Overloading, Operators, Constness,

Initializer Lists




Testing

It seems that some people don’t know how to test.

Test all your components one by one. Always test the borderline
cases. (Empty containers, the numbers 0, 1, self assignment.) Make
sure that every part of the code is executed during the tests. Use

print statements to check intermediate results.
Use valgrind to test for memory leaks.

Move to the next component, only when you believe completely in

the previous component.

Avoid big functions. It is better to split them up. If you worry

about efficiency, use inline.

If your code cannot be tested, it is probably badly written.
Untested code is almost the same as unwritten code.




Const Modifier for Member Functions

Member functions of a class can be declared const.

const double& top( ) const

If variable s is declared as const stack s or const stack& s,

then only member functions with const mark can be used on s.

A const reference can never be copied into a non-const reference.

C*1 takes const very serious. If a struct or class is const, then

its fields are const.




Preservation of Const

Inside a const member function, the fields of the class are available

only as const:

double top( ) const
{

current_size = 4; // Will be refused because

// current_size has type const unsigned int

+

From a const member, it is not possible to call a non-const
member:

double top( ) const
{

change_size(4);

// Will be refused, unless change_size is const




Preservation of Const

It is still possible to cheat on the heap, because pointer dereference

does not preserve const:

double changetop( ) const

{
tab[0] = 4;
// Will be accepted. Still a very bad idea.
// because we want to treat *tab as a kind of

// extended local variable.

In order to prevent this, we should make sure that only member

functions can access the heap (which we are treating as extended

local variable space) directly.




Overloading with Const

Consider:

double& top( )
{

return tab [ current_size - 1 ];

double top( ) const
{

return tab [ current_size - 1 ];

The compiler picks the most specific definition that fits, if it is
unique. Non-const is considered more specific than const. (Because

const can be transformed to non-const, but not reversed.)




Overloading with Const

You can write:

stack s;
s. push(4); s. push(5);
s. top( ) = 3;

but not

std: :ostream&
operator << ( std::ostream& out, const stack& s )

{
s.top( ) = 0;




Overloading

The previous example was a special case of overloading.

Overloading is when two or more functions or class methods have
the same name. In that case, the compiler has to decide which one

to use.

Overloading happens all the time. Consider <<, =, +,*%,-,/ and

other operators.

I will define the rules:




Conversion Levels

C*1 distinguishes levels of conversions:
Level 1 The conversion from 77 to 15 has level 1, if T = T5, or 15

can be obtained from 77 by inserting const.

The conversion from arrays to pointers (which is unavoidable

because nothing else can be done with an array) is also level 1.

Application of copy constructors is also on level 1.

Level 2 The conversion from T; to 15 has level 2, if both 17,75

are integral. (bool, char, int, short, long, unsigned), and

the conversions from 7% to 15 is guaranteed to be without loss.

The conversion from float to double is also level 2.




Level 3 The conversion from 77 to 15 has level 3, if both 17,75
are integral, but the conversion from 7% to 75 is possibly lossy.
(For example from int to char, from unsigned int to int, or

from int to double.

Also conversions from a derived class to a base class are level 3.

Level 4 The conversion from 77 to 75 is level 4 if it involves a user

defined conversion. (A one argument constructor.)




One Argument Functions

Suppose we have a function call f(t) with t of type T. Assume that

Uy F(TY), ..., Uy f(T)

are the definitions of f that the compiler has to choose from.

If there is no T;, such that 1" is convertible into 7, then: ‘No

matching definition found’.
Otherwise let A be the level of the lowest conversion.

If there is unique 7T; into which T' can be converted at level A, then
U, f(T;) is selected.

If T} is not unique, then: ‘Ambiguous overload for f’.




Multi Argument Functions

Assume that function f is applied on arguments ¢1,...,¢, with

types 17,...,T,.

Assume that

Ui f(Tha,..,Thn) - U, f(Tn1s- -3 Ton)

are the definitions of f that the compiler has to choose from.

If there is no ¢, such that each T} is convertible into its

corresponding T; ;, then ‘No matching definition found’.




Multi Argument Functions (2)

Otherwise, find an 7 such that each T is convertable into its
corresponding 7; ;, and for every other ¢’, s.t. each T is

convertable into T3 ;, the following holds:

1. For every argument position j, the level of the conversion from
T into Tj; ; is not higher than the level of the conversion from
Tj into Ti/,j.

