
Zadanie 5 18, 19 listopada 2015 r.

kurs języka Java
kalkulator ONP

Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek

Zadanie 1.
Zaprojektuj hierarchię klas, która umożliwi łatwe zapamiętywanie a potem obliczanie wyra-

żeń zapisanych w Odwrotnej Notacji Polskiej. Wyrażenie ONP to ciąg symboli (abstrakcyjna
klasa Symbol). Symbolami tymi mogą być albo operandy (klasa Operand) albo funkcje (klasa
Funkcja). Operandy to liczby (klasa Liczba z wartością typu double) albo zmienne (klasa
Zmienna z nazwą zmiennej — identyfikatorem pasującym do wzorca "\\p{Alpha}\\p{Alnum}*").
Funkcje to przede wszystkim dwuargumentowe operatory dodawania, odejmowania, mnożenia i
dzielenia; należy też zaimplementować funkcje dwuargumentowe Min, Max, Log i Pow, jednoargu-
mentowe Abs, Sgn, Floor, Ceil, Frac, Sin, Cos, Atan, Acot, Ln i Exp oraz funkcje bezargumen-
towe (pełniące rolę stałych) E i Pi.
Jaką funkcjonalność powinny mieć te klasy? Zarówno operandy (liczby i zmienne) jak i funk-

cje (bezargumentowe, jednoargumentowe i dwuargumentowe) powinny implementować interfejs
Obliczalny:

public interface Obliczalny
{
double obliczWartość () throws WyjątekONP;

}

Metoda obliczWartość() w odniesieniu do liczb i zmiennych powinna przekazywać pamiętane
w operandach wartości a w odniesieniu do funkcji wyliczać wartość na podstawie przekazanych
wcześniej argumentów. Funkcje powinny więc posiadać mechanizm umożliwiający przekazywanie
im argumentów przed wykonaniem obliczenia. Można go zapisać w postaci interfejsu Funkcyjny:

public interface Funkcyjny extends Obliczalny
{
int arność ();
int brakująceArgumenty ();
void dodajArgument (double) throws WyjątekONP;

}

Metoda arność() mówi o arności funkcji czy operatora. Metoda brakująceArgumenty() in-
formuje o liczbie brakujących argumentów, czyli argumentów które trzeba jeszcze dostarczyć do
funkcji za pomocą metody dodajArgument(), zanim wywoła się metodę obliczWartość(). Oto
przykład wykorzystania tego interfejsu do obliczenia wartości funkcji:

1

while (fun.brakująceArgumenty()>0) do
fun.dodajArgument(...);

double wynik = fun.obliczWartość();

Gdy liczba dostarczonych argumentów jest niezgodna z arnością funkcji to wywołanie metody
obliczWartość() powinno skutkować zgłoszeniem wyjątku WyjątekONP.
Pozostaje jeszcze pytanie: skąd i jak należy brać argumenty dla funkcji? Argumenty te

będa nam potrzebne w trakcie obliczania wartości wyrażenia. Można więc zdefiniować klasę
Wyrażenie, która będzie zawierała wyrażenie ONP w postaci kolejki symboli i stos z wynikami
pośrednimi. To właśnie z tego stosu należy pobierać argumenty dla funkcji i operatorów. Należy
jeszcze tak zaprojektować klasy związane z wyrażeniem, aby umożliwić dostęp do stosu symbolom
z kolejki.

class Wyrażenie
{
private Kolejka kolejka; // kolejka symboli wyrażenia ONP (elementy typu Symbol)
private Stos stos; // stos z wynikami pośrednimi obliczeń (elementy typu double)

private Lista zmienne; // lista zmiennych czyli pary klucz-wartość (String-double)

public Wyrażenie (String onp, Lista zm) throws WyjątekONP {/*...*/}

// ...
}

Klasa Wyrażenie powinna też mieć referencję do zbioru asocjacyjnego ze zmiennymi (będą one
potrzebne w trakcie obliczania wartości wyrażenia). Referencję tą możesz przekazać do obiektu
klasy Wyrażenie w konstruktorze.
Na koniec wyjątki. Zaprojektuj hierarchię klas wyjątków kontrolowanych przez kompilator,

dziedziczących po wspólnej klasie WyjątekONP. Tylko te wyjątki powinny być używane w klasach
reprezentujących wyrażenie ONP.

class WyjątekONP extends Exception {/*...*/}

class ONP_DzieleniePrzez0 extends WyjątekONP {/*...*/}
class ONP_NieznanySymbol extends WyjątekONP {/*...*/}
class ONP_BłędneWyrażenie extends WyjątekONP {/*...*/}
class ONP_PustyStos extends WyjątekONP {/*...*/}
// ...

