Templates

Templates are functions or classes that are parameterized.

We have already seen a few in STL:

std: :vector< int >
std: :vector< double >
std::1list< std::vector< >>

std: :unordered_map< int, bool >

In STL, (as far as I know) the parameters are always types, but

this is not necessary. One could also have vector< T, S >, a

vector of type T of size S.




Templates are instantiated at compile time.

After instantiation, a template class (or function) is just a usual

class (or function), that is compiled in usual fashion.

There is no efficiency price.

Templates are similar to C' makros, but better: They have usual
scoping rules for names. They use substitution on syntax trees
instead of text replacement. They have linker support.




Compiling a Template

1. The compiler reads the definition of the template and stores it.

2. The compiler encounters an instantiation of the template. If
everything goes well, the template is instantiated, and compiled

in the same way as usual CT7. The result is linkable code.
3. The resulting code is linked.

Each of these three steps can create error messages.




Step 1

It would be nice (from theoretical point of view and for the user), if
all checking would be done at step 1. Unfortunately, C™* does not

do that.

The compiler does only syntactic checking, and minimal type
checking. I will later explain why. There are good reasons for it.




Step 2

Once the template is instantiated, it has become usual code. It is
fully type checked, and compiled in the same way as a direct

definition.
Instantiation happens on parse tree level, not on text level.

If you want to write a reliable template class, that doesn’t irritate
the user (a programmer who uses your template), you have to test
it carefully with many different instantiations. Write special
instantiation classes, that have exactly the right methods and

nothing more.




Templates and Separate Compilation

e A template definition alone cannot be compiled. You would
need a fourth type of file for that (in addition to .o, .cpp, .h).

e In order to instantiate a template (e.g. std::vector<int>, the

compiler must see its definition.

Separate compilation for templates is impossible!

Templates must be defined in .h files and included.




Step 3

Because the linker sees a definition of the template in every class

where it is used, it has to clean up multiple definitions, (and correct

the references). It has to decide which instantiations are equal.

If std: :vector<double> was used in filel.cpp and file2.cpp,
both files will contain a definition. Only one is needed.

The linker has to detect this, and include only one definition.




General Form

template< typename X, typename Y > struct pair

{

{7

pair( const X& x, const Y& y )
: x{x}, y{y}
{1}

+;

Instead of typename, one can also use class. Use short parameter

names that start with a capital.




Using the definition on the previous slide, one can write:

pair< int, int > p = { 4,5 };
pair< std::string, int > v{ "good morning", 5 );

1, 2 }; // OK.
"good evening", 5 }; // OK.
5,6 }; // Will refuse to compile.

4, "xxx" }; // Refuses to compile.




Error Messages

You have to get used to the error messages. (called template spew
or template barf.) They are famous for their length and

unreadability.

e Typechecking takes place only when the template definition is
fully instantiated. Often, the user (you) don’t know the
template definition and do not want to see it. The error
message makes it seen to you anyway. Often, the template
definition is nested. (uses other templates).

In case a function or method (often <<) was not found, the
compiler lists all possible candidates. This list is usually long

and not helpful.

In my opinion, the main problem is that g++ should provide error
messages in a more structured form, e.g. html. Reversing the order
(so that first error comes last) would also help.




Adding Methods
Methods that are defined in the template class definition, are

inlined:

bool operator == ( const pair& p )

{
return x == p.Xx && y == p.y;

Writing inline methods is the easiest way, but it is not always
desirable, because it may make the code too long when the method

is called many times. Also, it makes the specification hard to read.




Separating Definition from Declaration

With a usual class, one writes the declarations in the .h file, and
the definitions in the .cpp file. When using templates, both have
to be written in the .h file.

Write

bool operator == ( const pair& p ) const;

// In the class definition.




Separating Definition from Declaration (2)

Outside of (template) class definition, write:

template< typename X, typename Y >
bool pair<X,Y>::operator == ( const pair& p ) const
{

return x == p.Xx && y == p.y;

The linker will not complain about multiple definitions, because it
understands that multiple definitions cannot be avoided with

templates.

As usual, the method must have a declaration inside the class

definition.




Non-member Functions

If you want to define a non-member, template function, this is also
possible:

template< typename X, typename Y >
bool operator == ( const pair<X,Y> & pil,
const pair<X,Y> & p2 )

return pl. x == p2.x && p2. y == p2.y;

// Nicer than using a member function,

// because it shows the symmetry.




