The Standard Template Library

(STL), List, Vector, and String

A container is an object that is designed to hold other objects.

Examples are list, vectors, map, hashmap.

A string is also a kind of container.

Containers have some or all of following operators:

Initialization from std::initializer_list, and default,

empty initialization.
Random access using | | or at().

iterators. Iterators are a bit like references, but they can be

’seen’ and modified during their existence.

insert, remove based on iterator.

push_back(), push_front(), pop_back(), pop_front().

Doubly Linked Lists

e Syntax: std::1list<X> . X is the type of elements in the list.

e Copy constructor, assignment, are defined by having value

semantics.

Move operators are defined.

Constructor with initializer list is defined.
Default constructor: Construct empty list.

No << defined. (If you try to print a list, you will see a pretty

unpleasant error message)

Linked Lists

std::1list< unsigned int > 1;

1=41, 2,3, 4, 51};

std::1list< unsigned int > 12 = 1;

// List has object semantics, which means that the

// list is copied.

12 = std::move(l);
std::cout << 1. size() << "\n";

// Probably not 5 anymore.

Linked Lists (2)

1. Elements can be efficiently inserted /deleted (independent of
size of list, linear in size of object) everywhere in the list. (At

the beginning, at the end, in the middle)

. Elements can be moved (within a single list, or between
different lists of the same type) in constant time, by pointer
manipulation, even when the object itself cannot be copied or

moved.

. Elements can be accessed in constant time through iterators,

but through indices only in linear time.
. When the objects are small, list is space inefficient.

. Due to random placement in memory, accessing list elements is
likely to cause many cash misses. (and main memory can be 20

times slower than cash.)

Back/Front

X& front();
const X& front() const;

// First element in list.

X& back();
const X& back() const;
// Last element in list.

pop_front();
pop_back();

// Remove first/last element from list.

Back/Front (2)

void push_front(const X&);
void push_back(X&&);
// Insert X at front.

void push_back(const X&);
void push_back(X&&) ;
// Insert X at end.

Moving Insertion

std::1list< std::string > list;

list. push_back("chopin");
// Moving, because of implicit conversion
// std::string(const charx),

// which results in a temporary.
std::string beet = "beethoven';

list. push_front(beet);
// Not moving.

list. push_back(std::move(beet));
// Moving.

Emplace

push_back(),push_front() have two variants: Moving and

non-moving.

If one want to (1) construct an object, and (2) insert it, it is first
constructed, and then moved into the container.

emplace_back(), emplace_front() constructs the object
straight in the container:

list. emplace_back("liszt");
list. emplace_front("penderecki");
// No string is copied or moved.
// emplace accepts arguments from any

// constructor or conversion.

[terators

I want to explain what is an iterator without mentioning the word

‘pointer’:

An iterator is pretty much the same as an index. The two

differences are:
e The element can be accessed without mentioning the container.

e One cannot do calculations on iterators. Iterators can be only

compared, they can be increased/descreased.

Iterators are the preferred way of accessing container elements,

because they are generic.

[terator versus Index

// Indexed version:
for(size_t i = 0; i !'= s. size(); ++ i)

{

std::cout << s[i] << "\n";

// Iterator version:
for(std::1list< double > :: const_iterator

p =s. begin(); p !=s. end(); ++ p)

std::cout << *p << "\n";

+

(Note that std::1list cannot be indexed.)

How to Access in Reverse Order

// Index:
size_t i = s. size();
while(i !'= 0)

i;
std::cout << s[i] << "\n";
+
// Iterator:

std::1ist< double > :: const_iterator p = s. end();

while(p !'= s. begin())
{
- P
std::cout << *p << "\n";

Pretty Printing with Index

std::cout << "{";
for(size_t i = 0; i !'= s. size(); ++ i)
{
if(i!'=0)
std::cout << ",";
std::cout << " " << s[i];
+

std::cout << "}";

Pretty Printing with Iterator

std::cout << "{";

for(std::list<double> :: const_iterator
p = s. begin();
p !'= s. end();
++ p)

if(p !'= s. begin())
std::cout << ",";
std::cout << " " << xp;

+

std::cout << " }";

Non-const Iterators

If you want to assign to the contents of the container, use iterator

(without const_).

for(std::1list< double > :: iterator
p = s. begin();
p !'= s. end();
++ p)

*p + *p;

Auto

If you don’t like the long names of iterator types, use auto.

for(auto p = s. begin(); p != s. end(); ++ p)
std::cout << *p;

Problem: Overloading rules will prefer the most general version, i.e.

begin() where possible, begin() const where necessary. If you

want const_iterator, where iterator is possible, use

for(auto p = s. cbegin(); p !'= s. cend(); ++ p)
std::cout << *p’

You should use this, in order to make clear that container will not

be changed.

Range-For

Simple for-loops on containers, that visit each element once, and
that go from left to right, can be written in the following form:

for(el : container)
std::cout << el << "\n";

This is called a range-for-loop.

It is an abbreviation for traditional, iterator-based, for loops.

&

for(double& d : s)

for(auto p = s. begin(); p !'= s. end(); ++ p)

{
double& d = *p;
d =d * d;

+

Use this variant, when you want to change the elements in the

contalner.

Const &

double sum = O;
for(const double& d : s)

sum += d;

for(auto p = s. begin(); p !'=s. end(); ++ p)

{
const double& d = *p;

sum += d;

+

Use this variant, when you don’t want (or cannot) change the
elements, but don’t want to copy them. (Because they are too big,

or have no copy constructor.)

