal Spec-
ifications ([5]) or Non-Interference ([14], [23]) could belapted to XMS certification
scheme. The latter is especially promising since the prysiesn for symbolic version of
the calculi exists ([19]) and could be used in the certifamaframework.



88

CHAPTER 8. CONCLUSION AND FUTURE WORK



Bibliography

[1] Andrew W. Appel. Foundational Proof-Carrying Codegic in Computer Scien¢c001.

[2] K. Apt and E. Olderog.Verification of Sequential and Concurrent Prograng&pringer-
Verlag, 1997.

[3] Dave Arnold and Jean-Paul Corriveau. Using the .NET Rnof\PI to Collect Object
Instances for Constraint EvaluationNET Technologies 2006, Full Paper Proceedings
2006.

[4] Kent Beck. Test Driven Development: By Examplkddison-Wesly Longman, 2002.

[5] Andrew Bernard and Peter Lee. Temporal Logic for Proafyihg Code. Technical
Report, CMU-CS-02-13@2002.

[6] Christopher Colby, Peter Lee, and George C. Necula. AP@arrying Code Architecture
for Java.Computer Aided Verificatignpages 557-560, 2000.

[7] Christopher Colby, Peter Lee, George C. Necula, FrediBldark Plesko, and Kenneth
Cline. A Certifying Compiler for JavaACM SIGPLAN Notices35(5):95-107, 2000.

[8] D. Kozen D. Harel and J. TiuryrDynamic Logic MIT Press, 2000.

[9] Christian W. Damus. Implementing Model Integrity in EM#th MDT OCL. IBM Ra-
tional Software Resource2007.

[10] Bruce Eckel and Larry O’BrienThinking in C#, Release Candidaterentice Hall, 2002.

[11] Ralph Johnson John Vlissides Erich Gamma, Richard H&wesign Patterns: Elements
of Reusable Object-Oriented Softwasfeddison-Wesley Professional, 1995.

[12] Michael D. Ernst.Dynamically Discovering Likely Program Invariant®hD thesis, Uni-
versity of Washington, 2000.

[13] Amy Felty and Andrew W. Appel. Semantic Model of Typesidfiachine Instructions
for Proof-Carying CodeSymposium on Principles of Programming Languag@e€€0.

[14] Riccardo Focardi and Roberto Gorrieri. ClassificatdrSecurity PropertiesThe Inter-
national School on Foundations of Security Analysis anddre@&OSAD) 2000.

[15] Martin Fowler. Refactoring: Improving the Design of Existing Codaddison-Wesley
Professional, 1999.

89



90 BIBLIOGRAPHY

[16] Andrew D. Gordon and Don Syme. Typing a multi-languagieimediate code ACM
SIGPLAN Notices36(3):248-260, 2001.

[17] Scott Hazelhurst and Carl-Johan H. Seger. Formal \¢atibhn by Symbolic Evaluation of
Partially-Ordered Trajectorieformal Methods in Systems Desjd995.

[18] C. A. R. Hoare. An Axiomatic Basis for Computer Programgir Communications of the
ACM, 19609.

[19] Anna Ingolfsdottir and Huimin Lin. A Symbolic Appraa to Value-Passing Processes.
2000.

[20] Newkirk JW. and Vorontsov AATest-Driven Development in Microsoft .NEWicrosoft
Press, 2004.

[21] Joshua KerievskyRefactoring To PatternsAddison-Wesley, 2004.

[22] Gregor Kiczales et al. Aspect-Oriented ProgrammiPgnceedings of the European Con-
ference on Object-Oriented Programmjri®97.

[23] H. Lin. Symbolic Bisimulations and Proof Systems foe thCalculus. Technical Report
1994:07, University of Sussek994.

[24] Kenneth L. McMillan.Symbolic Model Checkindluwer Academic Publishers, 1993.

[25] Bertrand Meyer. Applying "Design by Contract”. CompytlEEE, Volume 25, Issue 10
1992.

[26] Bertrand Meyer.Object-Oriented Software Construction, Second EditiBrentice Hall,
1997.

[27] Microsoft. Common Language Infrastructure Specifamat ECMA-335 Specificatign
2002.

[28] M. Leino Mike Barnett, K. Rustan and Wolfram Schulte. eT8pec# Programming Sys-
tem: An Overview.CASSIS2004.

[29] Robin Milner.Communicating and Mobile Systems: thi€alculus Cambridge Univerisy
Press, 1999.

[30] Greg Morrisett, David Walker, Karl Crary, and Neal Gldwom System F to typed assem-
bly language.ACM Transactions on Programming Languages and Syst2{8):527—
568, 1999.

[31] David Evans Nathanael Paul. Comparing Java and .NETr#gcLessons Learned and
Missed. Technical Report, University of Virginj2004.

[32] George C. Necula and S. P. Rahul. Oracle-Based Checdkibigitrusted SoftwareSym-
posium on Principles of Programming Languag2801.

[33] George Ciprian NeculaCompiling with Proofs PhD thesis, Carnegie Mellon University,
1998.