You can also write:

template< typename X, typename Y >
std: :ostream& operator << ( std::ostream& out,

const pair< X,Y > & p )

OU.‘t << II{ ] << p'X << II, ] << p.y << " }";

return out;




Templates and Frienship (1)

Defining methods as friend of template classes is not easy.

Suppose that fields x and y of template< > class pair are

private.

We will have problems defining operator << or operator ==

when it is not a member.




Templates and Friendship (2)

The obvious solution does not work:

friend bool operator == ( const pair<X,Y> & ,
const pair<X,Y> & );

friend std::ostream& operator << ( std::ostream& ,
const pair<X,Y> & );




Templates and Friendship (3)

What happens is the following: For non-templates, a friend
declaration simultaneously declares the function, as if it were
declared outside of the class.

Whene pair<X,Y> is instantiated, (say with int, std: :string), it

declares the instantiated functions and makes them friend.
In our example,

bool operator == ( const pair<int,std::string> & ,
const pair<int,std::string> & );
std: :ostream& operator << ( std::ostream& ,

const pair<int,std::string> &

In your code, you probably use == and << for the same
instantiations, the compiler sees the declarations, and accepts your
code, but ...




Template and Friendship (3)

there is no definition. Result: Linker errors. Fortunately, g4+

gives a useful warning!




Templates and Friendship (4)

We have to make template functions friend. It can be done in two
ways. First way:

template< class X1, class Y1 >
friend std::ostream&

operator << ( std::ostream& , const pair<X1,Y1> & );

template< class X1, class Y1 >

friend bool

operator == ( const pair<X1,Y1> & , const pair<X1,Y1> & );
// Parameters in friend declaration must be different

// from parameters of template.




Template and Friendship (5)

Second way (works because the functions have the same parameters
as the template):

friend std::ostream&

operator << <> ( std::ostream& , const pair<X,Y> & );

friend bool
operator == <> ( const pair<X,Y> & , const pair<X,Y> &

// Parameters same as parameters of template.

Unfortunately, this is not the end of the story. A template friend
declaration does not declare the friend. It assumes that the

declared function is already declared.




Templates and Friendship (6)

Now we have a circular dependency problem: Functions
template<> operator == and template<> operator << must

be declared before template<> class pair, but use pair in their

type.

Solution is to use a forward class definition:
template< class X, class Y > struct pair;
After that, one can declare:

template< class X, class Y >
bool operator == ( const pair<X,Y> & ,
const pair<X,Y> & );

template< class X, class Y >
std: :ostream& operator << ( std::ostream& ,

const pair<X,Y > & );




Templates and Friendship (7)

Next comes

template< typename X, typename Y >
struct pair

{

. Here come the friend declarations

s
Did you find this complicated? You are not alone.

Unfortunately, you have to get used to this, if you want to write

your own template classes.

All types must fit exactly (constness, references, being template),
otherwise either the friendship will not work, the compiler
complains about ambiguity between different definitions, or the
linker sheds its unreadable tears.




Template Functions

We have already seen template functions in connection to classes,
but they can also occur separately:

template< typename X > void swap( X& x1, X& x2 )
{

X y = std::move(xl);

x1 = std::move(x2);

x2 = std::move(y);




Template Functions (2)

You can write

int x = 4;

int y = 5;

swap<int>( x, y );

swap( x, v ); // No need to write the types.
// Compiler deduces type.

std::string sl = "morning";

std::string s2 = "good";

swap( s1, s2 );

std: :swap is defined in STL.




Function Template Argument Deduction

Matching: Let t1,...,%, be a trees that possibly contain variables
at their leaves. Let uq,...,u, be trees without variables. A
matching © of ¢1,...,%, into uy,...,u, is a substitution, s.t.

t;© = u;, for each 7 (1 <i < n).

Examples

s(X),t(Y) matches into s(a),t(b) with X = A Y =b.
s(X),t(X) does not match into s(a), t(b).

s(X), t(X) matches into s(a),t(a) with X = A.




C'T71 uses matching to deduce template arguments.

