Course C*1, Exercise List 9

Deadline: 26.05.2017

This exercise is about computer algebra and template classes. We will im-
plement multivariate polynomials. These are polynomials over more than one
variable, e.g.

1+ 2+ 3y + 4oy — T22y.

We will implement them using a map. The map maps chains of variables of
form (vi*,...,v) to the numerical values associated to the variables. In the

e n

example above, the map consists of

(0, 1) (@), 1) (@) 3), ((my),4), (@%y), -7).

Each pair in the map represents a monomial. We need a class for the first el-
ement of the pair, and an order defined on it that can be used by std: :map.
According to wikipedia, the first element of the pair can be called power prod-
uct, so [ will use this word in the rest of the exercise. You need some additional
code from the course homepage.

1. The task of method normalize( ) is to normalize the power product.
This means that (1) the chain is sorted by variable, (2) occurrences of
2.2 are merged into z1 12 (3) all occurrences of form z° are removed.

Implement the normalize() method of powerproduct. You can use
sort( ), defined in algorithm for sorting, and after that merge repeated
variables. Make sure that performance of normalize( ) is not worse then

n.log(n).

2. Complete the compare function of powerproduct. Of course, you can use
the fact that powerproducts are always sorted.

3. One you have implemented normalize( ), it is trivial to implement a
multiplication operator for powerproduct. You can just merge the vectors
and normalize the result. It is not theorically optimal, but good enough
for this exercise.

4. Now we can turn our attention to class polynomial.

Class polynomial is implemented as a template template<typename N> polynomial,
where N can be an arbitrary number type. I tried it with int, double,
bigint and rational.



5. Implement addition and subtraction operators for polynomial. This is
not difficult, because you can use += and -= as starting point.

6. Implement polynomial multiplication

template< typename N >
polynomial<N>
operator * ( const polynomial<N> & poll, const polynomial<N> & pol2 )

This is easier than you probably think. My implementation is 6 lines long.
7. Test your implementation over a few of the given number types. How
much is (1 + 2)%? How much is (1 + 22.y.2%)4? And (3 + z.y)°.

There are mathematicians, who believe that (1 + %)N converges to e” for
large N.

You can test this by computing (1 + %)N for some big N, and comparing
the result to the Taylor expansion. You can use function exptaylor< >
and subtract the result.

You can use rational or double.

Does the statement appear to be true?