BIBLIOGRAPHY 91
[34] George Ciprian Necula and Peter Ledfi¢tent Representation and Validation of Logical
Proofs. Technical Report, CMU-CS-97-1/72997.

[35] Cees Pierik and Frank S. de Boer. A Syntax-Directed Eldangic for Object-Oriented
Programming Conteptdechnical Report UU-CS-2003-0,12003.

[36] A. Poetzsch-Hfter and P. Muller. A programming logic for sequential Jataropean
Symosium un Programming (ESOP '99576:162—-176, 1999.

[37] Samik Basu Sandeep Bhatkar Daniel C. DuVarney R. Sekal, Venkatakrishnan.
Model-Carrying Code: A Practical Approach for Safe Exemutof Untrusted Applica-
tions. Technical Report Stony Brook Universig003.

[38] Furio Honsell Robert Harper and Gordon Plotkin. A Frarek for Defining Logics.
Logic in Computer Scienc&987.

[39] Peter Y. A. Ryan. Mathematical models of computer sié¢uilhe International School
on Foundations of Security Analysis and Design (FOSABYyes 1-62, 2000.

[40] Grigoryev D. Maslennikov A. Safonov V., Gratchev M. Asp.NET, Aspect-Oriented
Toolkit for Microsoft .NET. Proceedings of the .NET Technologies 2006 Conference
2006.

[41] Ken SchwaberAgile Project Management with Scrumicrosoft Press, 2004.
[42] Sorin Serban. Parsing the IL of a Method Bodigtp;Avww.codeproject.con2006.

[43] Raymie Stata and Martin Abadi. A type system for Javi@byde subroutineSymposium
on Principles of Programming Languaggmges 149-160, 1998.

[44] Michael S. V. TurnerMicrosoft Solutions Framework Essentialicrosoft Press, 2006.

[45] David von Oheimb. Hoare Logic for Java in Isab@H®L. Concurrency - Practice and
Experience2001.

[46] Wiktor Zychla. eXtensible Multi Security, Contractsrf. NET Platform.Journal of .NET
Technologies4, 2006.



92

BIBLIOGRAPHY



List of Figures

11
2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
414
4.15
4.16
4.17
4.18
4.19
4.20
421
4.22
4.23

5.1
6.1

7.1
7.2

XMS safety versus PCC type-safety . . . ... .. ... ... ... ... 5
Comparison of static and dynamic techniques . . . . ... ... ..... 9
Overview of basic PCC protocol . . . . . ... .. .. ... .. ... u.. 13
A modification of PCC protocol forthe XMS . . . . .. ... ... .. .. 15
Structure ofamanagedassembly . . . . . . ... ... .. ..., 18
High-level compilers versus JIT compilers . . . . . ... .......... 19
Valid and verifiable IL . . . . . . . . .. o 20
.NET Framework Code-based policy configurationtool ...... . ... ... 23
Naming conventions . . . . . . . . . . . L 24
TYPES . . e 25
Field and method signatures . . . . . . . . .. .. ... ... ... ... 25
Basic inheritancerules . . . . .. ... 25
Selected IL Control Flow Instructions . . . . . . .. .. ... ... .... 26
IL Arithmetical InstructionSet . . . . . . .. .. .. ... .. oL, 27
Selected IL instructions for fields, arguments andllegaables . . . . . . .. 27
IL Instructions for Calling Methods . . . . . . . ... .. .. ... .... 28
Selected IL Instructions for Class Manipulation . . .. .. ... ...... 29
IL Instructions for Vector Operations . . . . . . . . . ... ... ...... 29
Resultvalues . . . . . . . . . . . 30
Localmemorycontext . . . . . . . . . . . . ... 31
Semantics of selected Control Flow Instructions . . ...... . . .. ..... 34
Semantics of Arithmetical Instructions . . . . . ... ... ... .. .... 35
Semantics of Arithmetical Instructions, cont. . . . . . ..... 36
Semantics of Instructions for Addressing Fields, A!mgnts and Local Variables 37
Semantics of Instructions for Calling Methods . . . . ...... ... ..... 37
Semantics of Instructions for Addressing Objects . ...... . .. ... ... 38
Semantics of Instructions for Vector Operations . . ...... . .. ... ... 38
Definition of Verification Condition for Design By Contta. . . . . . . . . .. 55
Translation scheme fdbr instruction . . . . . . .. . ... ... ... .... 74
XMS Framework at the Code-Producerside . . . .. ... ... ... .. 82
XMS Secure Computation Scheme . . . . . . . ... ... ... ... 84

93



94

LIST OF FIGURES



List of Tables

5.1 XMS Symbolic Evaluator for Design By Contract

A.1l ILInstructionSet . . . . . . . . . ...

95



96

LIST OF TABLES



Appendix A

MSIL Instruction Set

The table below contains full MSIL 1.0 instruction set. Eatsdtruction is followed by a symbol
which shows its status from the VCGen point of view:

e @ - the opcode is fully supported by the VCGen
e o - the opcode is skipped by the VCGen
e O - the opcode is not supported by the VCGen

Notice that the IL instruction set is optimized to producesasll assemblies as possible.
This is why most frequent instructions have their own opsodier example thddc.i4.0 to
ldc.i4.8 load 32-bit integer values 0 to 8 onto the stack) and the nawstinstructions have
two-byte opcodes (for example thdarg instruction with 32-bit parameter).