Copy

for(double d : s)
{

d =d *x d; std::cout << d << "\n";

for(auto p = s. begin(); p !'=s. end(); ++ p)

{
double d = *p;
d =d * d; std::cout << d << "\n";

+

Use this variant when you want local copies of the elements.

General Pattern

Range for-loops can be used on every type T that has begin() and
end() members, or for which there exist begin() and end()

functions.

The begin(), end() should return some object p on which one can
apply *p to get a reference to an element, on which one can apply
++p to increase it, and pl !'= p2 to see if you reached a given
position.

Most containers in STL have begin() and end() operators.

Range-for does not use cbegin() or cend().

std::cout << "how many numbers do you want to add 7"
size_t nr;
std::cin >> nr;
for(size_t i = 0; 1 < nr; ++ i)
{
std::cout << '"please type " << 1ij;

std::cout << "-th number: ";

list. push_back(0);
std::cin >> list. back();

// Numbers can be added with code on previous page.

Erasing and Inserting in the Middle of a List

iterator 1. erase(iterator p);
// Delete the element at p, and return the
// iterator after p.

and inserted by:

iterator 1. insert(iterator p, const X& x);
iterator 1. insert(iterator p, X&& x);
// Insert x at position p, and return the new
// iterator, which now points to x.
iterator 1. emplace(iterator p, Al, ..., An);

// There must exist a constructor X(Al,...,An).

Vectors

Vectors and lists are quite similar things. A list is implemented by
a chain of cells that are connected with pointers. A vector is

implemented by an array that is allocated on the heap.
e Vectors allow indexing, using either | | or at().

e Vectors are more space efficient. They are likely to be local
which can be an advantage for small elements, and which

reduces cash misses. They may be harder to allocate.

e Vectors do not support efficient inserting/erasing in the middle.

(But overwriting an element is possible.) Using push_back()
on a vector spoils all existing iterators of this vector. Be careful
with that.

Implementation

The implementation of std: :vector is pretty much like in the

stack class

template< class X, class A = std::allocator<X>>

class vector

X* tab;
size_t current_size;

size_t current_capacity;
s

std: :vector uses low level tricks to make sure that the area in the

range X[current_size .. current_capcity] is not initialized

(not constructed).

The vector resizes when current_size == current_capacity.

Resizing

current_capacity is usually increased/decreased in powers of two.

It is possible to set current_capacity by yourself using
reserve(). Do this if you know in advance how big the vector
will be.

If one sets the borders for resizing properly, resizing is not too

expensive.

e When current_capacity has to be increased, it is always
doubled.

e When shrink_to_fit() is called, capacity is set of a power of

two, close to the current size().

Potential Method (Amortized Complexity)

Assign to each occurrence of vector v a potential ® of type int.

e For empty vector ®(v) = 0. For other vectors,

d(v) = 2.size — capacity.

e Announce push_back() with a cost of 3 to the user. If
size < capacity, 1 is used for the immediate push back, and
®(v) increases by 2.

If size = capacity, then ®(v) = size. We can reallocate
(constant time), and copy all elements in the vector (cost size).
After that, we have capacity = 2.size, and ®(v) = 0.

It seems that vectors don’t shrink automatically. If you want this
feature, ® becomes more complicated, e.g.

max(2.size — capacity, 0) + max(§capacity — size, 0).

Moving?

When std: :vector<X> resizes, it could use a moving constructor.

It will do this only when X(X&&) is guaranteed not to throw any

exceptions. Otherwise, it might lose data.

In order to do this, declare it as

X(X&&) noexcept;

Of course, the moving constructor should really throw no
exceptions. This is possible in general because a moving

constructor does not allocate anything.

One can use std::is_nothrow_move_constructible<X>: :value

to check it, or put a print statement in the moving CC as test.

Shrinking

It turns out, (at least with g++) that std: :vector does not

automatically resize when it gets smaller.

If one wants to resize a vector, in order to save memory, use
shrink_to_fit().

It turns out, that shrink_to_£fit() always resizes, so use it
wisely.

The following code is very inefficient (quadratic):

while(somevect. size() > 0)

{

somevect. pop_back();

somevect. shrink_to_fit();

Strings

Strings should always be preferred over character arrays. A string

is almost the same as std: :vector<char>

std: :string has indexing, and iterators that can be compared
with <,>, etc.

The iterators are obtained as follows:

std:
std:
std:

std:
std:
std:

:string:
:string:

:string::

:string:
:string:

:string::

:iterator std::string begin();

:const_iterator std::string begin() const;

const_iterator std::string cbegin() const

:iterator std::string end();

:const_iterator std::string end() const;

const_iterator std::string cend() const;

In addition to this, strings have the operators

+9 +=9

<,>, <=, >= defined.

Strings

std::string s = "one two three";

// Converts const char* to std::string.

s += 7 7;
s += "four five six";
std::cout << s;
for(std::string::const_iterator
p = s. begin();
p !'= s. end();

++ p)
std::cout << *s;

// Can be written with range for as well.

Strings vs. Character Arrays

Strings should of course be preferred over C-style character arrays,

so that you don’t have to write:

char s[100];
std::cout << "what is your name?";
std::cout >> s;
// John or
// His Majesty
// Somdet Phra Paramindra Maha
// Bhumibol Adulyadej Syamindradhiraj
// Boromanath Bopit 7

