
Programming in C++, Exercise List 8

Deadline: 28.04.2015

In this exercise, we study std::map< > and std::unordered_map< >. They
have similar functionality: Each of the two versions of map<X,Y> implements
a table of elements (x, y) with x ∈ X and y ∈ Y, in such a way that y can
be efficiently looked up, when x is known. One could also say that map<X,Y>
implements a lookup table from X to Y.

The difference between std::map<X,Y> and std::unordered_map<X,Y> is
the mechanism that is used for lookup: std::map< > uses a search tree, so that
it requires an orderX. std::unordered_map< > is based on hashing, so it needs
a hash function and an equality function on X.

1. Write a function

std::map< std::string, unsigned int > frequencytable(

const std::vector< std::string > & text)

that constructs a table of frequencies of the words in text.

Inserting into a map can be tricky when Y has no default constructor, but
in this task you can simply use []. In a later exercise, we will treat []

in more detail, because it has some problems with constness of the map
and default construction of elements of Y.

2. Write a function

std::ostream&

operator << (std::ostream& stream,

const std::map< std::string, unsigned int > & freq)

that prints the frequency table. Use a range-for.

3. std::map< > uses by default the order < on std::string. We want the
frequence table to be case insenstive. Try for example:

std::cout << frequencies(std::vector< std::string >

{ "AA", "aA", "Aa", "this", "THIS" });

In order to overcome this problem, we will have to provide our own com-
parator. Define a class

1

struct case_insensitive

{

bool operator() (const std::string& s1, const std::string& s2) const;

// Return true if s1 < s2, ignoring case of the letters.

};

Class case_insensitive has only one constructor, namely its default
constructor. Test it for example by

case_insensitive c;

std::cout << c("a", "A") << c("a","b") << c("A", "b") << "\n";

There is no ==-operator. std::map will assume that two objects are equal
when both c(s1,s2) and (s2,s1) are false.

Write bool operator() in a reasonable fashion! Making a lower case
copy of the string, and using < is not reasonable.

4. Once you have finished the case_insensitive class, you can do one of
the following things, dependent of your level of eagerness:

• Simply replace std::map< std::string, unsigned int > by
std::map< std::string, unsigned int, case_insensitive >, in
everything that you wrote before, and sorting should work as desired.

• Make operator << and frequencytable polymorphic: Write:

template< typename C = std::less< std::string >>

std::map< std::string, unsigned int, C >

frequencytable(const std::vector< std::string > & text)

// frequencytable(test) will produce a frequency table, using

// std::less< std::string >, which is the good old <

// frequencytable<case_insensitive>(test) will produce a

// case insensitive frequency table.

template< typename C >

std::ostream& operator << (std::ostream& out,

const std::map< std::string, unsigned int, C > & m);

// Prints frequencytable, for every possible comparator.

5. Now we want to write the same functions with std::unordered_map. If
we will do nothing, comparison will also be case sensitive here, so we need
to create a case-insensitive hash function, and a case-insensitive equality
function. They work in the same way as the case_insensitive object:

struct case_insensitive_hash

{

size_t operator () (const std::string& s) const

};

2

struct case_insensitive_equality

{

bool operator () (const std::string& s1,

const std::string& s2) const

};

case_insensitive_hash h;

std::cout << h("xxx") << " " << h("XXX") << "\n";

std::cout << h("Abc") << " " << h("abC") << "\n";

// Hash value should be case insensitive.

case_insensitive_equality e;

std::cout << e("xxx", "XXX") << "\n";

// Prints ’1’.

6. If everything went well, the following function is now easy to write:

std::unordered_map< std::string, unsigned int >

hashed_frequencytable(

std::vector<std::string> ({ "aa", "AA", "bb", "BB" });

// As with frequencytable for map, you can make this

// function polymorphic.

// The default parameters are std::hash<std::string> and

// std::equal_to<std::string>.

3