Table A.1: IL Instruction Set

| Code | Instruction | Supported| Comments
00 nop ®
01 break ) used for debugging purposes
02 ldarg.® [ )
03 ldarg.1 [ )
04 ldarg.2 ()
05 ldarg.3 o
06 ldloc.® [ )
07 ldloc.1 [ )
08 ldloc.2 [ )
09 ldloc.3 [ )
O0A stloc.® [ )
0B stloc.1 [ )
oC stloc.2 [ )
0D stloc.3 [ )
OE ldarg.s ]
OF ldarga.s [ )
10 starg.s (]
11 ldloc.s [ )
12 ldloca.s ]
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Code | Instruction | Supported] Comments \
13 stloc.s [ )
14 ldnull ]
15 ldc.i4.M1 [ )
16 ldc.i4.0 [ )
17 ldc.i4.1 ()
18 ldc.i4.2 [ )
19 ldc.i4.3 ()
1A ldc.i4.4 [ )
1B ldc.i4.5 ()
1C ldc.i4.6 [ )
1D ldc.i4.7 ()
1E ldc.i4.8 [ )
1F ldc.i4.s ()
20 ldc.i4 [ )
21 1dc.i8 [ )
22 ldc.r4 ]
23 ldc.r8 ()
25 dup o
26 pop ]
27 jmp ®
28 call ()
29 calli o) unverifiable instruction for indirect calls
2A ret ()
2B br.s ]
2C brfalse.s ()
2D brtrue.s ()
2E beq.s ®
2F bge.s ()
30 bgt.s ®
31 ble.s ()
32 blt.s ()
33 bne.un.s ()
34 bge.un.s (]
35 bgt.un.s ()
36 ble.un.s [ )
37 blt.un.s ()
38 br ()
39 brfalse [ )
3A brtrue ()
3B beq e
3C bge [ )
3D bgt e
3E ble ()
3F blt [ )
40 bne.un [ )
41 bge.un ]
42 bgt.un [ )
43 ble.un [ )




Code | Instruction

| Supported] Comments

44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
B6A
6B
6C
6D
6E
6F
70
71
72
73

blt.un
switch
ldind.il
ldind.ul
1dind.i2
ldind.u2
1dind.i4
ldind.u4
1dind.i8
ldind.i
ldind.r4
ldind.r8
ldind.ref
stind.ref
stind.il
stind.i2
stind.i4
stind.i8
stind.r4
stind.r8
add

sub

mul

div
div.un
rem
rem.un
and

or

Xor

shl

shr
shr.un
neg

not
conv.il
conv.i2
conv.i4
conv.i8
conv.r4
conv.r8
conv.u4
conv.u8
callvirt
cpobj
1dobj
ldstr
newobj

0 OO0 0 VVVWOVLOVLLLL OO0 0000000000000 000060000060060000 9000

should be handled like ref types
should be handled like ref types
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Code | Instruction | Supported] Comments \
74 castclass ()
75 isinst @) not possible to verify statically
76 conv.r.un [ )
79 unbox [ )
TA throw (]
7B 1dfld [ )
7C ldflda @)
7D stfld [ )
7E ldsfld ()
7F ldsflda @)
80 stsfld [ )
81 stobj @)
82 conv.ovf.il.un o
83 conv.ovf.i2.un ()
84 conv.ovf.i4.un ()
85 conv.ovf.i8.un [
86 conv.ovf.ul.un ()
87 conv.ovf.u2.un o
88 conv.ovf.u4.un ()
89 conv.ovf.u8.un [
8A conv.ovf.i.un ()
8B conv.ovf.u.un o
8C box @)
8D newarr [ )
8E ldlen ()
8F ldelema ()
a0 ldelem.il [ )
91 ldelem.ul ()
92 ldelem.i2 [ )
93 ldelem.u2 ()
94 ldelem.i4 [ )
95 ldelem.u4 ()
96 ldelem.i8 [ )
97 ldelem. i ()
98 ldelem.r4 [ )
99 ldelem.r8 ]
9A ldelem.ref ()
9B stelem.i [ )
aC stelem.il ()
aD stelem.i2 [ )
9E stelem.i4 ()
oF stelem.i8 (]
A0 stelem.r4 ()
Al stelem.r8 ]
A2 stelem.ref [ )
B3 conv.ovf.il [
B4 conv.ovf.ul ()
B5 conv.ovf.i2 ()
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Code | Instruction | Supported] Comments \
B6 conv.ovf.u2 ()

B7 conv.ovf.i4

B8 conv.ovf.u4

B9 conv.ovf.i8

BA conv.ovf.u8

Cc2 refanyval
C3 ckfinite
C6 mkrefany
DO ldtoken

D1 conv.u2

D2 conv.ul

D3 conv.i

D4 conv.ovf.i
D5 conv.ovf.u

D6 add.ovf

D7 add.ovf.un
D8 mul.ovf

D9 mul.ovf.un
DA sub.ovf
DB sub.ovf.un
DC endfinally
DD leave

DE leave.s

DF stind.i

EO conv.u
FEOO | arglist
FEO1 | ceq

FEO2 | cgt

FE 03 | cgt.un
FEO4 | clt

FEO5 | clt.un

FE 06 | 1dftn
FEO7 | 1dvirtftn
FE 09 | 1darg

FE OA | 1darga

FE OB | starg

FE OC | 1dloc

FE OD | 1dloca

FE OE | stloc

FE OF | 1localloc
FE 11 | endfilter
FE 12 | unaligned.
FE 13 | volatile.
FE 14 | tail.

