
Templates
Templates are functions or classes that are parameterized.

We have already seen a few in STL:

std::vector< int >

std::vector< double >

std::list< std::vector< >>

std::unordered_map< int, bool >

In STL, (as far as I know) the parameters are always types, but

this is not necessary. One could also have vector< T, L > , a

vector of type T of L.

1

Templates are instantiated at compile time.

After instantiation, a template class (or function) is just a usual

class (or function), that is compiled in usual fashion.

There is no efficiency price.

Templates are similar to C makros, but better: They have usual

scoping rules for names. They use substitution on syntax trees

instead of text replacement. They have linker support.

2

Compiling a Template

1. The compiler reads the definition of the template and stores it.

2. The compiler encounters an instantiation of the template. If all

goes well, the template is instantiated, and the result is

compilable C++ code.

3. The resulting code is linked.

All of these three steps can create error messages.

3

Step 1

It would be nice (from theoretical point of view and for the user, if

high level checking would be done at step 1. Unfortunately, C++

does not do that.

It does only syntactic checking, and a minimal type check. I will

later explain why. There are good reasons for it.

4

Step 2

Once the template is instantiated, it has become usual code. It is

fully type checked, and compiled in the same way as a direct

definition.

Instantiation happens on parse tree level, not on text level.

If you want to write a reliable template class, that doesn’t irritate

the user (a programmer who uses your template), you have to test

it carefully with many different instantiations. Write special

instantiation classes, that have exactly the right methods and

nothing more.

5

Templates and Separate Compilation

• A template definition alone cannot be compiled. You would

need a fourth type of file for that (in addition to .o, .cpp, .h).

• In order to instantiate a template (e.g. std::vector<int>, the

compiler must see its definition.

Separate compilation for templates is impossible!

Templates must be defined in .h files and included.

6

Step 3

Because the linker sees a definition of the template in every class

where it is used, it has to clean up multiple definitions, (and correct

the references). It has to decide which instantiations are equal.

If std::vector<double> was used in file1.cpp and file2.cpp,

both files will contain a definition. Only one is needed.

The linker has to detect this, and include only one definition.

7

General Form

template< class X, class Y > struct pair

{

X x;

Y y;

pair()

{ }

pair(const X& x, const Y& y)

: x{x}, y{y}

{ }

};

Instead of class, one can also use typename. Use short parameter

names that start with a capital.

8

Using the definition on the previous slide, one can write:

pair< int, int > p = { 4,5 };

pair< std::string, int > v{ "good morning", 5);

p = { 1, 2 }; // OK.

p = { "good evening", 5 }; // OK.

v = { 5,6 }; // Will refuse to compile.

p = { 4, "xxx" }; // Refuses to compile.

9

Error Messages

You have to get used to the error messages. (called template spew

or template barf.) They are famous for their length and

unreadability.

• Typechecking takes place only when the template definition is

fully instantiated. Often, the user (you) don’t know the

template definition and do not want to see it. The error

message make it seen to you anyway. Often, the template

definition is nested. (uses other templates).

• In case a function or method (often <<) was not found, the

compiler lists all possible candidates. This list is usually long

and not helpful.

In my opinion, the main problem is that g++ should provide error

messages in a more structured form, e.g. html.

Also, complaining is easy.

10

Adding Methods

Methods that are defined in the template class definition, are

inlined:

bool operator == (const pair& p)

{

return x == p.x && y == p.y;

}

Writing inline methods is the easiest way, but it is not always

desirable, because it may make the code too long when the method

is called many times. Also, it makes the specification hard to read.

11

Separating Definition from Declaration

With a usual class, one writes the declarations in the .h file, and

the definitions in the .cpp file. When using templates, both have

to be written in the .h file.

Write

bool operator == (const pair& p) const;

// In the class definition.

12

Separating Definition from Declaration (2)

Outside of (template) class definition, write:

template< class X, class Y >

bool pair<X,Y>::operator == (const pair& p) const

{

return x == p.x && y == p.y;

}

The linker will not complain about multiple definitions, because it

understands that multiple definitions cannot be avoided with

templates.

As usual, the method must have a declaration inside the class

definition.

13

Non-member Functions

If you want to define a non-member, template function, this is also

possible:

template< class X, class Y >

bool operator == (const pair<X,Y> & p1,

const pair<X,Y> & p2)

{

return p1. x == p2.x && p2. y == p2.y;

}

// Nicer than using a member function,

// because it shows the symmetry.

14

You can also write:

template< class X, class Y >

std::ostream& operator << (std::ostream& out,

const pair< X,Y > & p)

{

out << "{ " << p.x << ", " << p.y << " }";

return out;

}

15

Templates and Frienship (1)

Defining methods as friend of template classes is not easy.

Suppose that fields x and y of template< > class pair are

private.

We will have problems defining operator << or operator ==,

when it is not a member.