The types of the function parameters are matched into the types of

the calling arguments, where toplevel (not rvalue!) references are

first removed:

template< typename N1, typename N2, tn N3, tn N4 >
func( N1, std::vector<N1>, const N3*, N4& );

std::list<int> 1st;
double n3;
std: :string n4;

func( 44, 1lst, &n3, nd );

N1, std::vector<N1>, const N3x,
int, std::1list<int> , doublex* ,




template< typename X > func( X x );
func(4) ; // Matching gives X = int.

template< typename X > func( X& x );
func(4) ; // Matching gives X = int, after which

// function cannot be applied.

template< typename X > swap( X& x1, X& x2 );

{ int i,j; swap(i,j); X = int.

{ int i, double d; swap(i,j); } Cannot be matched.
{ std::vector<int> v1; std::vector<int> v2; swap(vil,v2)
X = std::vector<int>.




Rvalue References

In case the template argument has rvalue reference on top level,
the rules are different. Assume that function argument has type
X&&:

Calling argument Resulting value of X:
Variable of type Y X=Y&
Variable of type const Y& X = const Y&

Temporary of type Y X =Y
Rvalue reference of type Y X =Y

This is magic that is is essential for perfect forwarding. (Used for

example by emplace)




Argument Deduction for Constructors

Unfortunately it does not exist.

For example std: :pair( 3.14, 7 ) could easily deduce
X = double, Y = int. Unfortunately, it won’t.

This is the reason why

template< typename X, typename Y >
std: :pair<X,Y> make_pair( const X& x, const Y& y )
{ return std::pair<X,Y>( x,y ); }

exists. It is just a wrapper for the constructor.

There is a proposal to CT1-17 to add argument deduction for

constructors.




Typename

Consider:

template< typename X > void dosomething( )
{
for( std::vector< X > :: const_iterator
p = s. begin( );
p !'= s. end( );
++ p )
.}
+

It won’t compile. The reason for this is that the compiler cannot
see if ::field is a static field, or a type.

It has to be able to construct a syntax tree when the template

definition is processed.




Typename (2)

template< typename X > f( )

{
X::bbbb b = X::f;

struct aaaa
{
static int f;
struct bbbb
{
bbbb( int x );
s
s

f<aaaa> ( );




Typename (3)

Insert typename before every use of a field of form t< > ::f that is
a type. (Usually an iterator type.) Unfortunately, the compiler
does not always tell you that it wants to see typename. Instead it
gives a kind of syntax error resulting from the fact that is was not a

typename.




Typename (4)

Errors that can be caused by forgetting of typename are:

hashtable.h:15: error: expected ; before it
hashtable.h:33: error: expected ‘;’ before p

In O, it is possible to have isolated statements of form S; mixed
with declarations of form T v;. If the compiler does not see that T
is a type, then it assumes that the statement is of the first form
and it expects the ; after T.




class vs typename

template< typename X > and template< class X > have the

same meaning.

I prefer typename because X can be instantiated with something

that is not a class, for example int.

It does not matter much. class is shorter.




Writing Templates

How to write your own template?

Write an instance class, and give it exactly the methods that you

need:

struct aaaa

+;

void operator == ( const aaaa& al, const aaaa& a2 )

{
+

std: :ostream& operator << ( std::cout& out,

const aaaa& a );




Writing Your Own Templates (2)

Write your template class first for class aaaa. After that,
introduce the parameter, and test the template for some other
instantiations.




Conversion Problems

Consider:

template< class X, class Y >

class pair

{

pair( ) { }

pair( const X& x, const Y& y )
:ox{x}, y{y}




Conversion Problems (2)

pair<int,int> p = { 4, 5 };

pair< double, double > q = p;
// Should be possible. (Assuming conversion
// from int to double is 0OK.)

== q )

Should be possible.

It is allowed to compare int and double.




Flexible ==
Solution is easy in principle:

template< class X1, class X2, class Y1, class Y2 >
bool operator == ( const pair<X1,Y1> & pil,
const pair<X2,Y2> & p2 )

return pl.x == p2.x && pl.y == p2.y;

If x,y are public, there is nothing more to do.




Flexible ==

If you want operator == to be friend, you have to proceed as

with the simple version of operator ==, but only the first method
(On slide T&F (4)) works.

Before the definiton of pair, write:

template< class X, class Y > class pair;

template< class X1, class X2, class Y1, class Y2 >
bool operator == ( const pair<X1,Y1> & ,
const pair<X2,Y2> & );

Replace friend declaration by:

template< class X1, class X2, class Y1, class Y2 >
friend bool operator == ( const pair<X1,Y1> & ,
const pair<X2,Y2> & );




One typo, or forgetting const somewhere = pages of error

messages!