FE 15 | initobj

FE 17 | cpblk

FE 18 | initblk

FE 1A | rethrow

OO0OO0O0O0D0000CeE0C e 0000000006 0O0000 0000 909090 “VLIVLVLOOLLOLLOLLY O
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| Code | Instruction | Supported] Comments \

FE 1C | sizeof @)
FE 1D | refanytype O




Appendix B

The Soundness Theorem

This appendix contains proof of soundness for the SafetyrEme 5.1: The proof technique
of this theorem is adopted from the original proof preseme@3]. What we are left to do is
to adopt this technique to this particular case - the Micitolstiermediate Language and the
Design By Contract policy.

Theorem B.1(Soundness of Verification Condition Generator for DesigrContract) If the
verification condition for a given module M is valid, ife. VC(M) then all executions of
any module methods are correct with respect to the Design @yr@ct security policy, i.e.
Safg (M).

Since the verification condition of a module is the conjumtf conditions of all methods
from the module, we are left to prove the theorem for any simgethodF € M.

The proof uses the induction on execution length of a mettoaly.d~rom the definition of
the safety policy we can assume that the execution wasdiarsestate that satisfies the precon-
dition. Then at each state of the runtime environment we ghaithere exists a corresponding
state of the symbolic evaluator. This correspondence isia concept of the proof.

To be able to use induction we first state thduction hypothesisfor an execution state
> = (i,p) and corresponding symbolic evaluator st8ti, o, £). The induction hypothesis
reflects the fact that:

e the verification condition foF is valid, i.e.= VC(F)
¢ the execution was initiated in a state satisfying the prditmm, i.e.|= Prer

¢ the statex of the execution of and the stat&Hi, o, £) of the symbolic evaluator are
related

Definition B.1. Let us consider the simultaneous execution of the MSIL RenEnvironment
executing the method F in a staiep) and of the symbolic evaluator in the state(Bk, £).
Let 7 be the current evaluation of symbolic values. We say thaintthection hypothesis holds
in this state (we writé= IHg(i, o, £, 7, p)) when:

1. the current evaluation of the verification condition idigai.e. E 7(SE:(i, o, £))
2. o, T andp are related such that (o (v)) = p(v) for any v in Domg)

3. 7 correctly captures the invariant conteXt, i.e. if £ = £, + (i, o)) where
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(a) Lis empty and for all v we have 1(o0g(V)) = po(V), Or
(b) £=L1+(i,0) witho), = o[..., (v = VYV, w .. u - o then
i. Fj=Inv(P,Var,Kk)
ii. v and { are fresh variables
ji. T=1+ [V > tu - t]
iv. E 11(01(P))
V. E 1YWy, .. ., vy .. U0 (P) = SHiL, 07, .. )
Vi. 71 is correct with respect td’;

Having stated the induction hypothesis we will show that:

the hypothesis holds at the time of invocatiorFof

the hypothesis holds at each step of the execution progféss o

methods are safely invoked from within

the hypothesis implies that at the end of the execukois secure with respect to the
safety policy, i.eE Post

The lemma below restates the main theorem by resolving themof safety using the
definition of the safety policy (Definition 5.1) and the indioa hypothesis.

Lemma B.1. If the verification condition for given method F is valid, eV C(F) then for any
initial state (0, po) such that Pre(oo) and assuming that all invoked methods are safe we have
that for any reachable state = (i, p) there existsr, £ andr such that the induction hypothesis
holds, i.e. IH:(i, o, L, 7, p) and we have that either::

e Fi =ret and Post(p)

e F; # ret, there exist&’ such tha& — X’ and the induction hypothesis holds in the new
stateX’

The lemma B.1 can be further reformulated to four other aargillemmas.

Lemma B.2 (Invocation) If the verification condition for F holds, i.d= VC(F) and F is
invoked in a "safe” state, i.e. Pigpp) then there existso and g such that IHi, o, €, 7o, po)-

Lemma B.3(Progress) If the induction hypothesis holds in a stdtg), i.e.E IH(i, 0, L, 7, p)
and the current instruction isiot a call andnot a return instruction then when the execu-
tion engine makes a progress to the stéfe’) then there existg’, £’ and v’ such that
|: IH(j’O-” '£”T/’p/)'

Lemma B.4 (Call). If the induction hypothesis holds in a stdiep), i.e. E IH(i, 0, L, 1, p)
and the current instructiots the call of a method G such that S@# then if the execution
engine returns from the call to the state+ 1, p’) then there exists~” and 7’ such that
IH(+ 1, o/, L,7,0).