. There is at least one argument position j, for which the level of
the conversion from 77 into T; ; is lower than the level of the

conversion from T} into T} ;.

It probably took several years to find these rules. They are key to
the success of C1T.

The rules work so well that you never notice them.




Overload Resolution in Ct+

double f( int, double );
double f( double, int );

£(0,0); // Ambiguous.

double g( int, double ),
double g( double, int ),
int g( int, int );

g(1,1) + g(1.0,4) + g(5,5.0); // Fine.




Private Member Variables

In the rational class, we wanted to use controlled access to the

fields as tool to enforce the class invariants/equivalences.

struct rational
{
int num;
int denum;
rational( ); // Default constructor.
rational( int i );
rational( int num, int denum )

: num( num ), denum( denum )

normalize( );




If we could be sure that the fields num,denum cannot be

overwritten, we are sure that the invariant is preserved.

Unfortunately, somebody may still decide to ignore our delicate
invariants, and write

rational operator + ( const ratiomnal& ri,

const rational& r2 )

rational r;
r. num = ...

r. denum = ...

+

(In addition, it uses unnecessary default initialization.)




Private Fields

Solution is to declare the fields num and denum private:

struct
{
private:
int num;
int denum;
public:

constructors.

a few methods that can acces num and denum.

};

Private members (fields and functions) can be accessed only from

member functions.




One can also write

class rational

{

int num;
int denum;
public:
(constructors)
s
class and struct are exactly the same. In a class, the fields are
private until the word public: appears. In a struct, the fields are

public until the private: appears.

The private/public distinction also applies to class methods.




Getters

Unfortunately, making num and denum private also blocks

reading, so that operator+ cannot be implemented anymore.

Reading should be allowed because it cannot spoil the invariant,

and we have nothing to hide.

int getnum( ) const { return num; }

int getdenum( ) const { return denum; }

The functions make it possible to read the fields without changing
them.

Functions that are defined in the class definition, (nearly always in

the .h file) are inlined, i.e. substituted away by the compiler. They

have no computational cost at run time.

C' used macros for this. Don’t use macros in C 71!




Why macros are bad

Macro’s are syntactically not safe, and may evaluate their

argument more than once.

#define SQUARE(X) (X *x X )
// Problem with operator priorities.

// X is evaluated twice.
Macro’s ignore scoping rules:

class mysecrets

{
#define NRSECRETS 100

+;

No private/public distinction, scope is always global, no way to
control overloading. Different programmers may use them with

different definitions.




Why Macros are Useless

e Polymorphism can be obtained by templates:
SQUARE(4); SQUARE( 2.1 ); SQUARE( rational(1,4) );

e If you worry about the cost of calling a function, it can be

solved by using inline.

e Arrays should never have fixed size, but shrink and grow with
their contents. Use std::vector instead of array. Don’t add

fixed size constants to your own containers.
e Compile time constants can be defined using constexpr.

The only remaining use of macros is in include guards, and to

switch off print statements or unfinished code. (#if).




This
Inside a member function of a class, the class object that we are a

member of, is accessible as this.

Very very unfortunately, this is always a pointer. It would be much

nices if this were a reference. I cannot help it.

this should be used in three situations:

e A local variable (or a parameter) in a class method has the

same name as a field or method of the class.

e You want to apply a defined operator, which is defined as

member, on the current class object.

e You want to make a copy of the current class object. (This

happens all the time in X operator ++ ( int ) )




class ratiomnal
{
int num, denum;
// Unnecessary assignment operator, created only

// for the example:

void operator = ( const rational& r ) {

// Square the current rational:
void square( )
{
operator =
( rational( num * num, denum, denum ) );
(*this) = rational( num * num, denum, denum );
// Looks better.




In most cases, class fields and class methods can be accessed
without this.

In initializers, there is no need to use this:

rational( int num, int denum )

: num{ num }, denum{ denum }

{2

In older (pre 2011) versions of C**, you will find ( ) for
initialization. It does the same, but it does not detect narrowing.




Defining User Operators

C*7 allows the definition of user operators.

There is no way to extend syntax, only operators that that already

exist, can be overloaded.




Simple Operators

Simple operators +,-.x,/,%,&&%,||,”" can be defined, either as

member, or stand alone.




Definition as Member

In file rational.h:

class rational

{

int num, denum;

rational operator + ( const rational& r ) const;

};

A member operator is like a normal member function. It has access

to the private variables.

