
Priority Queue

1

A priority queue is multiset-like data structure that supports the

following operations:

• Insertion of an element.

• Selection of a maximal element under the given order.

• Removal of a maximal element under the given order.

(A multiset is a set that is able to distinguish how often an element

occurs in it.)

2

Priority Queue

#include <queue>

std::priority_queue<int> q;

// No order is specified. This means that

// std::less<T> will be used, which is usually

// equal to <.

q. push(4);

q. push(5);

q. push(2);

q. push(4);

while(q. size())

{

std::cout << q. top() << "\n";

q. pop();

}

3

Priority Queue (2)

Adding and removing can be freely mixed:

q. push(4);

q. push(3);

q. pop(); // Removes 4.

q. push(5); // 5 will be on front.

q. pop(); // Removes 5.

q. push(2); // Leaves 3 on front.

4

Implementation: Heap

priority_queue uses a data structure called heap. It is a vector

that is sorted just enough to know the maximal element.

Assume that N is the size of vector v :

• If 2i+ 1 < N, then v[i] ≥ v[2i+ 1].

• If 2i+ 2 < N, then v[i] ≥ v[2i+ 2].

Adding to a heap, and removing the top element (while preserving

heap structure) can be done in O(logN).

5

Providing the Order

Priority queue has definition

template< class T, class C = vector< T >,

class Cmp = less< C :: value_type >>

• T is the type variable.

• C is the container type that the priority queue uses to store its

elements. It is std::vector<T> by default.

• Cmp specifies the order. It works in the same way as with

std::map< >. The default is

less< C :: value_type >. Since

less< C :: value_type > is usually T, the default is

less<T>, which is by default < on T.

6

Providing the Order (2)

There are two things to observe:

1. If you want to provide an order, you have to provide a

container. Just use std::vector<T>.

2. As usual, Cmp is a type, that must have a default constructor

and a method

bool operator() (const T& t1, const T& t2) const.

This method must return true if t2 is more preferred than t1.

If you forget to make operator() const, you will see horrible

error messages.

7

Write

struct Cmp

{

bool operator() (int i1, int i2) const

{

if(i1 < 0) i1 = - i1;

if(i2 < 0) i2 = - i2;

return i1 < i2;

}

};

if you want to compare int by absolute value, instead of value.

8

Non-Total Order

When the order is not total, (does not always decide a priority

between all elements of T), function top() const will

non-deterministicially pick an element from the best.

‘Non-deterministically’ means that one should not try to

understand which element is selected. Your program should be

written in such a way that this doesn’t matter. Non-determinism is

an essential aspect of high-level programming.

pop() is guaranteed to delete the element returned by top().

9

When to use < or a comparator?

Don’t create an order < on a type T, when there is no natural

choice that will be evident to readers of your code.

If you define a dedicated class struct or class for the priority

queue, you can name the class in such a way that < is the natural

choice.

10

Using Priority Queue and Map in Search

Let G = (V,E) be a directed graph. For simplicity, assume that all

edges (v1, v2) ∈ E have equal weight.

We want to find a path from vs to ve in G.

11

Searching the Path to an Element

Let F be a partial function from V to N , denoting the length of

the best known path to V, if we have found one.

Let U ⊆ Dom(F) be the set of nodes whose neighbours have not

been checked.

Start with:

f[vs] = 0; // A map. f[v] is distance to v.

u. push(vs); // A priority queue, nodes whose

// neighbours were not checked.

12

while(!u.isempty() && f[ve] is undefined)

{

v = u. top(); u. pop();

// v is most promising unchecked vertex.

for every direct neighbour v’ of v do

{

if(f[v’] is undefined or f[v’] > f[v] + 1)

{

f[v’] = f[v] + 1;

u. push(v’);

}

}

}

if(f[ve] is defined) std::cout << "found a solution";

else std::cout << "found no solution";

13

Printing the Solution

The easiest way to print the solution is by backward recursion. We

know that ve is reachable in n = f [ve] steps. This means that there

must exist a solution with a path in which one of the neighbours of

ve is reachable in < n steps.

printpath(f, v, n)

if(n > 0)

{

find a neighbour v’ of v with f[v’] < n.

// There is guaranteed to exist one.

printsolution(f, v’, f[v’]);

print v and the vertex (v’, v);

}

14