16

Templates and Friendship (2)

The obvious solution does not work:

friend bool operator == (const pair<X,Y> & ,

const pair<X,Y> &);

friend std::ostream& operator << (std::ostream& ,

const pair<X,Y> &);

It defines functions that the compiler accepts as definition, but

which is different from the definition that you wrote. Result:

Linker errors.

It seems to define some kind of non-template function. I have no

idea how this function could be meaningful.

Fortunately, g++ gives a useful warning!

17

Templates and Friendship (3)

In order to solve this problem, we first have to declare the function

in some other way, and after that, make it friend.

Now we have a problem: We have to declare operator == and

operator << before class pair, but the declarations use

class pair.

18

Templates and Friendship (4)

Solution:

• First write an incomplete class definition:

template< class X, class Y > struct pair;

• Then write declarations of the non-member functions:

template< class X, class Y >

bool operator == (const pair<X,Y> & ,

const pair<X,Y> &);

template< class X, class Y >

std::ostream& operator << (std::ostream& ,

const pair<X,Y > &);

19

Templates and Friendship (5)

It is not over yet. The friend declarations still declare

non-template functions instead of referring to the functions that we

declared with so much effort.

It is hard to understand why this is the case. The reason must be

the fact that the friend declaration is not really a member of the

class it occurs in.

If you think about it, there must be also a way to declare

non-template functions a friend. If friend declarations would be

template by default, this would be impossible.

20

Templates and Friendship (7)

It is sufficient to replace to add <> to the friend declarations:

friend

bool operator == < > (const pair &, const pair &);

friend

std::ostream& operator << < > (std::ostream& ,

const pair &);

Does this look complicated to you? You are not alone.

21

Templates and Friendship (8)

We have, for each non-member friend function, three occurrences.

The types must fit exactly (constness, references, being template),

otherwise either the friendship does not work, the compiler

complains about ambiguity between different definitions, or the

linker sheds its unreadable tears.

22

Template Functions

We have already seen template functions in connection to classes,

but they can also occur separately:

template< class X > void swap(X& x1, X& x2)

{

X y = std::move(x1);

x1 = std::move(x2);

x2 = std::move(y);

}

23

Template Functions (2)

You can write

int x = 4;

int y = 5;

swap<int>(x, y);

swap(x, y); // No need to write the types.

std::string s1 = "morning";

std::string s2 = "good";

swap(s1, s2);

std::swap is defined in STL.

24

Concepts

1. A complete language describing all reasonable constraints on

parameter types would be very very complex.

2. It is reasable to use only part of a template class definition. (If

a template class has more than one method, you do not have to

use all of them). Every reasonable subset has a different set of

constraints. You cannot specify them all.

For example, you can use pair without using operator ==.

This should be possible.

Anyway, there seem to be ongoing discussion about adding a

concept language to C++. Such constraints are called concepts.

(There is a wikipedia article about them.) I don’t think they will

be added soon.

25

Concepts

Possible conditions on type X are :

• It must have a default constructor.

• It must be destructable. (This doesn’t mean that it has a

destructor, but that it can go out of scope.)

• It has copy constructor, assignment (moving,non-moving).

• It can be compared.

• It can be printed.

26

Typename

Consider:

template< typename X > void dosomething()

{

for(std::vector< X > :: const_iterator

p = s. begin();

p != s. end();

++ p)

{ ... }

}

The reason for this is that the compiler cannot see if ::f is a static

field, or a type.

It should be able to construct a syntax tree at least when the

template definition is processed.

27

Typename (2)

template< class X > f()

{

X::bbbb b = X::f;

}

struct aaaa

{

static int f;

struct bbbb

{

bbbb(int x);

};

};

f<aaaa> ();

28

Typename (3)

Insert typename before every use of a field of form t< > ::f that is

a type. (Usually an iterator type.) Unfortunately, the compiler

does not always tell you that it wants to see typename. Instead it

gives a kind of syntax error resulting from the fact that is was not a

typename.

29

Typename (4)

Errors that can be caused by forgetting of typename are:

hashtable.h:15: error: expected ; before it

hashtable.h:33: error: expected ‘;’ before p

In C++, it is possible to have isolated statements of form S; mixed

with declarations of form T v;. If the compiler does not see that T

is a type, then it assumes that the statement is of the first form

and it expects the ;.

30

Writing Templates

How to write your own template?

Write an instance class, and give it exactly the methods that you

need:

struct aaaa

{

};

void operator == (const aaaa& a1, const aaaa& a2)

{

}

std::ostream& operator << (std::cout& out,

const aaaa& a);

31

Writing Your Own Templates (2)

Write your template class first for class aaaa. After that,

introduce the parameter, and test the template for some other

instantiations.