Lemma B.5 (Return) If the induction hypothesis holds in a stdtgp), i.e.E IH(i, 0, L, 7, p)
and the current instructiors the return instruction then the return is safe, i.e. Rggs}.
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Lemma B.2, allows us to establish the induction hypothddlsamethod invocation, lemma
B.3, guarantees that if the execution makes progress tieendiiction hypothesis holds in the
new state, lemma B.4, states that the method call presdr@@sduction hypothesis and the last
one, B.5, deals with the method return case.

We also state the congruence lemma which will be used theutgtroofs of B.2 to B.5.
The lemma can be easily proven by the structural inducti@n By

Lemma B.6(Congruence)lf P is a predicatep is a state of the execution engimeis the state
of the symbolic evaluator andis the evaluation of symbolic values frento values such that

E 7(o(v)) = p(v), for any v in Domy), thenk o(7(P)) if and only if= (o(P)).

Proor oF Invocation LEmma B.2 Since the verification condition is valid fér we have
Vay, ..., an.oh (Preg) = SHO, o, 0) whereol), = (Ia(a — &), lv(vi — 0),€).

Since the values in local argument vector are universabtfied, we have: o(o§ (Preg) =
SHQO, o'}, 0)) wherero = [a — p(a;)] (because we drop the universal quantification in favor of
fixed values).

What we have to prove is that the induction hypothesis is frag= IH (i, o, €, 70, po).

The clause 2 is just by the definition @ andry. By the assumptioRrer (o) and clause 2
we have thaty(oo(Preg)) that gives us the conclusion by using the modus pones.

O

Proor or PrRoGrEss LEmMa B.3 To show that the induction hypothesis holds when thement
environment makes a progress in the execution we analyzaghiestruction used for symbolic
evaluation. We will prove this lemma for few example instros.

invariant case - first time We have to prove the invariati (i, o, £, 7/, p’) where

U’ are new variables so that
o(U) = u andr(o(W)) = p(u))
v/ are new variables so that
o' =0cvimV,u,... U -5
=1+ = pw)]

Note that because of the way theis defined we have that(o”’(v)) = p(V).

In order to show that the clause 2 of the induction hypothlesids we have to refer to
the definition of the VCGen. By the definition of the VCGen foistcase we have:

F t(c(P)
E17(’'(P) = 7(SHi,o’, L+ (i,0")))

Using the congruence lemma we get from the first clauserthatP) and then because
7'(0’(v)) = p(v) we have thai 7/(o”(P)). From this and from the second clause above
we have the induction hypothesis.

invariant case - second timeThe proof of this clause is a reformulation of the correspogd
clause from [33].
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caseldarg v, starg v The only non-trivial clause of the induction hypothesislause 1.

In case of thddarg v instruction we have to show thaflo(v)) = p(Ia(v)) which is true
by the induction hypothesis.

In case of thestarg v instruction we have to show tha{la[v — u]) = p(lalv —
u]). But sincela[v — u](V') = Ia(V) for v # v/ we only have to check that(lA[v —
up(u) = p(la[v — u](u)) since the equality is true in case of any other value bexafis
the induction hypothesis.

We also haver(Ia[v — u])(u) = 7(u) = p(u) = p(la[v — u](u)) again because of the
induction hypothesis.

casebrtrue | The clause 2 is trivial in this case because both the runtime@@ment and
the symbolic evaluator just pop the value from the stack. & state of the runtime
environment i’ and new state of the symbolic evaluatoois

To prove the clause 1 we have to analyze two cases dependthg otirrent value at
the top of the stack.

If p(v) = 0 then the next state is € 1, p") so we have to prove that the clause 1 holds in
the new state, i.é= 7(SHi + 1, 0")).

Since the verification condition for current instructiorideand it is the conjunction of
two cases then both cases hold.

Specifically this means théat 7(o(v) = 0 = SHi + 1, p’)). But sinceo(v) = 0 and clause
2 we have thagt 7(SHi + 1, 0")).

O

ProoFr oF CaLL LEMma B.4

The structure of this clause is compatible with the corresiprg lemma from [33]. What
we have to show is that the verification is also correct foyparphic calls.

Since both the induction hypothesis a¥@l| part of the Verification Condition hold, we
have:

o0C(Preg) A Yu.o®(Post[u/VALUE]) = SHi + 1,07, £)
Prec = Prénheritede) A POSthheriteds) = POSE

From this we conclude that

O-G(PrelnheritedG)) A VU-O-G(POStnheritec(G)[U/VALUE.I) = SH' + 1, 0',, L)

This means that if the induction hypothesis holds for a béssscall then it also holds for
any inherited class call.
O
Proor oF ReTurn LEmMMA B.5 From the clause 1 of the induction hypothesis and from the
definition of the symbolic evaluator we have thatr(o(Posk)). From the clause 2 of the
induction hypothesis we have thato(Post) which is what we need to prove.
O



Appendix C

Examples

C.1 Dynamic Verification Engine

The Dynamic Verification Engine uses code instrumentatiosupervise the execution and
evaluate specificatin predicates at the run time. Detakéstiiption of the engine can be found
in Section 5.2 on page 44.