Hierarchia twoich wyjątków powinna być co najmniej dwupoziomowa i składać się co najmniej
pięciu klas.
Do zapamiętania wyrażenia ONP i do obliczenia jego wartości będą nam potrzebne trzy

proste struktury danych: lista, kolejka i stos. Zaimplementuj je w postaci list dwukierunkowych
(homogeniczne dynamiczne struktury danych oparte na węzłach, opakowane klasą pośredniczącą
w dostępie do danych) i nie korzystaj z kolekcji z pakietów standardowych Javy.
Definicje wszytkich klas, interfejsów i wyjątków umieść w pakiecie narzedzia oraz dopisz

do nich komentarze dokumentacyjne. Udokumentuj także cały pakiet narzedzia umieszczając
komentarz dokumentacyjny w pliku package-info.java.

2

Zadanie 2.
Finalną częścią tego projektu będzie program interaktywnego kalkulatora ONP. Kalkulator

ma interpretować i obliczać wyrażenia zapisane w postaci ONP. Program powinien odczytywać
polecenia ze standardowego wejścia (każde polecenie w osobnym wierszu), wykonywać obliczenia
i wypisywać wyniki na standardowe wyjście. Wszelkie komentarze i informacje o błędach program
ma wysyłać na standardowe wyjście dla błędów.
Program powinien rozpoznawać dwa rodzaje poleceń:

• calc wyrażenieONP (zm =) ⋆
Obliczenie wartości wyrażenia wyrażenieONP i wypisanie jej na standardowym wyjściu.
Wyrażenie będzie zapisane w postaci postfiksowej (Odwrotna Notacja Polska). Czytając
kolejne tokeny wyrażenia program powinien je zamieniać na obliczalne symbole i umiesz-
czać w kolejce. Przy obliczaniu wartości wyrażenia należy się posłużyć stosem.
W wersji rozszerzonej o nazwę zmiennej i znak przypisania, należy dodatkowo utworzyć
nową zmienną zm i przypisać jej warości obliczonego wyrażenia wyrażenieONP. Jeśli zmienna
zm była zdefiniowana już wcześniej, to należy tylko zmodyfikować zapisaną w niej wartość.
Takich przypisań można zwobić kilka w jednym wyrażeniu.

• clear (zm) ⋆
Usunięcie wskazanych zminnych z kolekcji asocjacyjnej.
Jeśli w tym poleceniu nie występują żadne znazwy zmiennych, to wówczas należy usunąć
wszystkie używane do tej pory zmienne z kolekcji.

• exit
Wyjście z programu. Alternatywą dla tego polecenia powinno być zamknięcie strumienia
wejściowego.

Jeśli w wyrażeniu ONP (polecenie calc) zostanie wykryty błąd (źle sformułowane wyrażenie,
błędna nazwa, błędny literał stałopozycyjny, czy nierozpoznany operator, funkcja lub zmienna)
to należy wypisać stosowny komunikat o błędzie, ale nie przerywać działania programu.
Do swojego programu wstaw asercję, która zgłosi wyjątek AssertionError gdy użytkownik

wpisze nieznaną komendę (inną niż calc, clear, exit).
Dodatkowo dopisz do programu logowanie każdego poprawnie obliczonego wyrażenia w dzien-

niku o nazwie calc.log.

Uwaga.
Program należy napisać, skompilować i uruchomić w zintegrowanym środowisku programi-

stycznym NetBeans! Wygeneruj też dokumentację całej zawartości pakietu narzedzia używając
odpowiedniego polecenia w NetBeans (menu Run, pozycja Generate Javadoc).

3