32

Conversion Problems

Consider:

template< class X, class Y >

class pair

{

X x;

Y y;

public:

pair() { }

pair(const X& x, const Y& y)

: x{x}, y{y}

{ }

};

33

Conversion Problems (2)

pair<int,int> p = { 4, 5 };

pair< double, double > q = p;

// Should be possible. (Assuming conversion

// from int to double is OK.)

if(p == q)

{

// Should be possible.

// It is allowed to compare int and double.

};

34

Flexible ==

Solution is easy in principle:

template< class X1, class X2, class Y1, class Y2 >

bool operator == (const pair<X1,Y1> & p1,

const pair<X2,Y2> & p2)

{

return p1.x == p2.x && p1.y == p2.y;

}

If x,y are public, there is nothing more to do.

35

Flexible ==

Problems starts if you want == to be friend of class pair.

Before the definiton of pair, write:

template< class X, class Y > class pair;

template< class X1, class X2, class Y1, class Y2 >

bool operator == (const pair<X1,Y1> & ,

const pair<X2,Y2> &);

Replace friend declaration by:

template< class X1, class X2, class Y1, class Y2 >

friend bool operator == (const pair<X1,Y1> & ,

const pair<X2,Y2> &);

One typo, or forgetting const somewhere ⇒ pages of error

messages!

36

Converting Assignment

If assignment is not a member, it can be done in the same way as

operator == ().

If it is a member, you can write:

template< class X2, class Y2 >

void operator = (const pair< X2, Y2 > & p)

{

x = p. x;

y = p. y;

}

Surprising (unpleasant) fact: If fields x,y are private, we cannot

get p.x, p.y.

I could not find a way of making operator = with different

argument, a friend.

37

Making all pair<X,Y> Friends

It is possible to make all pair<X,Y> friend of each other. This

solves the problem.

In beginning of class pair, write

template< class X2, class Y2 > friend pair;

38

Conversion in Construction

Same problem that we had with assignment, also exists with

construction/initialization:

pair< int, double > p (4, 5);

pair< double, double > q = p;

// No such constructor.

39

Flexible Construction (2)

Just define one:

template< class X2, class Y2 >

pair(const pair< X2, Y2 > & p)

: x{ p.x }, y{ p.y }

{ }

This is a good point to observe the difference between { } and ()

in initializers!

40

Flexible Construction (3)

Consider:

pair< int, int > p (5,5);

pair< int, int > q = p;

The pair is taken apart and reconstructed. If you don’t like that,

you can write a specialization:

pair(const pair& p) = default;

The compiler selects the best fit.

The same can be done with assignment.

41

Dependent Members

Suppose that we want to define

template< class T, class Alloc >

class mylist

{

};

There are related classes that are also templates, e.g.

const iterator, iterator, node.

Some of this classes may be public, some may be private. Where to

define them?

42

Dependent Members as Subclasses?

template< class T, class Alloc >

class mylist

{

public:

struct const_iterator { };

struct iterator{ };

private:

struct node{ };

};

• Puts public members on the proper place. (user wants to type

mylist<X> :: iterator .

• Makes it possible to hide private members.

• Most users don’t want to see the allocator. Introduces

unwanted dependencies, which may lead to problems.

43

Functions that do not allocate, should not depend on the allocator.

template< class T >

void print(std::ostream&,

mylist< T > :: const_iterator p1,

mylist< T > :: const_iterator p2)

{

}

void printdouble(std::ostream&

mylist<double> :: const_iterator p1,

mylist<double> :: const_iterator p2)

{

}

44

Classes have be defined outside of mylist (There is no other way):

template< class T >

struct _Node

{

}; // Hope that user doesn’t touch this name.

// You can still make the constructors private,

// and make mylist a friend.

template< class T >

struct _Const_iterator

{ };

template< class T >

struct _Iterator

{ };

45

Specialization

Quite often, it happens that a template is too general. For example

template< class B > vector may have an efficient

implementation when B is bool. (One could use bitstrings. It is at

least space efficient.)

C++ allows to write specialized definitions of templates for

specialized B.

template< > class vector< bool > { }

You may want to do this, either because of efficiency, or because of

a different interface.

46

Conclusion

Templates are very powerful, and very nice. If well-used, it is

possible to write good quality, reusable code with them. But it is

not easy. I didn’t cover all topics, because I think they are too hard

and too specialized.

1. You must be willing to type a lot.

2. You must be willing to read large error messages.

47

Concepts

It would be nice if template instantiation could introduce more

informative error messages:

template< class C >

std::ostream& operator << (std::ostream& stream,

std::list<C> & l)

{

for(auto p = l. begin(); p != l. end(); ++ p)

{

stream << *p;

}

}

48

Concepts (2)

Trying to instantiate with unprintable type gives a wall of error

messages. It would be nice if one could specify somehow:

operator << (std::ostream& stream, const C&) ; must be

defined and return std::ostream&.

Unfortunately, no such mechanism is yet part of the standard. An

experimental implementation is promised but not provided.

Maybe next year ...

49