The example test suite class:

/* XMSIntercept attribute required by dynamic engine */
[XMSIntercept]
public class TestSuitel : ContextBoundObject
{

/// <summary>

/// Sum of provded parameters.

/// </summary>

/// <param name="Xx"></param>

/// <param name="y'"></param>

/// <returns></returns>

[Process(typeof (XMSProcessor))]

[XMS_Spec(
"x >= 0 && y >= 0", /* precondition */
"VALUE == x+y", /* postcondition */
" /* invariants */
)]

public int TestIntl( int x, int y )

{
return x+y,

}

/// <summary>

/// Postcondition refers to VALUE returned by the method.
/// </summary>

/// <param name="a'"></param>

/// <returns></returns>

[Process(typeof (XMSProcessor)) ]

[XMS_Spec( "notnull(a)", "VALUE == 1", "" )]
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public int TestArrayListCount( ArrayList a )
{

a.Add(1);

return a.Count;

}

/// <summary>

/// Example of builtin notnull(*) predicate.
/// </summary>

/// <returns></returns>

[Process( typeof( XMSProcessor ) )]

[XMS_Spec( "true", "notnull(a)", "" )]
public Arraylist FactoryMethod()
{

ArraylList a = new ArrayList();

return a;

}

/// <summary>

/// Precondition checks if valid array is provided.
/// </summary>

/// <param name="a'"></param>

[Process(typeof (XMSProcessor))]

[XMS_Spec( "notnull(a)", "true", "" )]
public void TestArray_1( int[] a )
{
return;
}

/// <summary>

/// Postcondition can refer to original values of parameters.
/// </summary>

/// <param name="a'"></param>

[Process( typeof( XMSProcessor ) )]

[XMS_Spec( "true", "x == y_ORIGINAL && y == x_ORIGINAL", "" )]
public void Swap( ref int x, ref int y )
{
int z = x;
X = ’
y = 2;
}

The tests are executed from following context:

TestSuitel ts = new TestSuitel();

/* this should pass */
int intl = ts.TestIntl( 5, 6 );
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/* this should fail ( precondition ) */
int array = ts.TestIntl( -5, 6 );

ArrayList arraylist = new ArrayList();

/* this should pass */

int count® = ts.TestArrayListCount( arraylist );
arraylist.Add( 1 );

/* this shoudl fail ( postcondition ) */

int countl = ts.TestArrayListCount( arraylist );

/* this should pass */
Arraylist arraylist = ts.FactoryMethod();

int[] x = new int[5]; x[0] = 0;
ts.TestArray_1( x );

intu=0, v=1;
/* this should pass */
ts.Swap( ref u, ref v );

Actual output of the XMS dynamic engine:

Preprocessing TestSuitel.TestIntl.
specification:
Pre=[x >= 0 && y >= 0]
Post=[VALUE == x+y]
Invs=[]

Precondition : (x >= 0) && (y >= 0)
Substituted expression : (5 >= 0) && (6 >= 0)
Evaluated expression : True

Postcondition : VALUE == (x + y)
Substituted expression : 11 == (5 + 6)
Evaluated expression : True

Preprocessing TestSuitel.TestIntl.
specification:
Pre=[x >= 0 && y >= 0]
Post=[VALUE == x+y]
Invs=[]

Precondition : (x >= 0) && (y >= 0)
Substituted expression : (-5 >= 0) && (6 >= 0)
Evaluated expression : False
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Postcondition : VALUE == (x + y)
Substituted expression : 1 == (-5 + 6)
Evaluated expression : True

Testing failed for method TestIntl.

Preprocessing TestSuitel.TestArrayListCount.
specification:
Pre=[true]
Post=[VALUE == 1]
Invs=[]

Precondition : true
Substituted expression : true
Evaluated expression : True

Postcondition : VALUE == 1
Substituted expression : 1 ==
Evaluated expression : True

Preprocessing TestSuitel.TestArrayListCount.
specification:
Pre=[true]
Post=[VALUE == 1]
Invs=[]

Precondition : true
Substituted expression : true
Evaluated expression : True

Postcondition : VALUE == 1
Substituted expression : 3 ==
Evaluated expression : False

Testing failed for method TestArrayListCount.

Preprocessing TestSuitel.FactoryMethod.
specification:
Pre=[true]
Post=[notnull(a)]
Invs=[]

Precondition : true
Substituted expression : true
Evaluated expression : True

APPENDIX C. EXAMPLES
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Postcondition : notnull(a)
Substituted expression : true
Evaluated expression : True

Preprocessing TestSuitel.TestArray_1.
specification:
Pre=[notnull(a)]
Post=[true]
Invs=[]

Precondition : notnull(a)
Substituted expression : true
Evaluated expression : True

Postcondition : true
Substituted expression : true
Evaluated expression : True

Preprocessing TestSuitel.Swap.
specification:
Pre=[true]
Post=[x == y_ORIGINAL && y == x_ORIGINAL]
Invs=[]

Precondition : true
Substituted expression : true
Evaluated expression : True

Postcondition : (x == y_ORIGINAL) && (y == x_ORIGINAL)
Substituted expression : (1 == 1) && (0 == 0)
Evaluated expression : True

C.2 Static Verification Engine

The Static Verification Engine uses the Verification ComaitGenerator to analyze assembly
metadata, read MSIL instructions and perform symbolicueabn to produce verification pred-
icates. Detailed description of the engine can be found ati@e5.3 on page 53.