Converting Assignment

If assignment is not a member, it can be done in the same way as

operator == ( ).
If it is a member, you can write:

template< class X2, class Y2 >
void operator = ( const pair< X2, Y2 > & p )

{
pP. X;
p- ¥

Surprising (unpleasant) fact: If fields x,y are private, we cannot

get p.x, p.y.




Making all pair<X,Y> Friends

If you want to solve the problem on the previous slide, you have to

make all pair<X,Y> friend of each other.
In beginning of class pair, write

template< class X2, class Y2 > friend class pair;




Conversion in Construction

Same problem that we had with assignment, also exists with

construction/initialization:

pair< int, double > p ( 4, 5 );
pair< double, double > q = p;

// No such constructor.




Flexible Construction (2)

Just define one:

template< class X2, class Y2 >

pair( const pair< X2, Y2 > & p )
:cx{p.x}, y{p.y }

{}

This is a good point to observe the difference between { } and ( )
in initializers.

All instances of pair must be friend of each other.




Flexible Construction (3)

Consider:

pair< int, int > { 5, 5 };
pair< int, int > q = p;

The pair is taken apart and reconstructed. If you don’t like that,

you can write a specialization:
pair( const pair& p ) = default;
The compiler selects the best fit.

The same can be done with assignment.




Dependent Members

Suppose that we want to define

template< class T, class Alloc >

class mylist

{

+;

There are related classes that are also templates, e.g.

const_iterator, iterator, node.

Some of this classes may be public, some may be private. Where to
define them?




Dependent Members as Subclasses?

template< class T, class Alloc >
class mylist
{
public:
struct const_iterator { };
struct iterator{ };
private:

struct node{ };
s

e Puts public members on the proper place. (user wants to type
mylist<X> :: iterator .

e Makes it possible to hide private members.

e Most users don’t want to see the allocator. Introduces
unwanted dependencies, which may lead to problems.




Functions that do not allocate, should not depend on the allocator:

template< class T >
void print( std::ostream&,

mylist< T > :: const_iterator pl,

mylist< T > :: const_iterator p2 )

void printdouble( std::ostream&
mylist<double> :: const_iterator pl,
mylist<double> :: const_iterator p2 )




Such supporting classes have be defined outside of mylist.

template< class T >

struct _Node

{

+; // Hope that user doesn’t touch this name.
// You can still make the constructors private,
// and make mylist a friend.

template< class T >

struct _Const_iterator

{ };

template< class T >

struct _Iterator

{ };




template< class T, class Alloc >
class mylist

{

using const_iterator = _Const_iterator<T>

using iterator = _Iterator<T>

)

.
)

// Now iterators can be exchanged for mylists with

// same T but different allocators.




Specialization

Quite often, it happens that a template is too general. For example
template< class B > vector may have an efficient
implementation when B is bool. (One could use bitstrings. It is at

least space efficient.)

C*1 allows to write specialized definitions of templates for

specialized B.

template< > class vector< bool > {

You may want to do this, either because of efficiency, or because of

a different interface.




Specialization (2)

template< typename N > swap(
std: :vector<X> & vl1l, std::vector<X> & v2 )

vl. swap(v2);




Concepts

1. A complete language describing all reasonable constraints on

parameter types would be very very complex.

. It is reasable to use only part of a template class definition. (If
a template class has more than one method, you do not have to
use all of them). Every reasonable subset has a different set of

constraints. You cannot specify them all.

For example, you can use pair without using operator ==.
This should be possible.

Anyway, there seem to be ongoing discussion about adding a
concept language to CT1. Such constraints are called concepts.
(There is a wikipedia article about them.) T don’t think they will
be added soon. It seems that CT* — 2017 is missed.




Concepts (2)

Possible conditions on type X are :
e It has a default constructor.
e It has copy constructor, assignment (moving,non-moving).
e It can be compared.

e It can be printed.




Conclusion

Templates are very powerful, and very nice. If well-used, it is
possible to write good quality, very general code with them. But it
is not easy. I didn’t cover all topics, because I think they are too
hard and too specialized. In most cases, I don’t know the exact

rules, and I solve the problems by trying.
. You must be willing to type a lot.
. You must be willing to read large error messages.

. You probably hate me after this lecture, but you will be
grateful for the slides when you have to write your own

template class.

If you write a template class, test it with many diverse

Instantiations.