This means that more discipline is required when writing them.

It also causes asymmetry between first and second argument, which

is not always nice.




Definition as Member (2)

In file rational.cpp:

rational rational::operator + ( const rational& r ) const

{

return rational( num * r. denum + r. num * denum,

denum * r. denum );




Stand Alone Definition
In .h:

class rational

{

int num, denum;

};

rational

operator + ( const rational& rl, const rational& r2 );




Stand Alone Definition (2)

In .cpp:

rational
operator + ( const rational& rl, const rational& r2 )
{
return rational(
rl. num * r2. denum + rl. denum * r2. num,

rl. denum * r2. denum );

No unwanted access to private variables. Nicely symmetric.




Overloading of Assignment

We have already seem overloadings of assignment. The syntax is

the same as for the other binary operators:

struct rational

{

void operator = ( const rational& r );
void operator ( rational r );

// Results in a call of copy constructor.

+;

void operator = ( rational& rl, const rational& r2 );
void operator = ( rational& rl, ratiomnal r2 );

// Both are possible, but less natural.




Define assignment only when its behaviour is non-trivial. (Not

when you are just copying the fields.)




Return Value of Assignment

Assignment can return expressions of arbitrary type. One could

write:
const rational& operator = ( const rational& r );

This allows you to write:

I don’t like such code, so I usually return void.

Don’t return crazy things.




Overload Resolution

The overloading rules for defined operators are the same as for

usual functions (uniquely defined, best fit):

rational operator + ( const rational& , int );

rational operator + ( int, const rational& );

rational r = 1 + rational( 1,2 ); // Second.
=r + 4; // First;

=1 + r; // Refuses.




Overload Resolution (2)

The compiler also tries to insert conversions. Every l-argument

constructor is a potential conversion.

rational operator + ( const rational& , const rational& );

r =1+ 2; // int + is unique best fit.
// r = rational(l + 2 );

1 + rational(1,2);

// rational(l) + rational(1,2);
r + 1;

// r + rational(1l);

If you think that a unary constructor is not suitable as conversion
(because the constructed object does not mean the same as its

argument in the new type), then add the explicit keyword.




Initializer Lists

Consider class stack. If you want to build a stack with something

on it, you have to write

stack s;
s. push(1); s. push(2); s. push(3);

This is ugly and ineflicient. It breaks the rule that direct
initialization should always be preferred over default initialization

with reassignment.

Using initializer lists, one can write

stack s( {1, 2, 3 });
stack s = { 1, 2, 3 };




Initializer Lists

An initializer list is a simple datastructure that can hold a sequence

of elements of unbounded length.

Initializer lists are automatically created from a list of form
{t1, ... tn }.

They should only be used for parameter passing, never for

permanent storage!




Constructor with Initializer List

#include <initializer_ _list>

stack( std::initializer_list< double > init )
current_size{ init. size( ) },
current_capacity{ init. size( ) 1},
tab{ new double[ init. size( ) ] }

for( auto p = init. begin( ); p != init. end( ); ++ p )

write *p to the proper position in tab.

The same syntax { ... } can be used to call the other, fixed

length constructors.




Overloading Assignment Operators

Assignment operators +=, -=, x= can be defined. They are not
defined by default. Define them only when they have meaningful

definitions that deserve to called ’+’,°-’, etc.
If both +=,+ are defined, the meaning of += should be x=x+a;

It is fine to define one in terms of the other:

void operator += ( rational& rl, const rational& r2 )
{rl1=1r1+12; }

rational operator + ( rational rl, const rational& r2 )

{ rl1 += r2; return ri1; }

Sometimes it is more efficient to define them separately.




Inlining

e Calling a function requires some administration.

Allocating some stack space, saving registers, saving return a

address.
e Jumping to a function causes cache misses.

e An optimizer cannot optimize well, if it cannot see parts of the

code.

inlined functions are functions that are substituted away. They
may make the code longer, and cannot be used with recursion.




Inlining (2)

Theory:
e Methods defined in the class are inlined.

e Methods and functions declared inline, and defined in a .h file

are inlined.
e Everything else is not inlined.

Practice: Modern compilers decide by themselves what they inline.
Still, a compiler cannot inline what it cannot see.

It is therefore still good to follow the rule above if you think that

something should be inlined.

If you forget inline keyword, the linker may complain about

multiple definitions.