Example C.1(Constructors) Class constructors are analyzed just lilalzer methods. Con-
sider following C# code:

public class StaticTestsSuite

{

public int a, b, c;
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[XMS_Spec( "true", "this.a = av & this.b = bv && this.c = cv", "" )]
public StaticTestsSuite( int av, int bv, int cv )
{
this.a = av;
this.b = bv;
this.c = cv;
}

The constructor C# code compiled to MSIL follows:

.method public hidebysig specialname rtspecialname instance
void .ctor(int32 av, int32 bv, int32 cv) cil managed
{
.custom instance
void [UWr.XMS.Base]UlWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =
{ string(’true’)
string(’this.a = av & this.b = bv && this.c = cv’)
string(’’) }

.maxstack 8

L_0000: ldarg.® // load "this" reference

L_0001: call instance void [mscorlib]System.Object::.ctor()
L_0006: ldarg.0®

L_0007: ldarg.l // load av and store into this.a
L_0008: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::a
L_000d: ldarg.®

L_000e: ldarg.2 // load bv and store into this.b
L_000f: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::b
L_0014: ldarg.®

L_0015: ldarg.3 // load cv and store into this.c
L_0016: stfld int32 Uwr.XMS.Tests.StaticTestsSuite::c
L_001b: ret

The VCGen produces following verification condition:
forall av. forall bv. forall cv. true => (((av = av) && (bv = bv)) && (cv = cv))

Example C.2(Constructor calling) The constructor from the Example S.&alled from ex-
ternal code and values are provided for constructor paemset

[XMS_Spec( "true", "VALUE = x + x + x", "" )]
public int TestTheConstructor( int x )
{

StaticTestsSuite ts = new StaticTestsSuite( x, X, X );
return ts.a + ts.b + ts.c;

}
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The above code is compiled to MSIL as follows:

.method public hidebysig instance int32 TestConstructor(int32 x) cil managed
{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = X + X + x’) string(’’) }

.maxstack 4

.locals init (

[0] class Uwr.XMS.Tests.StaticTestsSuite ts)

L_0000: ldarg.l // load argument onto the stack
L_0001: ldarg.l1
L_0002: ldarg.l
L_0003: newobj instance void Uwr.XMS.Tests.StaticTestsSuite::
.ctor(int32, int32, int32)

// call the StaticTestsSuite( x, X, X )
L_0008: stloc.® // store the reference in the local variable
L_0009: 1ldloc.® // load ts.a
L_000a: 1dfld int32 Uwr.XMS.Tests.StaticTestsSuite::a
L_000f: 1ldloc.® // load ts.b
L_0010: 1dfld int32 Uwr.XMS.Tests.StaticTestsSuite::b
L_0015: add // ts.a + ts.b
L_0016: 1dloc.® // load ts.c
L_0017: 1dfld int32 Uwr.XMS.Tests.StaticTestsSuite::c
L_001c: add // ts.a + ts.b + ts.c
L_001d: ret

The VCGen produces following verification condition:

forall Uwr.XMS.Tests.StaticTestsSuite__1.a.
forall Uwr.XMS.Tests.StaticTestsSuite__1.b.
forall Uwr.XMS.Tests.StaticTestsSuite__1.c.
forall x.
true =>
((((Uwr.XMS.Tests.StaticTestsSuite__l.a = x) &&
(Uwr.XMS.Tests.StaticTestsSuite__1.b = x)) &&
(Uwr.XMS.Tests.StaticTestsSuite__1.c = x)) =>
(((Uwr.XMS.Tests.StaticTestsSuite__1l.a +
Uwr.XMS.Tests.StaticTestsSuite_
Uwr.XMS.Tests.StaticTestsSuite_

((x + %) +x)))

_1.
_1l.0) =

Example C.3(Method calling) The method from the Example C.2 is callesrfrexternal code.

