
Course C++, Exercise List 7

Deadline: 28.04.2016

In this exercise list, we implement matching, using the trees of exercise list 5,
and std::vector.

1. Write bool operator == (tree t1, tree t2), that returns true iff
the trees t1 and t2 are equal. One can write a recursive procedure, but
we won’t do that, because we want to use std::vector.

We will use the following definition:

S ∪ {f(t1, . . . , tn)} ≡ {g(u1, . . . , um)} ⇒ false if n 6= m, or f 6= g,
S ∪ {f(t1, . . . , tn)} ≡ {f(u1, . . . , un)} ⇒ S ∪ {t1 ≡ u1, . . . , tn ≡ un},
∅ ⇒ true.

If one wants to know whether trees t1, t2 are equal, one starts with S =
{t1 ≡ t2}.

Use std::vector< std::pair< tree, tree>> to implement the set of
equations. Take the pair at the end, process it, and if necessary put new
pairs back at the end.

2. Download matching.h from the course homepage.

Complete operator()(const tree& t) const in struct matching. It
is very similar to the substitution function of List 5.

Use of replacesubtree, in order to avoid unecessary copying. Make sure
that the non-const versions of functor() and operator[]() are re-
moved in class tree.

3. A tree t1 can be matched into a tree t2, if there exists a substitution Θ,
s.t. t1Θ = t2.

Matching can be implemented recursively, but we interested in using
std::list, or std::vector, so we (=you) will implement matching using
the following definition:

(Θ, S ∪ { f(t1, . . . , tn)/g(u1, . . . , um) }) ⇒ false if n 6= m, or f 6= g,
(Θ, S ∪ { f(t1, . . . , tn)/f(u1, . . . , un) }) ⇒ (Θ, S ∪ {t1/u1, . . . , tn/un}),
(Θ, S ∪ {V/t}) ⇒ (Θ ∪ {V := t}, S) if VΘ is undefined,
(Θ, S ∪ {V/t}) ⇒ false if VΘ is defined, and VΘ 6= t,
(Θ, S ∪ {V/t}) ⇒ (Θ, S) if VΘ is defined, and VΘ = t.

1

We assume that f, g are functors that are not variables. V is a tree with-
out subterms with a functor that is a variable. In order to decide whether a
functor is a variable, use matching::isvariable(const std::string& s).
(A functor is a variable if it starts with an underscore.)

t is an arbitrary tree.

States have form (Θ, S), where Θ is the current matching and S contains
the pairs of trees to be matched. Matching starts with (∅, {from/into}).
Use a matching and std::vector< std::pair<tree,tree>>.

There is a complication that matching may fail. Since this is not excep-
tional, one should not throw an exception in this case. We solve the prob-
lem by returning a std::list<matching>, which is empty, when matching
fails, and contains one matching, when matching succeeds.

Below are some examples:

f(_X, _Y) into f(f(a), f(b))

_X := f(a) _Y := f(b)

f(_X, _X) into f(f(a), f(b))

fails

f(_X, _Y) into g(f(a), f(b))

fails

f(_X, _X) into f(f(a), f(a))

X := f(a)

4. If everything went well, it should be possible to adopt the Makefile so
that rewrite system.h, rewrite system.cpp can be included in the
program. Run function test rewrite(), which uses the rewrite system

X + 0 ⇒ X
X + s(Y) ⇒ s(X + Y)

X × 0 ⇒ 0
X × s(Y) ⇒ (X × Y) +X

E(X,X) ⇒ t

to test if 2 · 2 · 3 equals 3 · 2 · 2.

You can also make some other tests.

2

