
Programming in C++

Exercise List 3

Deadline: 22.03.2016

Topic of this task are the essential methods.

1. Define (in a file stack.h) a class

#ifndef _STACK

#define _STACK 1

#include <iostream>

#include <initializer_list>

class stack

{

size_t current_size;

size_t current_capacity;

// size_t is an integer number >= 0. It should be used for

// sizes of objects, for indexing (because an index lies

// between 0 and the size of the object) and for hash values

// (because a hash value will be used for indexing.)

// size_t is guaranteed to be big enough for the memory

// of every computer, now and in the future.

// size_t is an alias. Hence you need to include something

// from standard library in order to have it.

double* tab;

// class invariant is that tab is always

// allocated with a block with current_capacity.

// We ignore the fact that normally,

// elements between current_size and current_capacity

// are not initialized.

void ensure_capacity(size_t c);

// Ensure that stack has capacity of at least c.

public:

stack(); // Constructs empty stack.

stack(std::initializer_list< double > d);

1

// So that you can write s = { 1,2,3 };

// You need d. size() and for(double d : s)

stack(const stack& s);

~stack();

void operator = (const stack& s);

// These are the essential methods.

// Later we will also encounter

// void operator = (stack&& s) and

// stack(stack&& s).

void push(double d); // Use ensure_capacity, so that

// pushing is always possible, as

// long as memory is not full.

void pop();

// Remove one element from the stack. It’s OK to write

// code that crashes, as long as you write clearly what are

// your preconditions, so:

// PRECONDITION: The stack is not empty.

void reset(size_t s);

// Pops element until stack has size s.

// PRECONDITION: s <= current_size.

double& top();

double top() const;

// The second one is used when stack was declared const.

// The first one allows assignment.

// Both have precondition that the stack is non-empty.

size_t size() const { return current_size; }

bool empty() const { return current_size == 0; }

};

Below is a definition of ensure_capacity(). Write the other methods
by yourself. (in a file with name stack.cpp) Small methods (up to three
lines) can be written in stack.h. Be sure to use field initializers wherever
possible.

void stack::ensure_capacity(size_t c)

{

if(current_capacity < c)

2

{

// New capacity will be the greater of c and

// 2 * current_capacity.

if(c < 2 * current_capacity)

c = 2 * current_capacity;

double* newtab = new double[c];

for(size_t i = 0; i < current_size; ++ i)

newtab[i] = tab[i];

current_capacity = c;

delete[] tab;

tab = newtab;

}

}

2. If you wrote the copy constructor, the assignment operator, and the de-
structor correctly, then your class now has value semantics.

{

stack s1 = { 1, 2, 3, 4, 5 };

stack s2 = s1; // Copy constructor.

// j is not size_t, because multiplying size_t with itself is

// unnatural:

for(unsigned int j = 0; j < 20; ++ j)

s2. push(j * j);

s1 = s2;

// Assignment.

s1 = s1;

// Always check for self assignment.

s1 = { 100,101,102,103 };

// Works because the compiler inserts constructor and

// calls assignment with the result.

#if 0

// Won’t compile. In order to get it compiled, remove const:

const stack& sconst = s1;

sconst. top() = 20;

sconst. push(15);

#endif

3

}

3. Check that there are no memory leaks, and that memory is not returned
twice. The recommended way to do this is by using valgrind. Call
valgrind ./stack and read the output of valgrind.

4. Write

std::ostream& operator << (std::ostream& , const stack& s);

Make it a friend of class stack, by adding

friend std::ostream& operator << (std::ostream& stream, const stack& s);

5. Using operator <<, convince yourself (and us) that your implementations
of the essential methods have correct behaviour.

6. Check what happens when you change #if 0 to #if 1.

4

