
Threading

Threading means that a program separates into different

subprograms that execute separately. into different subprograms

that execute separately.

There are three reasons why you might want to this.

1. Avoidance of waiting times. Often, a program has to wait for

something to happen in the outside world. (User typing input,

a file to read from disk, data over the internet to arrive.)

Using threading, one thread can be waiting, while the other

threads are still doing something useful.

2. Modern processors have multiple cores. Since the last 5-10

years, the speed of a single core has not increased much.

If you compute in a single core, you may miss 75% of the

capacity of a modern CPU.

1

3. Maintaining responsiveness during heavy calculations.

2

Threading

An object of type std::thread may contain a running thread, or

nothing.

std::thread t; // Create thread with nothing in it.

std::thread t2{ f, a1, ..., an };

// Create a thread that runs f(a1, ..., an).

The thread object should exist until f terminates by itself.

If the thread object goes out of scope, then f is interrupted in an

unfriendly way by the operating system, and your complete

program will be terminated.

Use join to make the main thread wait for its subprocesses.

3

struct counter

{

std::string s;

void operator() (unsigned int k) const

{

std::cout << "Starting Count:\n";

for(unsigned int i = 0; i < k; ++ i)

{

std::cout << s << " has counted to "

<< i << " " << "\n";

}

std::cout << "\n";

}

};

4

Linking

If you use threads, then link

thread : thread.o

$(CPP) $(Flags) thread.o -pthread -o thread

If you want to know how many threads your hardware supports,

use thread::hardware_concurrency().

5

The different threads run completely independently. Nothing can

be assumed about how they are timed.

// In one thread:

std::cout << "hello world\n";

// In another thread:

std::cout << "good evening\n";

6

std::thread t1{f, a1 };

std::thread t2{f, a2 };

std::thread t3{a, a3 };

t1. join(); // Wait until t1 is done.

t2. join(); // Wait until t2 is done.

t3. join(); // Wait until t3 is done.

We see that thread does not follow usual C++ semantics, where

destroying means quietely returning resources.

7

Safethread

If you do not like that, use

struct safethread

{

std::thread t;

safethread(std::thread&& t);

~safethread()

{

if(t. joinable()) t. join();

}

}

Not joinable threads are threads that (1) were default constructed,

(2) have been moved away, (3) were already joined.

Terminated processes are still joinable.

8

Data Races

Shared data between different threads can cause lots of problems.

Two threads write into same variable. The one that is last ’wins’.

One thread writes into a variable, another one reads. We don’t

know if reading happens before or after writing.

9

Data Races (2)

If variable v is complicated, (e.g. std::map< >), data races may

lead to complete chaos:

Writing may be complicated, it may cause rearranging the tree.

During rearrangement, a read may happen (or another write.)

The effect is unpredictable.

10

Mutex

A mutex is an object that guarantees mutual exclusion.

std::mutex m;

// Make sure that all threads get a reference to m.

// In a thread:

m. lock(); // It is guaranteed that only one thread

// can lock the mutex at the same time.

... // Perform my delicate operations.

m. unlock();

What happens if you forget to unlock(), or the unlock() is

skipped (due to an exception)?

11

Sometimes, getting access to a mutex is not important enough to

wait for:

if(m. try_lock())

{

Now we have the lock.

m. unlock();

}

else

{

We didn’t get a lock, do something else instead.

}

};

12

Dangers of Locking

Locking too long destroys efficiency and responsiveness.

Forgetting too unlock (or passing unlock because an exception is

thrown) probably causes deadlock.

13