[XMS_Spec( "true", "VALUE = 6", "" )]
public int MethodCalling()
{

int val = 1;
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// since TestConstructor actually return value is
// 3 times the parameter value,

// following should return 6

return 2 * TestConstructor( val );

The MSIL translation is as follows:

.method public hidebysig instance int32 MethodCalling() cil managed
{

.custom instance

void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = 6’) string(’’) }

.maxstack 3

.locals init (

[0] int32 val)

L_0000: 1dc.i4.1 // load 1

L_0001: stloc.®0 // val =1

L_0002: 1ldc.i4.2 // load 2

L_0003: ldarg.® // load this

L_0004: 1ldloc.®0 // load val

L_0005: call instance int32 Uwr.XMS.Tests.StaticTestsSuite::

TestConstructor(int32)
L_000a: mul // 2 * TestConstructor( val )
L_000b: ret

The VCGen produces following predicate:
true => (true &
(forall Int32__1. (Int32__1 = (1 + 1) + 1)) =

((2 * Int32__1) = 6)))

Example C.4(Symbolic arrays) Consider following C# code:

[XMS_Spec( "i != j", "VALUE = 3", "" )]
int Arr_SymbolicIndexes( int[] array, int i, int j )
{

array[i] = 1;

array[j] = 2;

return array[i] + array[j];

}
The C# compiler output for this method is as follows:

.method private hidebysig instance int32
Arr_SymbolicIndexes(int32[] array, int32 i, int32 j) cil managed
{
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.custom

instance
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void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =

{ string(’true’) string(’VALUE = 3’) string(’’) }

.maxstack 8

L_0000:
L_0001:
L_0002:
L_0003:
L_0004:
L_0005:
L_0006:
L_0007:
L_0008:
L_0009:
L_000a:
L_000b:
L_000c:
L_000d:
L_000e:
L_000f:

The VCGen produces following verification predicate:

ldarg.1 \\
ldarg.2 \\
ldc.i4.1 \\
stelem.i4 \\
ldarg.1 \\
ldarg.3 \\
ldc.i4.2 \\
stelem.i4 \\
ldarg.1
ldarg.2
ldelem.i4 \\
ldarg.1
ldarg.3

ldelem.i4 \\
add

ret \\

load array
load i

load 1
array[i] =1
load array
load j

load 2
array[i] = 2

load array[i] (=1)

load array[j] (=2)

ret array[i] + array[j]

forall array[i]. forall i. forall j.

Example C.5(A loop invariant) Consider following C# code:

i

(

)

I=j =
((J == 1) =>

(A =7) = (2+2)=13) &

(@ !'= j) = ((array[i] + 2) = 3))))
&&

(G !'=1) == (1 +2) =3))

[XMS_Spec( "x > 0 & y > 0",
"VALUE = GCD(x,y)",

"GCD(x,y)=GCD(V_0,V_1):0:V_0,V_1" )]

public int GCD( int x, int y )

{

i
i

W.

{

nt k = x;
nt 1 = vy;
hile (k-1 1!=0 )
if Ck>1)
k -=1;

else

1 -= k;
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}

return k;

}
The C# compiler output for this method is as follows:

.method public hidebysig instance int32 GCD(int32 x, int32 y) cil managed
{
.custom instance
void [UWr.XMS.Base]UWr.XMS.Base.XMS_Spec::.ctor(string, string, string) =
{ string(C’x > 0 && y > 0’)
string(’VALUE = GCD(x,y)’)
string(’GCD(x,y)=GCD(V_O,V_1):0:V_0,V_1") }
.maxstack 2

.locals init (

[0] int32 k,

[1] int32 1)
L_0000: ldarg.1l // load x
L_0001: stloc.0® // k = x
L_0002: ldarg.2 // load y

L_0003: stloc.1 // 1=y
L_0004: br.s L_0014 // jump to the loop condition check
L_0006: 1ldloc.0® // load k

L_0007: ldloc.1 // load 1

L_0008: ble.s L_0010 // jump if k <=1
L_000a: 1ldloc.0® // load k

L_000b: 1ldloc.1 // load 1

L_000c: sub // k-1

L_000d: stloc.0® // k=k -1
L_000e: br.s L_0014 // jump to the loop condition check
L_0010: 1dloc.1 // load 1

L_0011: 1ldloc.® // load k

L_0012: sub // 1 -k

L_0013: stloc.1 // 1 =1-k
L_0014: 1ldloc.0® // load k

L_0015: 1dloc.1 // load 1

L_0016: sub // k -1

L_0017: brtrue.s L_0006 // jump if k - 1 I=0
L_0019: 1ldloc.®
L_00la: ret // return k

The VCGen produces following predicate for above code:

forall x. forall y.
((x>0) & (y > 0) =>
(((x -y) =0 => (x = (GODE, y)))) &
((x -y) !'= 0 = ((GDxE , y)) = ((GD(x , y)) &
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(forall V_0__1. forall V_1__1.
((GCD(x , ¥)) = (GED(V_O__1 , V_1__1))) =
(CQV_O__1 > V_1__1) =
(e - vl 1) -vol 1) -v_l_1) = 0) =
(CV_e__1 - v_1__1) - V_1__1) = (GCD(x , W)))) &&
(Vo1 - vl 1) - vl 1) -Vl 1) 1= 0) =>
((GCD(x , ¥)) = (GADC(V_O__1 - V_1__1) , V_1__1)))))) &&
((V_o__1 <=V_1__1) =>
CCCEV_o__1 - ((V_1_1 -V_0e__1) -VOo__1) =0 =
(V_0__1 = (GCD(x , ¥)))) &
(CQV_o__1 - ((V_1_1 -V_0o__1) -V_Oo__1) I=0) =

(GCD(x , y)) = (GCD(V_O__1 , (V_1__1 - V_0__131111111)))))
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